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RESUMEN

La determinacién sismultinea de los pardmetros de dispersiémn y
adsorcién no lineal se realiza en forma automdtica. Es decir, se ajustan
los perfiles de concentracidn medidos en e! laboratorio con los
obtenidos numericamente. E! ajuste se realiza aplicando técnicas de
optimizacién smultivariable para minimizar las diferencias entre los
resultados numbrico y experimental. La scuacidn diferencial se resusive
numericamente por diferencias finitas aplicando el sdtodo de Crank-
Nicolson.

Los resultados muestran que cuando se optimizan los tres parimetros
simultaneamente, el vector solucidén hallado noc es énico y depende del
modelo de adsorcidn. Esto implica gque los parimetros estin
correlacionados.

ABSTRACT

The simultaneous determination of the dispersion and nonlinear
adsorption (Freundiich or Langmuir) parameters is obtained automatically
by matching results of nuserical! modeis with experimental data from a
laboratory displacement test.This matching is performed by applying
multivariable optimization techniques to minimize the difterences
betveen nuserical and experimental results. Nuserical solutions ars
obtained by solving the convoction-dispcr:ion-nonl1n¢ly adsorption
equation by finite differences using the Crank-Nicolson sethod with
iterations to account for nonlinearities.

These results show that vhenever the three paramneters are
simultaneously determined, the vector solution is not unique and it
depends on the adsorption asodel. Therefore, the parameters are
correlated.
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INTRODUCTION

The detersination of the dispersion and adsorption parameters for
flow throughout porous media is of interest in the engineering design of
sany processes. Among them: adsorption beds, ion exchange coluans and
chromatography in chemical engineering: enhanced oil recovery processes
in reservoir engineering; and solute transport in the soil, in soil
physics, could be mentioned.

The movement of solute in porous media is governed by the
convzction-dispersion-adsorption partial differential equation.

Analytical soiutions for one-dimension and various boundary and
initial conditions have been found for the convection-dispersion
equation combined with a Iinear equilibrium adsorption (Lapidus and
Asundson {1], Bastian and Lapidus [2], Brenner (3] ). However, when
considering nonlinear adsorption, nuserical methods ought to be
appiied. The two zost popular nonlinear adsorption models are Freundlich
and Langmuir squations. The introduction of any of these two models
in the convection-dispersion-adsorption equation, results in a nonlinear
parabolic differential equation . Nuserical solutions have been
obtained by finite differences (Gupta and Greenkorn (4], Gabbanelli et
al. [S], Smith and Keller [6], Satter et al.[7], Carpano et al. [8] ),
by orthogonal collocation (Coppola and Levan [8]) and by finite eiements
(Vossoughi et ai.[18]).

This paper deals vith the inverse problem: determination of the
dispersion and nonlinear adsorption parameters of the partial
differential equation, by satching the results of the numerical model
with the experimental measuresents.

) These experimental measurements are usually: dimensioniess solute

concentration versus dimensioniess time at outlet. Performing a
displacement test in the laboratory, and introducing a change in the
solute concentration at inlet, the breakthrough curve is obtained.

The experimental breakthrough curve can be fitted to the
numserical solution using a least squares sethod. In order to find the
best match, three parameters are varied:the dispersion coefficient and
two adsorption parameters.

Gupta and Greenkorn(1i] assuased the principle of superposition to
determine the three parameters separately. Thus, the dispersion
cosfficient vas estimated by analyzing the breakthrough curve for a non-
adsorbing species. One of the adsorption parameters, of the Freundlich
isothers, vas determined by static adsorption experiments. The other vas
found from a generaiized noniinear regression. Gabbanelli. et al. [s]
appiied a similar procedure: the two Langsuir adsorption paraseters
were estismated by static experiments and the dispersion coefficient
was found vhen weinimizing the objective function (the sus of the
square of the differences between experimental and nuserical
concentrations). This mininfization vas done by applying the Fibonacel
technique (12]).

The history-satch process was also applied to find the two
parameters of the Langmsuir equilibdbrius isothera and the dispersion
coefficient by Vossoughi (1#]. In his proposal one paraseter vas
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changed at a time, and the lowest value of the objective function was
determined for that parameter at fixed values of the others.

Cameron and Klute [13], worked out a different convection-
dispersion-adsorption equation which represents |inear equilibrius
and a kinetic adsorption model; and has analytical solution.
Consequently, he found the three parameters of the analytical solution
by applying the Powell [14] optimization technique to minimize the
differences between the predicted and the experimentally observed
breakthrough curves.

