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RESUMEN

Este trabajo analisa la representacion del comportamien
to mecanico (isotérmico) de solidos elastoplasticos com
grandes deformaciones elasticas y plasticas y anisotropia en
el rango plastico. Estado y orientacion de elementos descar-
gados son descritos por medio de tensores de rango irreduci-
ble. Es incluida la discusidn de algunas dificultades usuales
en analisis con grandes deformaciones as] como aplicaciones
de un programa de elementos finitos.

ABSTRACT

The paper is concerned with the representation of
isothermal mechanical behavior of an elastoplastic solid
that possesses a finite elastic range and exhibits anisotropy
in its plastic behavior. The state and orientation of a
stress free element is described by means of irreducible
rank tensors. A discussion of some difficulties usual in
finite straim analysis and applications using finite elements
are included.
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1. INTRODUCTION

In this work we describe some applications of the
finite elements method to elastoplastic problems in the
presence of finite strains. We consider inviscid plasticity
and incremental (rate) solutions; this approach has been the
most popular for the solution of practical problems because,
by reducing the nonlinear problem to a series of linear
associated problems, it can take advantage of available
algorithms and software. Important alternatives not consid-
ered here are the viscoplastic formulations [1},]|2]| and
solutions by direct minimization of the functional relations
|3|,|4|. The relatively new technique of boundary elements
has been already applied to plasticity problems |5| and may
have advantages in some situations. On the other hand, most
of the results described here for constitutive modelling in
the presence of finite strains should be valid for any
solution procedure.

We begin this paper by recallinmg, in Section 2, some
well-known results from small deformations plasticity theory.
Then, in Section 3 we indicate an extension to the range of
finite elastic and plastic deformations. As it is well-known,
elastic deformations of ductile metals are bound to be small
because of the relation between yield stress and elastic
modulus. Nevertheless, the consideration of finite elastic
deformations is important from a theoretical point of view
and has already some applications for new synthetic
materials |6|. In Section 4 this formulation is illustrated
through examples for frame and continuous structures. Some
applications to geomaterials and metalworking processes are
discussed in Section 5.

Our wvork at the Curso de Pos-Graduaciao em Engenharia
Civil, UFRGS, has been a joint effort with E.T.Onat from
Yale University and A.G.Groehs. Some numerical results were
taken from MSc. dissertions of our students, as indicated in
the references. The research program was initiated under the
coordination of A.J.Ferrante.

2. SMALL DEFORMATIONS FORMULATION

In order to establish a common background and notation
we begin by reviewing the small deformations theory. The
basic relations are:

i) Definition of plastic deformation

€ = €€ 4+ €P (1)

where €P is the plastic strain and €% the elastic (recover-
able) one. In incremental plasticity this relation is
normally written in the rate form I(') = 3/3:[

€ « £ , ¢P 2)

ii) Definition of yield condition

Y(o, §) =0 (3)
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Eq(3) represents, in the 9-dimentional space I (whose
coordinates are the components of the (Cauchy) stress tensor
0),a closed surface that encloses the elastic domain. In
general, this surface changes during the elastoplastic
deformation process; this change is loosely referred to as
hardening. Sywbol § in (3) represents a set of parameters
that characterize the state of the material and models
hardening.

iii) Loading-unloading criteria. From (3) we character-
ize unloading processes with

1-25<o (4)
and loading processes with
. 3Y - Y ; Y -
Y-T&o¢-5-§$-0 i 35920 (5)

In the second (5) sign (=) corresponds to neutral loading
that does not modify the material's state and (>) to active
loading. The differentiation indicated in (4),(5) assumes
that the yield surface is smooth; alternative formulations
can be considered for yield surfaces with cormers |7}.

iv) Incremental elastic relation:

¢ -t lg (6)

where E is the elastic isotropic constitutive matrix.

v) Incremental relation for the plastic deformation
P op 28 2AY .
€ Aac (30 o) : A0 (7)
vhere g(0,5) is & scalar function termed plastic potential;
the term (3Y/90.0) assures continuity for neutral loading.

From (2),(5),(6),(7) we obtain the elastic constitutive
relation

g = Eepe (8)

where
Ea TE
- - 2222 (9)
ep A+a Ea
being
I S PO O
2 0 ’ 2 * 3 ’ A ¥ 365 (10)

Relation (9), first proposed by Hill |8| was rediscovered by
Yamada }9}.

3. FINITE STRAIN FORMULATION

In this section we shall limit ourselves to review only
some important points, stressing the differences between
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small and large strain theories. A more detailed explanation
can be found in the references given.

