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Este tr_b_jo analis_ la representacion del comportamien
to mecanico (isotermico) de solidos elastoplasticos con
grandes de formaciones elasticas y plasticas y anisotropia en
el rango plastico. Estado y orientacion de elementos descar-
gados son descritos par media de tensores de rango irreduci-
ble. Is incluida la discusion de algunas dificultades usuales
en anatisis can gran des deformaciones asi como aplicaciones
de un programa de elementos finitos.

The paper is concerned with the representation of
isothermal mechanical behavior of an elastoplastic solid
that possesses a finite elastic range and exhibits anisotropy
in its plastic behavior. The state and orientation of a
stress free element is described by means of irreducible
rank tensors. A discussion of some difficulties usual in
finite strain analysis and applications using finite elements
are included.



In this work we describe some applications of the
finite elements method to elastoplastic problems in the
presence of finite strains. We consider inviscid plasticity
and incremental (rate) solutions; this approach has been the
most popular for the solution of practical problems because.
by reducing the nonlinear problem to a series of linear
associated problems. it can take advantage of available
algorithms and software. Important alternatives not consid-
ered here are the viscoplastic formulations 111.121 and
solutions by direct minimization of the functional relations
131.141. The relatively new technique of boundary elements
has been already applied to plasticity problems 151 and may
have advantages in some situations. On the other hand. most
of the results described here for constitutive modelling in
the presence of finite strains should be valid for any
solution procedure.

We begin this .paper by recalling. in Section 2. iome
well-known results from small deformations plasticity theory.
Then, in Section 3 we indicate an extension to the range of
finite elastic and plastic deformations. As it is well-known,
elastic deformations of ductile metals are bound to be small
because of the relation between yield stress and elastic
modulus. Nevertheless, the consideration of finite elastic
deformations is important from a theoretical point of view
and has already some applications for new synthetic
materials 161. In Section 4 this formulation is illustrated
through examples for frame and continuous structures. Some
applications to geo.aterials and metalworking processes are
discussed in Section S.

Our work at the Curso de pos-Gradua~.o em Engenharia
Civil, UFRGS, has been a joint effort with E.T.Onat trom
Yale University and A.G.Groehs. 5o.e nu.erical results were
taken from MSc. dissertions of our students. as indicated in
the references. The research program was initiated under the
coordination of A.J.Ferrante.

In order to establish a common background and notation
we begin by reviewing the s.all deformations theory. The
basic relations are:

where £P is the plastic strain and £e the elastic (recover-
able) one. In incremental plasticity this relation is
normally written in the rate for. 1(') • a/atl
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Eq(3) represents, in the 9-dimentional space r (whose
coordinates are the components of the (Cauchy) stress tensor
o),a closed surface that encloses the elastic domain. In
general, this surface changes during the elastoplastic
deformation process; this change is loosely referred to as
hardening. Symbol S in (3) represents a set of parameters
that characterize the state of the material and models
hardening.

iii) Loading-unloading criteria. From (3) we character-
ize unloading processes with

and loading processes with
3Y· 3Y·

Y • 30 a + lS S - 0

In the second (5) sign (.) corresponds to neutral loading
that does not modify the material's state and (» to active
loading. The differentiation indicated in (4),(5) assumes
that the yield surface is smooth; alternative formulations
can be considered for yield surfaces with corners 171.

iv) Incremental elastic relation:
ie _ £-1 a

where g{o,S) is ~ scalar function termed plastic potential;
the term (3Y/3o.o) assures continuity for neutral loading.

From (2),(5),{6),(7) we obtain the elastic constitutive
relation

EaaTE-E-----
A+aTEa

- .!i
a • 30

1 3Y S-r 30'

Relation (9), first proposed by Hill Isl was rediscovered by
Yamada 191.

In this section we shall limit ourselves to review onlv
SOme important points. stressing the differences between
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small and large strain theories. A more detailed explanation
can be found in the references given.

For finite strain we must obviously abandon the usual
linearized definition of specific deformation ~. Many alter-
natives have been proposed /101.1111,1121. but it appears
that. as in finite elasticity, it is convenient to begin
with the deformation gradient F, such that the relation

indicates that F(t) carries the material point X from its
position X in t-O to the position x in t. For the deforma-
tions considered det F(t) > O. During the deformation
process a cubic element is transf¥rmed into a parallelepiped
whose shape is characterized by F F. For rigid body
rotations we have. naturally F-I and det F-l.