It is worth mentioning that automated matching has been used
for a different model: the convection-dispersion-capacitance mode! of
Deans [15]. This mode! has analytical solution in Laplace space. For
this reason, Baker [16] proposed the transformation of experimental
data to the frequency domain, and an algebraic curve fitting procedure
in the frequency domain. Unfortunately, Batycky et al. [17] studying
sisulation of miscible displacement.in carbonate-cores, concluded that
the curve fitting in the Laplace-transfora domain and in the real time
domain is not equivalent. They found the three parameters of the
convection-dispersion-capacitance mode! by using an {splicit finite-
difference sisulator and a sequential search in the real time dosain to
minimize the error of this matching.

In this work the convection-dispersion-non linear adsorption
differential equation is solved. Two adsorption equilibrius models, the
Freundlich and Langmuir ones, are considered. The numerical solution is
obtained by using a Crank-Nicolson implicit scheme with an {terative
procedure to take into account the nonlinearities. The automated
matching is performed by defining an objective function which is the sus
of the squares of the residuals. Residual is the difference betwesen the
experimentally observed and the numerically ecalculated concentration.
The objective function is minimized by varying the three parameters
simultaneously, with two different optimization techniques: Levenberg-
Marquardt’'s [ 18] and Cosplex of Box's{12].

CONVECTION-DISPERSION-NONLINEAR ADSORPTION MODEL

The transport equation characterizing convection, dispersion and

adsorption of a solute flowing through a porous mediuam can be written
as,

aC 8Cr 3 C aC
+ = K 3 -V 1)
it at Ix 9x

The most important assuaptions in eq. (1) are:

1- The porous medius is homogenecus with constant cross section and
porosity.
2- The flow is isothersal and one-disensional.

3« The intersticial wvelocity, v - obtained dividing Darcy velocity by




porosity-, is constant.

4- The dispersion of the soiute occurs in the longitudinal direction.

The dispersion coefficent, K. is independent from concentration and it
constant at a fixed velocity.

5- There is no chemical reaction between the injected solution and the
rock or the ?luid in-situ.

Considering a  sesmi-infinite porous wmediua [19] , boundary
conditions to solve eq. (1) are :

C{0.ty = Co t> 0
(2)
Cix.tr -0 if x> » £ > 0,
Initial condition is
S(x.9Y = 0, 3
Defining dimensioniess variables
C
C X vt T
¢4 = B "4 T Cra * T )
o o
and using the Peclet number as dimensionless parameter
v L
2 T c—
e z (5)
The egs. (1), (2) and (3) are rewritten as,
3C 3ac H ':L 3 C
d " rd _ ‘q - d (6)
aty atd de Xy 3 x4
c.(0,t,) =1 t,> 0
d d d
M
- o >
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The term aC .4 >tyin eq. (1) represents the adsorption of soliute
onto the rock. It is obtained by taking the derivative of the appropriate
adsorption fsotherm as,

kl 3Cy! 3ty Linear (8)
(n=1) 3¢,/ ae
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4 Langmuir (10)
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NUMERICAL SOLUTICN

Transport equation (6) is numericalily solved by finite differences
applying the Crank-Nicolson method and an iteratiye scheme to take into
account the nonlinearities. Truncation error and stability of the
numerical scheme have been previously analyzed [5], [8].

Dimensionless space and time incresents which are equal to #.8§1
yield a good numerical behaviour [8]., Semi-ipfinite boundary condition
is simulated increasing the number of grid points as time increases{[26].

OPTIMIZATION METHODS

The convection-dispersion-nonlinear adsorption equation has three
characteristic parameters: Peclet number and two adsorption parameters.

The two adsorption parameters could be determined from static
adsorption experimental tests. The dispersion coefficient could be
estimated from correlations [21]. These correlations, in turn, are based
on analytical solutions of the convection-dispersion equation.

Therefore, it is desirable to evaluate the three parameters
simultaneously fros dynamic tests - i.e. displacement or flooding
laboratory tests -. From these tests solute concentration as a function
of time is usually measured at outlet. On the other hand, the numerical
soiution of eq. (6) also provides salute concentration as a function of
time. Therefore, an objective function ,F0, which is the sum of the
squares of the residuals can be defined. Residuals are the differences
between numerical and experimental concentrations.

Considering the Langsuir model,
M

FO (Pe,k3,b) = I

i=

[C

2
. d|exp(ti>“ca|num(‘i’Pe’k3'b)] an

for Freundlich adsorption model k3 and b are both repiaced for k. and
n,respectively. For linear adsorption ky and b, both are replaced just
by one parameter k;.