3.1. Kinematics

For finite strain we must obviously abandon the usual
linearized definition of specific deformation €. Many alter-
natives have been proposed |10|,|11|,]12|, but it appears
that, as in finite elasticity, it is convenient to begin
with the deformation gradient F, such that the relation

x=F(t) X ; ¢t€ [o,= (11)

indicates that F(t) carries the material point X from its
position X in t=0 to the positiom x in t. For the deforma-
tions considered det F(t) > 0. During the deformation
process a cubic element is transfgrned into a parallelepiped
whose shape is characterized by F' F. For rigid body
rotations we have naturally F=1 and det F=l.

In the elastoplastic case we define plastic deformations
through the decomposition |13]

F = Fe FP (12)
This decomposition is made unique by choosing }14]
T
F, = F, (13)

From (l1) ve may write

F(e) = $= F(e) = F(6) Fl(e) = Do (14)

vhere D = l).r is the rate of strain and = —QT is the rate
of rotation. We can define the corresponding elastic and
plastic entities in the form

F F-l =D + @
P @ (15)
-1
Fe Fe =D, * ne
and observe that it is
-1
D+Q} = De+9¢0Fe(Dp*Qp)Fe (16)

Thus, when elastic strains are small, so that we can take
Fesl (16) yields

D=D, +D
g _a Q

- +
e

The first (17) is (incrementally) equivalent to (2).

? %))

In the general case we can find s form more convenient
than (16). Defining elastic strain through the left Cauchy-
Green strain tensor

8_=FF - F (18)
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and the new measure of plastic strain Dp with

DB +BD = 2FDF

P e e p epe (19)

D =0T

P P
we obtain

Be - (D-DP*Q)Be + Be(D-Dp-Q) (20)

-l = W(D+
Q P ( Dp) (21)

where W is a linear mapping that depends on Fe‘

Eq. (2) is the finite strain equivalent of (2) and
keeps the additive pattern. Eq. (21) tells us that once D,
Dp and  are given Qp is determined.

3.2, Elastic relations

We consider the elastic constitutive relations for an
elastic material which is isotropic in the elastic range. In

this case it exists a strain energy function ¢ per unit mass

b o= ¥(1,,12,1I,) (22)

vhere
i

I; = tr(B)) (23)
are the basic invariants of the left Cauchy-Green tensor B
The corresponding Cauchy stress O is obtained from (22) an§
the relation

g.D =p ¢ (24)
in the form

] ) 2 ) 3
g = 20(3%7 B, + zaiIz B, + 3}-%‘-; B) (25)

vhere p is the current density of the material. Using the
continuity relation

p+ptr D=0 (26)
and noticing that from (23) it is
: Lo iy . i -
Ii - 21Be(D Dp) 21tr8e(D-Dp) (27)
ve obtain
6 = -otrD + (n-np+n)o + o(D-BP-Q) + E (D-Dp) (28)

vhere
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Eijer = 2P[20 BBy ioB i eByByg) *

2 2 2 2
* 3, BByt B BB BB Pyy) bt
2 2 2 _2 (29)
¢ oAb (B By B Byy) ¢ B, (B BLy) o
3 3 2

*B;;By1) ¢ 18¢ B

2 3
+ 12, (B ijn“]

ij k1l
In metal plasticity it may be assumed that plastic

deformations are isochoric, i.e. trD_=0 and thus (28) can be
written P

0 =00 -00+E (°°Sp) (30)

3.3. State and orientation of stress-free previously
deformed elements

As seen in Section 3.1 we may unload a plastically
deformed element applying a deformation F-l. The previous
plastic deformation has produced some chaﬁges io the
material's internal structure that may be represented using
the concept of state |14,15|. The state 5 can be character-
ized by n parameters

$ = (a1, .-~ an) (31)

It can be shown |16] that the q;'s must be irreducible even
rank tensors.

We are also interested in the growth law for S and in
particular in its dependence om rotatiom which is important
in the case of materials that develop anisotropy during a
deformation process with finite strains and rotations. A
rigid body rotation of the material element represented by
Q€ 0% (3) causes the state point to move to

PQS = (qul. e PQqN) (32)

where P represents an ordinary temsor transformation
adequatg to the rank of q;- As for the growth of § we can
write, for a rotation R,
d5(¢t)

t

T A(S,0,D) - TUDS + Tns (33)

where T, is a linear mapping on R® that depends linearly on
Q. A more detailed explanation may be found in refs. 1171,

J18].
3.4. Some fine points to be careful about

i) When linearized stress © and linearized € are used
in the elasesical infinitessimal theory it is certainly
correct to calculate for incremental loading the correspond-
ing stress increment AC and add these stress increments in
order to obtain am approximate expression for the stresses.
For finite deformations, hovever, this must be done with
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care, keeping in mind that stresses can be added only if
they are referred to and measured per unit area of the same
reference configuration.

ii) Yield conditions must be written in terms of Cauchy
stress which is the only one with real physical meaning. It
is unacceptable to write yield conditions in terms of (for
instance) the second Piola-Kirchhoff stress, that depends on
an (arbitrary) initial configuration definition.

iii) In classical plasticity theory plastic deforma-
tions are assumed isochoric. In the case of small elastic
and large plastic strain, total deformation is mostly
incompressible. That is, the material behaves as if having a
shear modulus much higher than the shear modulus. This type
of behavior may give rise to important errors when working
vith some finite element types and meshes |19],|20].