In the elastoplastic case we define plastic deformations
througb the decomposition 1131

F - Fe F ( 12)p
This decomposi tion is made unique by choosing 1141

F .FT (13)e e
From ( 11) we aay wri te

let) d F(t) F-l(t) D+a (14).iit F(t) - .
where D • DT is the rate of strain and a - _OT is the rate
of rotation. We can define the corresponding elastic and
plastic entities in the fora

F F-l• D + ap p p P
-1

Fe Fe - De + 0e
and observe that it is

D+O • D +0 +F (D +0 )F-l
e e e p p e

Thus. when elastic strains are small, so that we can take
Fe,"I (16) yields

+ Dp
+ n

e p
(increaen ta 11y)

In the seneral ca.e we can find a for. aore convenient
than (16). Defining elastic strain through the left Cauchy-
Green strain tensor
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and the new measure of plastic strain D wi thp
DpBe + B D .2F D Fe p e p e (19 )- TD D

P P

we obtain

B .(D-D +O)B + B (D-D -0) (20)e p e e p

0-0 .W(D+D ) (21)p p
where W is a linear mapping that depends on Fe·

Eq. (2) is the finite strain equivalent of (2) and
keeps the additive pattern. Eq. (21) tells us that once D.
D and 0 are given 0 is determined.p p

3.2. Elastic relations

We consider the elastic constitutive relations for an
elastic material which is isotropic in the elastic range. In
this case it exists a strain energy function W per unit mass

are the basic invariants of the left Cauchy-Green tensor B .
The corresponding Cauchy stress a is obtained from (22) an~
the relation

where p is the current density of the material. Using the
continuity relation

and noticing that from (23) it is

1. • 2iBi (D- D ) • 2i t rBi (D- D )
1 e pep
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Eijkl - 2P[2',2(BikBlj+Blj+BilBkj) +
I I I 2

+ 3~'3(BikBlj+BikBlj+BilBkj+BilBkj) + 2',11BijBkl +
I I 2 2 (29)

+ 4',12(BijBkl+BijBkl) + 8',22(BijBkl) +
2332 33]+ l2',23(BijBkl+BijBkl) + lS',33BijBkl

In metal plasticity it may be !ssumed that plastic
deforllations are isocboric, i.e. trD -0 and thus (2S) can be
written p

. -a - na - aD + E (D-Dp)

3.3. State and orientation of stress-free previously
deformed elements

As seen in Section 3.1 we may unload a plastically
deformed element applying a deformation ,-1. The previous
plastic deformation has produced salle cha~ges in the
material's internal structure that may be represented using
the concept of state 114,151. The state 5 can be character-
ized by n parameters

It can be shown 1161 that the qi'S must be irreducible even
rank tensors.

We are also interested in the growth law for 5 and in
particular in its dependence on rotation which is important
in the case of materials that develop anisotropy during a
deformation process with finite strains and rotations. A
rigid body rotation of the material element represented by
Q€ 0+ (3) causes the state point to move to

where Po represents an ordinary tensor transformation
adequate to the rank of q .• As for the growth of 5 we can
write, for a rotation n, 1

where Tn is a linear mapping on an that depends linearly on
O. A 1I0re detailed explanation lIay be found in refs. 117\,
1181.

i) When linearized stress 0 and linearized e are used
in the ellssical infinitessimal theory it il certainly
correct to calculate for incremental loading the correspond-
ing stress increment Ao and add these stress increments in
order to obtain an approximate expression for the stresses.
For finite deformations, however, this must be don~ with
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care. keeping in mind that stresses can be added only if
they are referred to and measured per unit area of the same
reference configuration.

ii) Yield conditions must be written in terms of Cauchy
stress which is the only one with real physical meaning. It
is unacceptable to write yield conditions in terms of (for
instance) the second Piola-Kirchhoff stress. that depends on
an (arbitrary) initial configuration definition.

iii) In classical plasticity theory plastic deforma-
tions are assumed isochoric. In the case of small elastic
and large plastic strain. total deformation is mostly
incompressible. That is, the material behaves as if having a
shear modulus much higher than the shear modulus. This type
of behavior may give rise to important errors when working
with some finite element types and meshes 1191.\201.