The vector of the three parameters vhich minimizes eq. (11) is
found by applying two different optimization techniques: Complex of

Box's [12] and Levenberg-Marquardt’'s [18], in order to compare their
results.

Complex of Box is an alternative version of the simplex asethod
which searches for the miniaun of a n-variable objective function with
constraints. The search 1is stopped wvhen for some consecutive function
evaluations, the mean change of the parameters differs less than a
prescribed tolerance, called COTA, hers.

Levenberg-Marquardt's method is a somewhat more refined technique
which combined the best features of the Taylor series sethod and the
gradient methods,ones. The convergence criterion is satisfied if,on two
successive iterations, the parameter estisates agree cosponent by
component to NSIG digits.




Penaity function (18] is added to this technique {n order to
consider the physical constraint of the vector of the parameters.

RESULTS AND DISCUSSION

The proposed model was tested against measurements from flooding
experiments in the laboratory. Three 3 ses are shown and analyzed:
aqueous solution of Nal tagged with | /brine displacement through a
sandpack; aqueous solution of two percent NaCl tagged with tritiated
water/brine dispiacement through Berea rock and soiution of commerciai
polymer 454 {n twvo-percent NaCl/brine displacement through Berea rock.

Experimental floods have been previously reported, therefore, only
a brief description of the tests is outlined here. On the contrary,
results of the autosated satching are presented in detail.

Aqueous solution of Nal tagged with l131/brinc digplacement.

Grattoni et al. [22], performed dispiacement tests on a sandpack
impurified by clay. Initfally, the sandpack was filled with water. At
the inlet boundary, a constant concentration solution of INa tagged with
1131 is injected continuously at a constant flow rate.As the solution is
displaced forward due to the pressure gradient, the radioactive sait is
dispersed and, it is also adsorbed onto the surface of the porous media.

During the runm,the activity coming from the tracer is measured as a
function of distance froa inlet and as a function of time. Normalized
activity profiles are represented as dimensioniess concentration as a
function of time at outlet in Fig. 1. Porous uwmedia and fluid
characteristics can be seerr in Table 1.

An automated matching is performed on experimental data at outlet.
Peclet number and the two parameters of Langauis’s amodel are found
applying two optimization techniques in parailel: Complex of Box’s (
COTA=0.001 ) and Levenberg-Marquardt’s ( NSIG=3 ). The values obtained
by these two methods coincide and can be seen {n Table 2-Case A.
Furthermore, Peclet number and the two parameters of the
Freundlich model are found appliying the same two methods. Results can
be seen in Table 2-Case B. [t is startl!ing to notice that the Peclet
nusber obtained when adsorption is ruied by the Langmuir model is more
than five times Dbigger than the one calculated with the Freundlich
model. Therefore, adsorption isotherms shown in Fig. 2, also ditfer. For
Case A, the curve is concave upvards. For case B, it is convex upwards.

In order to analize this nonuniqueness, Levenberg-Marquardt’s
method is applied with the two adsorption models as follows. In Case C,
Pe 35.53 {s fixed (value obtained in case B) and the two parameters of
the Langmuir model are varied. Results of Table 2-Case C show that the
adjustment is good though the objective function value is greater than
before (error is increased). On the other hand, in Case D, Pe 329.7 is
tixed (value obtained in case A for the Langmuir model), and the two
parameters of the Freundlich aodel are varied. Results of Table 2-Case D
ghov a worse match, because the objective function value is nearly five
times greater than in Case A or in Case 8. Finally, a linear mode! |is
tried (Table 2-Case E). It gives an {intersediate value of the
objective function. The values chosen for the paraseters, to begin the




search., are:

Langmuis Pe = 12. ky = 1.25 b= -0.175
Freundlich Pe = 12.1 k, = 1.58 n=1.,12
Linear Pe = 15.0 kI = 0.736

Adsorptipn isotherms taken as starting values for the Langsuir and the
Freundlich models are simiiar, both are concave upwards.

Agsorption isotherms are drawn for cases A, B, C, D and E in Fig.
2. Curves corresponding to cases B and C are both convex upwards.

In Fig. 3, experimental dimensionless concentration as a function
of distance from inlet, and time are represented as points for the same
data set of Table {. Numerical results for cases A, and B are shown as
continuous curves.

The matching was performed on experimental data at outlet . There,
the cases A, B, C, D and E have an acceptable adjustment with
experimental data. However, differences are appreciable for points
inside the porous media. Moreover, the numerical curves are closer to
each other than with experimental measurements. For that reason, a new
global error, E is estimated,

exp *
M N 2
Eexp * ifl jillcd|exp(°di’xdj)'Cd‘num(‘di’xdj’Pe’k3'b)] . a2

Let us notice that eg. (12) is not an objective function to be

minimized. It is only the summation of the square of the residuals, for
measurements in time (M) and space (N).

