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RESUMEN

El método de VolUimenes Finitos esta siendo aplicado desde hace afios a la resolucién
de problemas de convecci6én-difusién. Las funciones de forma lineales aparecen comwo
inapiicables para numeros de Peclet moderados, por lo que ciertas funciones de forms
particulares han sido propuestas por otros sutores para superar esta dificultad. Se
muestra en este trabajo que estas funciones dan lugar a aproximaciones fisicamente no
realistas, ademis de tener un mal comportamiento numérico, cuando se aplican a
elementos con angulos obtusos.

Se propone una nueva funcion de forma que no adolece de las dificultades de las
anteriores. Se presentan resultados teéricos y numéricos. Se puede conclulr que el
nuevo método produce aproximaciones realistas para cualquier forma de elemento, y
muestra un suy buen comportamiento numérico. Puede trabajar con triangulaciones
arbitrarias, haciendo mucho mas facil la tarea de disefic de la red.

ABSTRACT

The Finite Volume Method has been applied for many years to the solution of
convection-diffusion problems. Linear shape functions have proven to be inmapplicable
at even moderate Peclet numbers, and particular shape functions for trisngular
elements have been proposed by other authors to overcome this limitation. It is shown
here that these functions lead to physically unrealistic approximations, and also
have poor numerical behavior, when applied to elements with obtuse angles.

A new shape function that overcomes the aforementioned difficulties is proposed.
Theoretical and numerical results are shown. It ~an be concluded that the new method
produces realistic approximations whatever the shape of the elements, and shows a
very good numerical behavior. It can handle su:cessfully arbitrary triangulations,
thus making very much easier the work of designing a grid.

INTRODUCTION

The purpose of this peper is to amalyze and improve the Finite Volume Method (FVM),
also called Control Volume based Finite Element Method (CVFEM) or BOX Methed, as
applied to the steady-state convection-diffusion equation.

The method, in its two-dimensional version as defined by Baliga and Patankar In {11,
is based in domaln discretlzation into 3-node triangular elements. A control volume
s defined around each node of the mesh, as shown in Fig. 1. Each control volume is
bounded by the lines Jolning the centroids of elements with the midpoints of their
sides. This pertition results in non-overlapping control volumes that extend over the
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complete calculation domain.

The discrete system of equations arises from a balance between the interior source
and the flux crossing the surface of each control volume. To calculate these fluxes
it 1s necessary to make some assumption concerning the shape of the unknown function
vix,y) within each element. This function should provide the value of v in the
interior points of an element as a function of the values at the nodes. The values
of v at these nodes are the unknowns to be obtained from the solution of the
equat ions.

in this work the attention is focused on the properties and restrictions that certain
shape functions produce in the FVM. A general theoretical frame that includes earlier
shape functions is developed, and particular prohlems that occur with them are shown.
Finally, a new shape function included in the aforementlioned theoretical frame 1s
proposed, that overcomes the difficulties found with the earller ones.

Fig. 1. Domain discretization. Fig. 2. An element and
related notation

DEFINITION OF THE GRID AND RELATED NOTATION

The first step to obtain an algebraic approximation of the problem is to discretize
the domain in triangular elements and to define control volumes surrounding each
node, as shown in Fig. 1. In this figure two control volumes are shown, one
surrounding an interior node (i) and the other a boundary node (J).

The interior of s control volume swrounding a generic node i will be called 1 and
its surface 301, with 1 being the closure Qw &n. The corresponding definitions for
an element e will be denoted as ', 30° and G°. The volume Q1 and its surface 3 can
be split into the elemental contributions

* k-3 < e
¢ 3 e 3 - e '3
e -[Q‘nn -[A\_o_ ; & -Zm‘no !XA“I'- (1)

where the sumsation extends over all elements in the grid. The symbol A represents
the connectivity matrix (Ale= 1 if the local node m of element e is the global node
i, and is equal to O otherwise). The Eqs.(1) should be taken as a definition of o
and I's (see Fig.2). Einstein convention of sumsation over repeated indices is applied

in this work, except for the supra-index e. The —wtation used in this paper was taken
mainly from Chung {2].