Let us consider the four-nodes isoparametric element
shown in Fig. 1 for the case of an equivolumetric deforma-
tion. With this type of element it is normal to use 2x2
Gauss integration to calculate the stiffness. For this
situation we have volume increase around two integration
points and volume decrease in the other two. As the material
is almost incompressible these (opposite) changes of volume
give rise to important stresses and the stiffness obtained .
results larger than the real one.

Fig. 1

A vay out for this problem was proposed by Nagtegaal et
al |19| using ideas already proposed by Herrmann [21] and
Key |22|. It consists in defining a new degree of freedom
for the volumetric strain. This procedure leads to a modifi-
cation of the basic variational primciple. From Fig. 1 it is
also apparent that the problem may be avoided using (in the
present situation) a single integration point at the center .
of the element, This observation leads to the method of
reduced integration proposed by Zienkiewicz |23| in order to
introduce a singularity in the volumetric component of the
stiffoness matrix. In the case of the linear element this
method is not adequate because reduced integration leads
frequently to a singularity also for the tangencial stiff-
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ness |24|. In ESFINGE ]20},]|25] we have used the modified
functional formulation for linear elements and reduced
integration for quadratic elements. Fig. 2 shows an example
comparing ESFINGE with compressible and incompressible
elements and numerical and experimental results from ref.
]26]|, indicated by (H). The error becomes much larger for
finite deformations.
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iv) Computer studies by Nagtegaal and de Jong |27] have
shown some surprising results in the analysis of large
plastic deformations of kinematically hardening materials.
These results show oscillating stresses under monmotonically
increasing strains, We will look at the problem following a
simplified analysis by Onat |28},

We consider a material element under simple shear, Fig.
3. The corresponding values of the rates of strain and
rotation are

D=3j0 1 O H Q= 0o 1 0
Tt 0 0O -1 0 0 (34)
0 0 O 0o 0 O
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We consider a rigid-perfectly plastic material with
kinematic hardening

Y(0,5) = % (s-a) (s-a) - k? (35)
wvhere & is the deviatoric stress
s =0 - 3 (tro)I (36)
Using the associated flow rule
D=2 /38 =2 (s-a) )
we obtain
s =a+ /72— (38)
/D.D

The growth law for G can be written in general (see 33)

G = 2AA (s,0) +2a-a0a (39)
Prager's rule is a particular case of (39) with

@ =2a(s-a) + Ra - al (40)

Integrating (40) for the shear problem (34) snd substituting
into (38) we obtain

1
g, =0,, =k + 3 & sen [ (41)
an oscillating stress as shown in Fig. 3, where ome would
expect an ever increasing stress, This behavior is caused by
the rotation terms in dominate expression (40) and can be
corrected with a better choice of A in (39). Onat proposes

a = ab +[Q+e(Da-ad)]a - a[Q+c(Da-ab)]; a>0; c>0 (42)
The interplay of parameters a and ¢ sllows the modelling of

& large variety of responses. The most adequate values have
to be determined by experiments.
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4. APPLICATIONS

4.1. Frame structures

One of the simplest applications corresponds to frame
structures. The results are useful per se and from a didac-
tical point of view,

Elastic relations: we must make some simplifying
assumptions in order to obtain the usual nonlinear expres-
sions corresponding to small deformations and large
rotations. Thus, we disregard specific deformations in
relation to rotations, writing

D+ Q =R (43)

Moreover, we consider that the most important component of
the stress state in relation to the nonlinear behavior is
the axial stress

o = K/A : A: element area (44)

With these simplifying assumptions, the element stiffness
matrix reduces to a form

T

K=/ @Tes+ ] Dav (45)

v

e
where B and N are the matrices used to calculate strain
gradient D and velocity gradient D+Q respectively from the
node velocities.

Using (45) and the interpolation funections corresponding to
simple beam theory we obtain

K = K+ Ky (46)
K. and K are respectively the linear and nonlinear (or
geéometricdl or initial stress) stiffness matrices. The
condition

det (R, + Ky) =0 (47
is used to determine the load corresponding to elastic
1nstab1lxty, J23].