Global errors, E , and mean errors with respect to each
ueasure-ent,Q(Eexp7iN+M§E can be seen in Table 3. Errors are very

big and similar for all cases. However, case A shows the saa!lest error.
Therefore a new error of other numerical solutions (cases B, C, D and E)
with respect to case A,Ey . is introduced,

< 4

N
- - - g2
E, = .0, j£1[CdIA(tdi.xdj) cdlnum(:d,xdj,re,k3,b)] (13)

wherechare the nuserical dimensionless concentrations corresponding %o
case A. It is evident that E <Eexp » and the models do not reproduce the
experimental test. Discrepancies could arise fros several sources: the
packing could be inhomogeneous, permeability and porosity could vary
with space, they could also vary with time if the fine sand grains are
carried forward by the fluid. For this reason, the intersticial velocity
and the dispersion coefficient woUGld be neither constant in space
nor in time. In this case sq. (8) will not rule the convection-
dispersion-adsorption phencmenon. Thus, eq. (11), could be adjusted with
experimental data at outlet but it fails to natch expsrimental
seasurements inside and along the sandpack.
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Uncertainty in parameter detarsination

, The uncertainty in the determination of the paraseters is estimated
tollowing Batycky et ai. [17]. This is done by evaluating the
sensitivity of the objective function value to changes in the parameter
values around the optimum. Here, the change in the optimized value of a
parameter necessary to increase the objecive function value by 50% is
taken as the uncertainty in determination of that parameter.

In order to obtain the uncertainty in one parameter, minimization
of the objective function is carried out by varying that parameter,
while the other two remain fixed. Minimization is performed by
applying Fibonacci’s[12] optimization technique, which is appropriate
for variation of one parameter at a time.

Uncertainty values thus calculated are:

Langauir model (Case A)

Pe = 29.7 +2.5 k3 = 0.736 *0.0013 b = 0.540+0.015

Freundlich model (Case B)

Pe = 5.53 $0.31 kz‘- 1.61 £0.03 n = 0.71020.037
Aqueocus solution of NaCl tagged with tritiated water/brine
displacement.

Szabo [ 23} studied polymer retention in porous sedia. Two of his
experimental curves are simulated here. The first one |is the
dimensionless concentration of tritiated water as a function of
dimensionless time (Fig. 4). The curve was obtained displacing brine
by 2-percent NaCl brine tagged with tritiated wvater. The displacement
vas performed on a Berea Rock core, the characteristics of which can be
seen in Table 1. After two pore volumes of tritiated water were
injected, the core was flushed with three pore volumes of reguiar brine.
Then a 600 ppas solution of commercial Polymer 454 in two-percent NaCl
vater was injected. The polymer breakthrough curve was determined by
viscosity seasurements. It is shown in Fig. 5 and it will be anaiyzed in
the next section.

The numerical sodel described here is satched with experimental
measurements shown in Fig. 4. The automated satching is perforwed by
applying Complex of Box’s and Levenberg-Marquardt’s asethods and
varying simultanecusly the three parameters corresponding to dispersion
and either the Langmuir or the Freundlich sodels. Optimal parameters and
objective function values are shown in Table 4. From that table, it
is evident that the adsorption is practically linear . Consequently,
Lavenberg-Marquardt’s optisization technique was applied again, but
considering linear adsorption and varying Peclet number and the
linear adsorption parameter k, . The matching was done using the
nuserical msodel and the analytlcal solution. These results are aiso
shown in Table 4, and drawn in Fig. 4. Finally, Peclet nuaber was
calculated by the analytical-graphical sethod proposed by Brighas [ 24]

3.625 -2 gt
Pe = ( W ) where i -—(:;')175 (14)
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The function U is plotted versus the percent of displacing fluid on
arithmetic probability paper, Ugg and Ujg correspohd to 99 and 10
percent displacing fluid respectively. Applying this procedure,

Pe : 71,1

Conclusions from Table 4 and Fig. 4 are: adsorption is linear,
parameter values obtained by different sethods agree reasonably well,
objective function vaiues and mean errors are small.

Uncertainty values for the parameters are estimated by the method
described above. They are, Pe = 72.2 23,9, k, = 0.0760 £0.0050.