THE FVM FOR THE STEADY-STATE CONVECTION-DIFFUSION EQUATION

Let us first review the FVM as spplied to the solution of the well known 2-D general
convect ion-diffusion equation (2)

Vej=S (2)
where
Jeauv-8W (3)
This equation determines the distribution of the scalar v, which is convected by a
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velocity field u and which diffuses according to Fick’s lLaw where B stands for the
diffusion coefficient. « is the convection coefficlent and S is the volumetric rate
of production of v, and will be called source. Eq.(2) sppears in the modeling of
heat, mass and momentum transfer.

After applying the Green-Gauss theorem to Eq.(2) written in integral form, the
following equation is obtained.
I Jndlr = I S dQ (a)
l“ nl
The discretized system of equations is obtained by applying Eg.(4) to emch node in
the mesh. To evaluate the integrals in Eq.(4) it is necessary to know the variation
of «,8,u,S and v over the whole domain. The parameters «, B8 and S are assumed
constant within each element. The nodal values of u are known and a constant average
value u’ Is assumed within each element (lipear interpolation was used in the works
of Baliga and Patankar {1,3}).

The interpolation used for v inside an element e cam be put in the following fora:

vix,y) = v:o:(x.y) ; n=1,3 (s)

These shape functions ¢a are the main objJective of this paper, and will be considered
in detail later.

When the shape functions of Eq.(5) are replaced in Eg. (4) an algebraic systes of
equations is obtained

Aty vy = by 3 1. )=1,E (8)
where the global matrix A and vector b resulis of an bling pr of the
following elemental ones

L] < o« ¢ e -
A= L Cem) ar I = Catu'el - gl ) (7-w)
r.
b - I s* a0 (7-b)
- n.

-
Solving the system of £q.(6), iteratively if the problem is non-linear, we obtain the
desired values of v in each node.

EARLIER SHAPE FUNCTIONS - RESTRICTIONS AND DIFFICULTIES

The first shape functions ¢n used were obviously linear interpolations. This leads to
algebraic systems similar to that obtained with the Galerkin approach in the Finite
Element Method. Some error estimates for this method can be found in the paper of
Bank and Rose [4].

It has long been known that the use of linear functions leads to oscillatory
solutions for even moderate Peclet numbers (defined for the grid spacing), Just like
that observed with centered schemes in the Finite Difference Method.

To overcome this later difficulty Patankar and Baliga {1.3] have proposed the
following interpolation inside each element (the upper—-script ¢ will be left

off in this section for the sake of simplicity)

v(X,Y) = AW(X) + BY+C (8)

where
e(Pe X/8X) 1

WX) = AX [—-——F—_—_—_

e -1

A local rotated system of coordinates X-Y is defined, so as to align the X axis with
the average velocity ¢’ in the element, as shown In Figure 3. The parameter AX is the
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length of the element in direction X, the Peclet number (Pe) has been defined as
Pe =a ") BX 7/ 8

It is important to note that

lim W(X) = X

Po30
and then Eq.(8) leads to = linear interpolation In the pure diffusion case.Requiring
that v should be coincident with the three nodal values va (»=1,3) in emch element we

can eliminate parameters A.B and C and rewrite Eq.(8) in the forwm of Eq.(5). In this
case

¢(X.Y)=a WIX)+db Yesc (9)
" . » n

The nine constants as, bu and ca depend only on the values WnaW{(Xa,Ya) and Yn at the
three nodes. By defining three cyclic indices 1,m and n (1,m,n=1,3) we can write

Yo - Yu Wa - Wa _YnUn’v-“-
e e bl'——A-'—.cl —_— (10)

The determinant A is
8 = W (Y2=¥3) + M2 (Ya-Y1) + V3 (Yi-Y2) (11)