Let us consider the four-nodes isoparametric element
shown in Fig. 1 for the case of an equivolumetric deforma-
tion. With this type of element it is normal to use 2x2
Gauss integration to calculate the stiffness. For this
situation we have volume increase around two integration
points and volume decrease in the other two. As the .aterial
is almost incompressible these (opposite) changes of volume
give rise to important stresses and the stiffness obtained
results larger than the real one.

A way out for this problem was proposed by Magtegaal et
al 1191 using ideas already proposed by Herrmann 1211 and
Key 1221. It con.i. ts in defining a new degree of freedom
for the volumetric strain. This procedure leads to a modifi~
cation of the basic variational principle. From Fig. 1 it is
also apparent that the problem may be avoided using (in the
present situation) a single integration point at the center
of the element. This observation leads to the method of
reduced integration proposed by Zienkiewicz 1231 in order to
introduce a singularity in the volumetric component of the
stiffness matrix. In the case of the linear element this
method is not adequate because reduced integration leads
frequently to a singularity also for the tangencial stiff-
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ness 1241. In ESFINGE 1201.1251 we have used the modified
functional formulation for linear elements and reduced
integration for quadratic elements. Fig. 2 shows an example
comparing ESFINGE with compressible and incompressible
elements and numerical and experimental results from ref.
1261. indicated by (H). The error becomes much larger for
finite deformations.

p
.••.•. 0.952
----1~Q66c

13.259 c. I

~c:m
Q.1524

Incompr ••• ibl.

c:ompr ••• ibl.

Eap.rimental (HI

num.rtcol (H)

iv) Computer studies by Hagtegaal and de Jong 1271 have
shown some surprising results in the analysis of large
plastic .deformations of kinematically hardening materials.
These results show oscillating stresses under monotonically
increasing strains. We will look at the problem following a
simplified analysis by Onat 1281.

We consider a material element under simple shear. Fig.
3. The corresponding values of the rates of strain and
rotation are

n • I 0-1
. 0



We con.id.r a rigid-perfectly plastic .at.rial with
kia •• atic hardening

1•• a - 'J (ua)I

U.ing the associated flow rule

D • A aT/a •• 1 (.-~)

The growth 1_ for II can be written in general (.ee 33)

G • lA (S,II) + Q II - II g

Integrating (40) for the shear probl •• (34) and sub.tituting
into (38) we obtain

1• k + 2' a sen a
an oscillating stress as .hown in rig. 3, where one would
exp.ct an ever increasing stress. This behavior i. caused by
the rotation t.r.s in dominate expression (40) and can be
corrected with a better choice of A in (39). Ouat propose.

~ • aD +[n+e(Dm-~D)]a - ~[n+c(Dm-~D)l; &>0; c>O (42)
The interplay of para.eter. a and c allows the .odelling of
a lars. variety of r•• pon •••• The .o.t ad.~uate values have
to be det.rmined by experi.ents.



One of the simplest applications corresponds to frame
structures. The results are useful per se and from a didac-
tical point of view.

Elastic relations: we must make some simplifying
assumptions in order to obtain the usual nonlinear expres-
sions corresponding to small deformations and large
rotations. Thus, we disregard specific deformations in
relation to rotations, writing

Moreover, we consider that the most important component of
the stress state in relation to the nonlinear behavior is
the axial stress

With these simplifying assumptions, the element stiffness
matrix reduces to a form

K • J (BT E • + i iT i)dV
'e

where Band M are the matrices used to calculate strain
gradient D and velocity gradient D+Q respectively from the
node velocities.

Using (45) and the interpolation funetiDDs corresponding to
simple beam theory we obtain

KL and ~NL are respectively the linear and nonlinear (or
geometrIcal or initial stress) stiffness matrices. The
condition

det (KL + KRL) • 0

is used to determine the load corresponding to elastic
instability, 1231-

Plastic relations: to establish the plastic relations
we need a yield function Y adequate for the problem. For
plane frames, this relation may be written 1291,1301

y • (Fx)Cl + (.!l.)B + ~ _ I - q • 0
N Qp' HP P

where N , Q , H are the limit plastic values for normal
force, ghea' fo~ce and moment for the given section. This
yield function represents the behavior of many aimmetric
metallic sections for adequate valu s ~f Cl and B. The state
variable q may be used to model is~ ~~pichardening. We may
found in the literature yield fu~ct Qns for many sections,

''';;.