Aquecus solution of Polymer 454/brine displacement

In Fig. 5 Szabo's experimental measurements of dimensioniess
polymer concentration as a function of dimensionless time at outlet are
shown. These measurements have been taken from a displacement of regular
by a 600 ppa solution of commercial Polymer 454 in two-percent NaCl-
water, through a Berea rock ,the characteristics of which can be seen in
Table 1§,

"Automated®™ matching is performed on the experimental data. Peciet
number and the adsorption parameters corresponding to the Langauir,
the Freundlich or the linear models can be seen in Table 5.

Starting values of the parameters are:

Langauir Pe=187 k,=0.186 bs -0.455
Freundlich Pe=187 ko=0,304 ns  1.24
Linear Pes150 k;=1.00

The results obtained by applying Levenberg-Marquardt's technique
(NSIG = 3) are in total agreement with the results obtained by Complex
of Box's (COTA = 0.001), thus only one set of results is shown in Table
S. Case A corresponds to Langmuir's mode! optimizing the three
pParameters simultaneousiy and case B to Freundlich's model. Objective
tunction values are low and sisilar. Once again, Peclet nuaber and
adsorption isotherms differ. They are shown in Fig. 6, for case A the
isotherms is concave upwards and for case B it is convex upwards.

Both adsorption models are again applied here so as to analyze the
nonuniqueness; this time decreasing the degrees of freedom. In case
c, Pex44.5 is ftixed at the optimus value for the Freundlich mode!
(case B), and k and n are varied. Objective function value
duplicates. in case™D, Pe =254 is tixed at the optimus value for case
A, and ky and n are varied. Objective function value in this case
increases nearly ten times. Adsorption isotherms are shown in Fig. 6
convex upwards for case C and downwards for case D. In case E, the
matching is done with a linear adsorption model. The objective function
value is also higher than in case A and B.

By examining Table 5, we conclude that the results of cases A and B
are equivalent and they are the best.

In Fig. S, dimensionless concentrations calculated for cases A, B
and experimental points are shown.

brine
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Uncertainty values {n paraseter detersination, calculated as
before, are:

The Lan -u{: sodel (case A)

Pe = 254 %49 ky = 0.172 £0.004 b = 0.499 20,008
The Freundlich mode! (case B)
Pe = 44,5 £2.6 k3 = 0,346 +0.006 n = 0.744 =z0,035

Stopping criteria

The final values of parameters obtained, by applying either
Levenberg-Marquardt’s or Complex of Box's algorithas, depend on the
stopping criterion. The stopping criterion, in turn, influences the
value of the objective function -the goodness of the match -.

In this aper, a mean residual error per aseasurement is
defined as 7(FO}M) . The search of the optimal parameters is
continued while the mean residual error per measurement is bigger than
the experimental arror of dimensioniess concentration. It is stopped
when

7 (FO/M) < experimental error

It is considered that the experimental error of the dimensionless
concentration is around 0.01

in Table 6 the variation of the objective function value,the mean
residual error per seasurement and the optiamal parameters with the
Complex of Box’s stopping criterion are shown. The objsctive
function value reaches its sinimsus at FOs 0.00107, COTA = 0.00S, and it
remains constant for smallier values of CUTA. The sase behaviour is found

for different sets of experimental data and for the Levenberg-Marquardt
algorithm.

influence of the initial values of the parameters

In order to analyze the nonuniqueness of the vector solution of the
parameters, the initial values of the parameters are varied. The resulits
are shown in Table 7, and they refer to the Langsuir adsorption
isothers (case A). Only one alternative solution - to the one
already shown - is found. The solution has Pe = 208.5 which is closer
to the one found Iin case B. The adsorption curve corresponding to
kq3 0.983 and b=1.84 {s drawn in Fig. 8 (Cage A ). It is convex upwards
like in case B, but the curvature is more evident. The objective
function value is siightly smaller than in case A.

Therefore, the nonuniqueness of the solution is caused not only by
a different adsorption model (Langmuir’s, Freundlich’s or linear). Here,
two very good and different solutions are obtained for the Langmuir
mode! just by changing the initial values of the parameters.

So as to lay aside numserical or optimization errors the following
procedure was done. The numerical solution C (t4,x;21) obtained with
the set of parameters for case A { Pe 2254, Lk, = 0.172, ba- 0.499) s
arbitrarily taken as experimental data. he Levenberg-Marquardt
technique is applied with the initial values of Table 7. Identical

i
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results are obtained, but with a more favourable objective function
value. They are alsc shown in Table 7.

It is worth sentioninig that when traying different initial values
with the Freundlich model, only one solution with an error (/FO/M) less
than the experimental error is found. This is case B. Other solutions
shov a bigger error.