The functions of Eq.(9) were obtained as » suitable extension of the exact
homogeneous one-dimensional case, but these functions lacks of an important property
that their one-dimensional counterparts have. These two-dimensional functions can
take values out of the range [(0.,1.]. In fact they can take unbounded negative and
positive values inside the element. Calling M the maxiaus absolute value of the three
éu within the element we can make the following observation:

Observatioa 1: in certain conditioms, if any of the three Internsl angles of the
element is obtuse., there exists a finite Peclet mmber Pe for which Mie when PeaPe .
Proof: this observation can be easily demonstrated by means. of a particular case.
Consider the element shown in Fig.3. The value of 4 in this case is

A= M2 Y3 - &X Y2

It should be noted that Uz can take any value between X2 (for Pe=0) and 0 (for Pesm),
and therefore A will take values in the range

-8X Yz s & s AX (Y>Y2)

and of course will take a null wvalue for certain finite Pe.. Following the
definitions of Eq.(10)~(11), it is easy to see that the mmerators of a2, b2 and <z
are independent of Pe, and then these parameters can grow up without limit as PesPe.

As a consequence, the value M in this example can also grow to infinity. This proves
the observation.

The aforementioned observation shews the poor mmerical behavior of these shape
functions when dealing with obtuse angles. In this case the method 1s very likely to
produce high roundoff errors. In addition, the resuitant matrix has been observed to
present values with very different orders of magnitude. This appears to be the cause
of the slow convergence, due to high condition numbers, observed in the numerical
experiments.

There is still another important difficulty. According to our numerical experience, a
negative determinant 4 in an element produces negative disgomals in the matrix A for
some or all of the control volumes that share that element. Following Patankar
([5),page 38) a method with such a behavior should not be accepted because it leads
to physically unrealistic spproximations. In elements with only acute angles, the
determinant A can only have a null value for Peme, and therefore it never changes its
sign. For this reason, the problem of negative diagomals does not arise iIf no obtuse
angles are present in the wmesh.
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Fig. 3. Local coordinate sy-m Fig. &. Local coordimate systea
with X axis sligned with u’. vwith X axis aligned with the
largest side of the element.

Numerical results obtained with this functions in triangulations with obtuse angles
will be presented later in this paper, showing clearly the effects of the above
mentioned lost of physics realisa.

NEV SHAPE FUNCTION PROPOSED

Suppose that the unknown field v can be expressed within an element as
vix,y) = €{x) + Aly) (12)

If a condition of null divergence is impossed on the result.h' flux J, the following
relation is obtained
V « [emx(E+d) - BV(E+4A)] = O (13)

If @, B and uv={ux,uy} are assumed constant inside the element and specifying that
Eq. (13) must hold for the two functlions £ and A separately, the following relatlons
are obtained:

% _ LT, | a_ g

«u = ’&:z o “u 5 sz [} (14)
The general solutions of Eq. (14) are

€lx) = A W(x) +» C‘ : A(y) = B 2(y) + C’ (15)
where

{Pex x/8x)_ (Pey y/8y)_
W(x) = Ax i_T——_—_L- i 2Uy) = &y _e—h‘
e -1 e -1

This modifled Peclet numbers can take either sign and are defined as
Pex = «a wu &x / 8 H Pey » « uy Ay / 8

Repeating what has been done in the last section we can write the three nodal shepe
functions as

¢.(x.¥) s Wix) b. 2ly) » <, (18}
where
.Z--Z- . - Vo - e Za Vo - Za Va
a =— b, —_— ¢, [$%4]

The determinant 4 is now
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& = W (22-23) + W2 (23-21) + W3 (2:-22) (18)

Another spproach that leads to twe exponential shape functions, although In
structured grids of square elements, can be found in the work of O'Riordan and Stynes
[e].

The function proposed so far still have the same problems as that of Patankar.
Consider again the case of Fig.3. If Pey is O. the new shape function reduces to that
of Eq.(9) , and of course presents the same problems. It should be moticed, however,
that the nev proposition does not require any rotation imposed by the local flow
field, s0 we are free to define it for any rotated (or not) system X-Y. The key ldea
of the method prop d is to ch a particular rotation that results in shape
functions with excellent numerical behavior.