- 121 -
including reinforced concrete 1311.1321 and thin-walled
metallic section 1331. .

The elastoplastic matrix E is obtained using the same
procedure as indicated in Secti~R 3. 130 I. Naturally, when
we use the simplifyed plastic relation

M-lao"p
we obtain the stiffness matrix corresponding to a bar ,with
bending moment discontinuity that corresponds to the
classical plastic hinges analyses. The use of the general-
ized yield function (48) is mandatory whenever normal and
shear forces are important. This is the case with arches and
with some large deformations situations 1351.1291.

One of the most promising fields for the application of
finite strains elastoplastic analysis is probably the study
of metal forming processes. In the past. approximate methods
have been developed and used for several fabrication
processes. based on the hipothesis of rigid-plastic
materials without hardening 181. These methods are useful to
predict deformation loads. approximate global deformations
and qualitative models of plastic flow. But we cannot
control the effects of friction and hardening neither
determine the internal stresses generated during the defor-
mation process.

Only after the development of the finite elements
technique it begun to be possible a more precise determina-
tion of these effects and the role played by the different
parameters.

Fig. 4 indicates the results of the numerical analysis
using ESFINGE 1351. with experimental results 1361 for an
upsetting process. We see that the approximation is fairly
good even for finite deformations.

A difficult question in the analysis of metal forming
is the adequate representation of unilateral contact and
friction. A promissing approach has been proposed in ref.
1371 that we shortly review in the following section.

Unilateral contact and friction analysis:
of unilateral contact may be expressed

where ~u is the increment of the normal displacement
constraiRed by a given motion ~g on the contact surface
The constraint (SO) may be approlimated by a penalty
condition 1381.1391

where k is much larger than the element stiffness. Physical-
ly. this can be interpreted as adding to the degree of
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freedom i a spring of large stiffne8s k and specifying a
load which because of the relative rigidity produces the re-
quired displacement 6g • This procedure may eventually
introduce large off-di~gonal terms into the 8tiffne8s matrix.
diminishing the 801ution accuracy. 1401. A different approach
may be found in 141\.

For the friction problem, ve may aS8um. that there
existl a Coulomb isotropic Ilip function \371.1421

f • ftT • tT • ~, tn
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the stress at the contact region. The situation of non-Ilid-
ing and sliding may then be written as the conditions for
loading in the general plastic case (Section 3)

Itr (AuT - Air)

AUT· - K ~
"tT

Using (52).(53),(54) ve can determine relations similar to a
normal elastoplastic relation. The functional relation used
in the finite elements formulation must naturally be
completed with the work performed by the contact stress
vector during the slip.

Plastic behavior of geomaterials: the analysis of
elastoplaltic behavior of geomaterials is a field of Irovina
interest; for a recent review see for example 1431. One
important problem concerns the failure behavior of soft rock
masses in relation to the construction of tunnels and the
excavation of mines 1441. vhich is strongly related to
negative hardening (or softening) in the plastic range.

The simplest approach to softening behavior uses the
same formulation of classical plasticity and a negative
hardening parameter. 1451.1231. In Fig. 5 we may see some
results corresponding to a thick walled tube under external
pressure in a plane strain condition 1461; the variation of
radial stressox and circunsferential stressoy is shown for
three characteristic stages. Strain softening produces a
concentration of stress in an outer ring in a state close to
three-axial loading. Stresses are very low in the already
dearaded material near the central hole. In the load-displa-

01 09
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cement behavior in Fig. 5 we may observe the larger displa-
cements corresponding to the elements near the inner edge.
This behavior and the general stress distribution seems to
represent well that observed for deep tunnels in strain-
softening materials.

The concentration of plastic zones in strain softening
bodies is a well known phenomenon 1231,1451, and can be
physically interpreted. On the other hand, in finite element.
analyses it produces numerical instability and sensitivity
to mesh si ze 1231,1451,1471 that seem unnatural. It has also
been stated that dynamic problem. with continuous strain
softening are not mathematically well posed 1481. Several
ways have been already proposed to circunvent these
difficulties: the use of rate dependent (viscoplastic)
relations, 1481, the consideration of concentrated shear
bands 1491 and the use of nonlocal theories 1501.
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