On the other hand, for the displacement- of an aqueous solution of
Nal tagged with 1| already described (Tabie 2, Fig. 1 and Fig. 2) an
alternative set of final paraseters {s found. Starting with a non-
realistic set of inftial vailues: Pes1.0, k,20.736, b20.9; the following
set of final values is encountered : Pe*3.22, k, =7.15 and b =3.3 .
The objective function value, FO =0.138x10-2, i3 small and similar to
the one found in Table 2. However the final valuesk, and b give an
adsorption isotherm with a marked and non-realistic curvature.

CONCLUSIONS

A method for matching a convection-dispersion-nonlinear adsorption
mode] (either Langmuir's or Freundlich’'s) with experimental data is
presented. The =match is autosatically done by applying optimization
techniques to ainimize the differences between numerical and
experimental results. The sinimization is accosplished by varying three
characteristic parametars: Peclet number and adsorption parameters.

The conclusions are:
1- The results obtained with two different optimization techniques,
Levenberg-Marquardt's and Complex of Box's, are identical.
2- For linear equilibriums adsorption, a unique set of two paramsters (
and kl ) is obtained.
3- For nonlinear equilibriua adsorption, if the three parameters are
siaultaneously obtained, the vector sclution is not unique and depends
on the adsorption wmodel. If a given set of experimental data froa
laboratory displacements is weill adjusted with Langmuir's adsorption
model for a high Peclet number and an adsorption curve concave upwards,
it can also be matched with Freundlich's adsorption model for a low
Peclet number and an adsorption curve concave downwards. This kind of
nonuniqueness occurs in every cass.
4-0ne set of experimental data could be adjusted with Langmuir’s
adsorption model, but with two different vector solutions of the three
parameters. One set of parameters consists of a relatively high Peclet
number and an adsorption curve upwards. The other shows an extremely low
Peclet number, and adsorption curve with pronounced concavity downwards;
this seems physically non-realistic.
S-Another set of experimental data congists of concentration
distributions as a function of distance from inlet and as a function of
tise. The outlet concentration profile is wel] reproduced with Peclet
number and the adsorption parameters are obtained by automated matching
However, the convection-dispersion-nonlinear adsorption equation using
these parameters does not exhibit a good match with experimental
concentration profiles along and inside the porous mediua. One wmight
infer that the intersticial velocity and the dispersion coefficient wmay
be neither constant in space nor in tise. In other vords, the
assuaptions taken may not be realistiec.

11
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NOTATION
c : concentration of solute, M/L.
cd : dimensioniess concentration of solutes
c, : concentration of injected solute, M/L. s
Cr : amount of solute adsorbed per unit of volume of fluid, M/L.
Crd : disensionless amount of solute  adsorbed per unit of volume of

fluid.
COTA : convergence criterion of Complex of Box msethod.

Ey : global error, defined by eq. (14).

=

: global error, defined by eq. (13).
FO : ocbjective function to be minimized.
K : longitudinal dispersion coefticient, Lz/t.
kl : parameter for the linear adsorption model.

kosn : parameters for the Freundlich adsorption =model.

k.+b : parameters for the Langamuir adsorption model.

3
L : length of porous medium, L.
M : nuaber of time data points,
N : nuaber of space data points.

Pe : Peclet nuaber, defined by eq. (5).

NSIG : convergence criterion of the Levenberg-Marquardt method.
t : time, t.

t : dimensionliess time.

intersticial velocity, L/t.

<

x : distance fros inlet, L.

disensionless distance from iniet.

td
[-9

U :+ function of dimensioniess tise, defined by eq. (15).

12
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Dimensionlass concentration, Cd

" N
0.7 1.03 1.40 1.73 2.10 2.45

Dimensionless times, td

FIGUIE 1t Aqueous solution of INa tagged with ll'“ flooding.

onless ation as a funotion of dimensiomiess time
at outlaet. Comparison awomg experiwentai data and tesuits
estisated for different., adeorption wmodels (Freundiich's and
Langmuir®s). Levenberg-Marquardt's optimization method vas used in
the graphics! representation (NSIGe3).