Consider the element of Fig.4. The rotated system X-Y has been chosen so as to align
the X axis with the largest side. If we now construct owr functions of Eq.(16) 1n
this system, the following observation can be made:

Obmervation 2: The maximum absolute value M of the functions ¢a (n=1,3) in 0° is
equal to 1 always.

Proof: the definition of A of Eq.(18) applied to this particular rotation gives 4 =
AX AY slweys (it is independent of the values of Pex and Pey). Using Eq.(17) we can
rearrange Eq.{(16) in the following form

O‘(X-Y) = [ WX) (Y2-¥3) + W2 (Y>~Y) + W3 (Y-Y2) 174
¢z(x.Y) = W (Y-¥Y3) + W(X) (¥3-Y1) + Wy (V2-¥) 1 /&

,:(X.Y) ={ W (YY) <+ W2 (Y-Y1) + W(X) (Y2-¥2) ]} / &

-

It is easy tc see from elementary geometry that
= 1) an expression like

Xa (yw-yc) ¢ 30 (yc-ya) + xc (ya—yv)

represents, in module, twice the area of the triangle abc (this value can be positive
or negative depending on the orientation of the three points).

® 11) if the triangle is enclosed in a box, so that O=x=Ax and Osy=<4y, then the
maximum possible area for such a triangle is AxAy/2.

From the two above mentioned properties of triangles and the form of the rearranged
expressions of ¢m, recalling that OsW(X)=8X and O=2(Y)sAY, 1t is clearly seen that
the three functions ¢« alwmys take values in the range [-1,1] within the element,
that is to say

-1s OI(‘X.Y) s 1

As they take the value 1 at least in the corresponding node it follows that Me1 and
therefore observation 2 is true.

The method proposed then consists in using the functions deflned in Eq.(16) in a
system locally rotated so as to align the X axls with the largest side of the
triangle. This method has the following main advantages:

i) the determinant A has a constant positive value. No negative diagonals are
allowed to arise thus ensuring physically realistic aspproximations under all
circumstances.

11) the condition number of the resultant matrix shows great improvements when
compared with earlier methods.

111) the new proposed method is mot likely .o show high roundoff errors because
the velues of the shape functions are restricted to the range (-1,1) inside Q°.
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In the next sections numerical results and comparisons with earlier methods are
shown.

NUMERICAL RESULYS AMD COMPARISONS

To provide experimental support to the theoretical results of the precedingsectlons
some numerical results and comparisons will be shown.To carry out the calculations
shown in this section, a computer code was set up. Sparse matrix techniques [7) were
used, in order to obtain a code capable of handling large problems and arbitrary
unstructured meshes. Because direct solution by Gaussian ellmination becomes
extremely slow, or Jlnapplicable at =all, in wmedium to large problems with
non-symmetric matrices, a conjugate—gradient-like method called Conjugate Gradient
Squared (CGS) [8] was impl ted. An incomplete LU decomposition (ILU)} method
(Xershaw [9,10]) wvas used successfully as a preconditioner. lUsing the aforementloned
code two problems, enmough to show the advantages of the proposed method, were
considered. The first is an academic benchmark and the second 1s a real techmologic
problea.

Problem 1:
This 1s a well known benchmark taken from Glowinsky {11). Comsider the domain Q shown
in F1g.5. An unifora velocity field u={1,0} and a constant source S=1 are imposed
over it. A constant temperature T=0 1s given over the whole boundarv Q.

3 IS

. 3 5

3 =3 3
¥ K3
3

U=t
1 —
S=1
1
1 2
Fig. 5. Problems 1: Domain and Fig. 6. Problea 1i: Grids.
boundary conditions.
i, E ; E
N
r——J _J
g o s L
et 8 \____,
A N
L] b L[] ) (4
Fig. 7. Problem 1: Earlier method Fig. 8. Problem 1: Proposed method.