Plastic relations: to establish the plastic relations
ve need a yield function Y adequate for the problem. For

plane frames, this relation may be written |29],]30]
F M
Y = (il)“ + (_1) + i_ll - 1-~q=0 (48)
Q ° M
|4 P P
vhere N are the limit plastic values for normal

force, gheug fogce and moment for the given section. This
yield function represents the behavior of many simmetric
metallic sections for adequate values of o and B. The state
variable q may be used to model isotropic hardening. We may
found in the literature yield functhns for many sections,

£
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including reinforced concrete 131],132] and thin-walled
metallic section |33].

The elastoplastic matrix E is obtained using the same
procedure as indicated in Sectioh 3, |30l Naturally, when
we use the simplifyed plastic relation

l%l -1=0 (49)
P

we obtain the stiffness matrix corresponding to a bar with
bending moment discontinuity that corresponds to the
classical plastic hinges analyses. The use of the general-
ized yield function (48) is nandatory whenever normal and
shear forces are important. This is the case with arches and
with some large deformations situations [35},}29].

4.2. Metal forming problems

One of the most promising fields for the application of
finite strains elastoplastic analysis is probably the study
of metal forming processes., In the past, approximate methods
have been developed and used for several fabricationm
processes, based on the hipothesis of rigid-plastic
materials without hardening |8]|. These methods are useful to
predict deformation loads, approximate global deformations
and qualitative models of plastic flow. But we cannot
control the effects of friction and hardening neither
determine the internal stresses generated during the defor-
mation process,

Only after the development of the finite elements
technique it begun to be possible a more precise determina-
tion of these effects and the role played by the different
parameters.

Fig. & indicates the results of the numerical analysis
using ESFINGE {35], with experimental results |36l for an
upsetting process. We see that the approximation is fairly
good even for finite deformations.

A difficult question in the analysis of metal forming
is the adequate representation of unilateral contact and
friction. A promissing approach has been proposed in ref.
|37} that we shortly review in the following section.

Unilateral contact and friction analysis: the problem
of unilateral contact may be expressed

Bu - Bg =0 on I (50)
vhere Aun is the increment of the normal displacement
constrained by a given motion Agn on the contact surface P
The constraint (50) may be approximated by a penalty
condition |38},[39]

k(Au_ - Ag)) =0 (51)

where k is much larger than the element stiffness, Physical-
ly, this can be interpreted as adding to the degree of
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freedom i a spring of large stiffness k and specifying a

load which because of the relative rigidity produces the re-
quired displacement Ag_. This procedure may eventually
introduce large off-diagonal terms into the stiffness matrix,
diminishing the solution accuracy, |40|. A different approach
may be found in |é1}.

For the friction problem, we may assume that there
exists a Coulomb isotropic slip function |37},]42]

f = /r..r c te My tn (52)

vhere t, and t, are the tangenéiil and normal components of
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the stress at the contact region. The situation of non~slid~
ing and sliding may then be written as the conditions for
loading in the general plastic case (Section 3)

£<0 Aty = - kg (Buy - Agy) (53)
f=0 ; f£=0 ; Au --1\‘-5-—af (54)
’ » T tT

Using (52),(53),(54) we can determine relations similar to a
normal elastoplastic relation. The functional relation used
in the finite elements formulation must naturally be
completed with the work performed by the contact stress
vector during the slip.

Plastic behavior of geomaterials: the analysis of
elastoplastic behavior of geomaterials is a field of growing
interest; for a recent review see for example [43|. One
important problem concerns the failure behavior of soft rock
masses in relation to the construction of tunnels and the
excavation of mines |44|, which is strongly related to
negative hardening (or softening) in the plastic range.

The simplest approach to softening behavior uses the
same formulation of classical plasticity and a negative
hardening parameter, |65|,|23!. In Fig. 5 we may see some
results corresponding to a thick walled tube under external
pressure in a plane strain condition |46]; the variation of
radial stressogy and circunsferential stressog, is shown for
three characteristic stages. Strain softening produces a
concentration of stress in an outer ring in a state close to
three—axial loading. Stresses are very low in the already
degraded material near the central hole. In the load-displs-

| P
40,
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o [ Fe——T>
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€/Ce0 \
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cement behavior in Fig. 5 we may observe the larger displa-
cements corresponding to the elements near the inner edge.
This behavior and the general stress distribution seems to
represent well that observed for deep tunnels in strain-
softening materials.

The concentration of plastic zomes in strain softening
bodies is a well known phenomenon I23|,|b$l, and can be
physically interpreted. On the other hand, in finite elements
analyses it produces numerical instability and sensitivity
to mesh size ]23},]45]|,|47| that seem unnatural. It has also
been stated that dynamic problems with comtinuous strain
softening are not mathematically well posed |68|. Several
vays have been already proposed to circunvent these
difficulties: the use of rate dependent (viscoplastic)
relations, |48|, the consideration of concentrated shear
bands |49| and the use of nonlocal theories |501.
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