Porous sedia Sand-quatte clay Berma nytural core Berea nptural core
packlg [25] ntz rﬁ
Particle (am) 0.040-0.42 | eeeees. ) Ll .-
dianeter
Length (L 3] 32.98 14.8 148
Oiameter (em) 3.8 .8 5.0
3
Pare valume (ca ) 128.08 8.2 $5.2
Porosity £ 3] 37.40 29.90 ‘28.00
Permeasiiity (Darey) .23 2.883 0.683
Eaiadadaie e B LR B i R eyl R
inftial fluid Aquesus solution of Aqueous solution of '] iutd ¢
ciNa"tiadotUtIon of | aRiotsiotution of | Aqueus seiution o
Agqueous solution aof usous selution of cuuul ulvun of
Injected tiuid ! 131 C?lla (28) » Tritium Clihs Cossercial
ClNa (1%) « | Na hlyur ASA (lll»-)

TABLE 11 Porous sedis and fluld charsotaristics
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FIGURE 2: Langmuir's, Freundlich's and linear adsorption isotheras for
cases B, C, D and E of Table 2. Levenberg-Marquardt’s optimization
sethod wvas wused in the graphical representation { NSIG =3),

A::u;luoa AtlLangauir 8:Freundlich C:Langeuir | D:Freundlich E:Linesar
sode
Optimization cosplex of |Levenberg- Complex of uvlmr!- Levenberg-Marquardt
sethod Box Harquardt |Box Narquard
varying three varying three fixing Pa, Ifixing Pe, lvarying pe .
Parameters Paraneters varying ky, bivarying kyen k;
: Pe 29.6 29.7 5.60 5.853 5.83 2%.7 8.67
A
lEl k;' kz or kl 8.737 9.738 1.61 1.681 2.03 .4 1.82
,E, .
g bora -8.53% ~8.548 .78 | BT 5.827 1.48 —eew
rox1e? 0.149 o108 0.192 PRTY) 5.258 5.702 o1
/TOIN x18° 5938 5.936 1.08 1.8 1.23 2.08 1.5

TABLE 2: Aqueous solution of INs tagged with P! ficoding. A- Pealet
Nuaber (Pe) and Langsuir’s sdsorption paraseters (k3 snd b). Comparisen
of results obtained by Complex of Box's and Levenberg-Narquardt's
sethods varying the ihres parameters sisultansously. B- ides A, but the
Freundl{chadsorption sodel varying Ps, %y and n. C- Resuits obtained fer
the Langauir sodel and Levenberg-Marquardt's sethod by fizing Pe and
varying k3 and b. D- idea C, but Frewndlich's sode) varying ky and b. E-
Results obtained for the Llisear adsorption sode! varying
sisuitaneously Pe and k; . All the results were obtained vith &
convergencs criterion of NSIC * 3 er COTAs. 0.88%.
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Dimensionless concentration,

A

0.0 0.25 0.5 0.75 1.0
Dimensionless discance, Xy

FIGURE 2 : Aqueous solution of INa tagged with 3 tlooding.

Dissnsioniess concentration as a function of dimsnsioniess distance
tros inlet. Comparison asong experimental dasts and results tor
ditterent adsorption nodels (Fraundlich's and Langauir's).
Levenberg-Marquardt’s optisization sethod wvas used in the graphical
representation (NSIGs3).

Cases A ] c L] E
Lo 0101 0119 5121 0. 187 5123
¥, s.0a98 | 09513 | .58 | s.9501 | s.es10
L 6.0017 | w0788 | 0.s831 | s.9358
T seee-o | ssaay | ssazs | s.e328 | 0.0201

TABLE 31 Aquecus soiution of Nal tagged with lul tlooding.Giobai errors
with respect to experinmental data (!. } ond with respagt to case A
(Ep), Cases A, B, C, D, and £ have the uu asaning as in Table 2.

1.0¢ p
&
§ o.sf 4
-i
-~
-
5
g 0.6p 1
g e aiumerical Langmuiy
b XY 3 emeamaAns Lyt ical 4
5 aneoiusericsl-Linear
g L Experisencal d
- 0.2 *
H
g 0.0 2 2 2 i " 2 N P

d.80 0.90 1.10 1.30 1.50 1.70

Dimensionless tims, :‘

FIGUAE 4 Aquesus solution of two-percent NaCl tagged with tritius
flosding. Diswnsionless oomututlu as a function of disensianless
tisme at outiet. Comper axparisental data and resulls
abtained by the Levenberg Humut wethod using the numerical sode! end
the analytical solutfom.
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FIGURE £ : Aqueous solution of two-percent NaCl with cosaercial

Polymer 454 dispiacement.

of disensioniess time at outiet.

Diasnzioniess

concentration
Comparison among experimental data and

af 2 tfunction

resuits  estimated for different. adsorption models (Freundlich's ang
Langmuir's). The Levenberg-Narquardt otpimization method was used in the
graphical representation (NS1Ga)3).
Adsorption A:Langauir B:Freundlich C:Linear
sodel
Optisization Compies of L-vtnbor!- Complex of chonhor!* Levenberg-Marquardt
sethod Box Rarquardt {Box Marsquard
r\a;hlnn.ical humer:ical Nuserical Nuserical|Analytical
sode!
: Pe 72.8 1.4 72.7 7.8 72.2 T2.%
X
rEl ky, kZ or kl .09 s.5788 2.9764 59763 §.8765 2.0820
{
: beoran ~5.9193 1.0309 . 1.84 aveee bt i
Fox1p’ 1218 5210 5218 s.210 2| s
AFOTR) =102 1,48 1.48 1.8 148 1,48 1.48

three

parassters
varying

TAELE 4: Aquecus soiution of twe-percent ClNa tagged with tritius
flooding. A- Peclat wsumber ( Pe ) and Langsuir's sdsorption parsmeter
k3 and b ). Comparisen of results obtained by Complex of Bor’s and
Levenberg-Marquardt's sethods, varying the

sinuitansously. D- {dew A, but Freundiich’s sdsorption sodel,

Pe , ky and n. C- Peciet nuaber and

Comparison of results

conjunction with the suserical sodel and the a
the resuits wvere obtained wvith a convergence criteria of
COTA: §5.961.

or

linear adsorption paraseter (k) ).

> by L g~Marquardt’'s in
nslytical solutiom. ANl
NsIC* 3
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uu:nu- Aslangmair | B:freundlich] C:langmwir ]} D:iFrewnd! lelﬂ EsLinear
inization Levesherg-Narquardt
otk
varying three{varying threeffixi fixing Pe varyin, .
p-n-z.n parsseters vuvﬁq o b urylg. ‘1:' k ¢ Pe
: Pe 254 8.9 4.8 - 7.8
4
g t). kz oz kl 0.172 #. 348 $.528 §.320 2.3%
H
; bora -§.498 0.744 5.5A7 1.62 soswe
rox19® 0107 s.118 s.208 1.2 s.282
JTD xi8? 590 0.992 .31 . 1.53

TARLE S: Aquesus solution of twe-percent Cliia vith commereisi .hlm

454 displacament. A- Paciet wusber ( Pe ) and Langauir adserption
pazanetar (ky and b). Resuits obtained by L g-Nare f ]
WSIG » 3) varying the three s siaul iv. 3 ldem A R

the Froundlieh adeerption sodel vearying Pe . andn . C- Besuits

obtained for the Langusir model by tixing Pe varying ky amd b .

o~

Ides C, Wut Froundiioh sode) varying k; and n. B~ Results obtained for

the lineal adserptios sodel varying sisuitamseusly Pe amd k.

o 03} j
- . ,’/

3 ozl ,, "/ 4
k L o~

0.1 cma- -
veseen
0.0 : PO i P
0.0 0.2 0.6 Q0.6 0.8 {1.0

- Dimensioaless concentratioa, (:‘l
FIGUEE 61 Langeuir's and Freundlich’s adsorptien isetheras for casss
A, 8, €, Dand A* of aqueous solution of two-percent NeCl with
cosseraial Polyser 484 ¢isplacesent. Levenherg-Marquardt®s optimization
sethod was used {a the grephical representation (NSIGa3),
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t9
[l

coTA roxte? | FoTwxe]  re k, b

2. 18088 033 1.06 188 s 186" -0.455

205808 5.13: 1.84 188 .18 -9.a88

2. 92509 0.33r | 1.0a 188 s.186 -9.435
;

5.01000 0130 1.84 188 9186 -5.485

880588 PRY 0.944 254 5172 -9.489

8.50259 0187 : 2.944 254 8.172 -9.499

£.00190 5187 2.944 254 1.172 -9.499

590005 .17 5944 254 8172 -9.499
:

TABLE §: Variation of :ine objective function,
per wmeasurement and

the sean residual error

stopping criterion. Dats from case A of Table 7

the optimal parameters with the Complex of Box

initis) vaives Final values Obrctln tunction
values
with with
experimental case A
Pe k; H Pe k3 b dn{: points
1.9 8,172 [-#.89¢
-2 -6
252 1.00 |-§.49% 29.5] #.983] 1.8¢ | #.180x18 B.7Baxis
S8 1.00 | 0.984
508 8.172 {-5.495
-2 -3
252 8.172 |-2.982 254 0.172|-9.499] 9.187x18 9.665x10
187 0.288 ;-8.582
TABLE 71 Aqueous solutlion of Polymer 454/brine displacement. Influence
of initial values of the parassters on the final values obtained by
spplying Langmuic’s adsorption amodel and Lesvenberg-Marquardt’'s

optimization technique ( NSIGs 3).