Numerical results of this probles with exl. and 9=0.001 were obtained using the three
grids shown in Fig.6. They ail have 1000 elemerts and 561 nodes. The grid showm in
Fig.6~a has horizontal bands of refined elements to avoid wiggles of tempersture in
the boundary layers for high Peclet numbers. The grid of Fig.6-b is equal to that of
Fig.6-a except for a single node that was moved up and left in order to produce an
element with an obtuse angle. The grid showm in Fig.6—~< is that of Fig.6-a with all
but the boundary nodes moved in randoa directions s fixed small distance (0.01),
producing randomly distributed slightly distorted elements, some of thea with obtuse
angles.

The solutions obtained using the function prop>sed by Balige snd Patankar in the
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three grids are shown 1n Fig.7. In this figue 11 isothersal lines, evenly
distributed from 0. to 3., are shoun. The distortion of a single node has produced a
negative diagonal on the corresponding row of the matrix, thus given an unrealistic
temperature peak transported downstreas by the velocity field. The Fig.7-c shows
Clearly a totally distorted solution obtained with the randomly modifiled grid. In
this case 134 negative diagonals where detected in matrix A

The results obtained with the new proposed functions for the three grids are shown in
Fig.8. It is clearly seen that the solution was not affected at all in the case of
Fig. 8-b and only small disturbances sppear in Fig.8-c. Mo negative disgonals were
detected.

Another important effect to be taken into account is the improvement in the condition
number of matrix A. The problem of grid 6-a was solved in 13 CCS iterations with both
methods. The problem of grid 6-c was also solved in 13 CGS iterations with the new
method, but it took 110 iterations to obtain a converged solution when the aethod of
Baliga and Patankar wes applied.

Problem 2:

This is a real case of a thermal probles that app s in a ctrusion process of two
distinct materials [12]. The details of this problem are not relevant for us. The
velocity field and the nonuniform heat source, due to intermal friction, have been
taken from a Finite Element solution of the dynamic problem. The boundary conditions,
with temperatures normalized to 0. at the inlet, are shown in Fi1g.8. The streaslines
of the velecity field and the grid used are shown in Figs. 10 amd 11.

Two cases, with differeat diffusivities, are considered.

1} The highest Peclet grid number is in this case about 5000. The real
diffusivity of the problem has been artificially increased in order to compeare
numerical results. It was impossible to obtain converged solutions with the earller
method of Eq.(9) for diffusivities lower than that used in this case. The solutions
obtained with the method of Eq.(9) and the proposed method are compared in Fig.12 and
13. The earller method shows negative temperatures (-3. <T<4.), which are completely
unrealistic because of the boundary conditions and the fact that the heat source is
positive everywhere. With this method., 34 negative diagomals where detected in the
matrix. In Fig.1S, the plots of the residuml versus CGS iterstions are shown. The
improvement in the rate of convergence obtained with the new proposed method is
clearly seen.

11) The adiffusivity has been given a value 5 times lower than that of the
preceding case. A5 has been said before, only the solution obtained with the new
proposed method can be shown in Fig.14. VWith the earlier method, 153 negative
diagonals were detected and a converged solution was imposible to be obtained. The
converge behavior of the two methods are compared in Fig. 16.

g0

=0
\
Fig. 8. Problea 2: Domein and Fig. 10. Problem 2: Given

boundary conditions strean!ines.
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Fig. 11. Problem 2: Grid. Fig. 12. Problem 2: Case 1.
Earlier method.

Fig. 13. Problem 2: Case §. Fig. 14. Problem 2: Casme 11.
Proposed method. Proposed aethod.

LE‘” i i L 3 L‘- 3 4 é - 4
(4] & N B3 m A [ 4 xF 2 m m
FHTERITIOR TTERATI DS
Fig. 15. Problem 2: Case 1. Fig. 16. Problem 2: Case ii.

Plots of residuals. Plots of residuals.
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COMCLUSIONS

A new Finite Volume Method for solving convection-diffusion problems has been
proposed. A new shape function, that includes earlier propositions of other authors
as a particular case, bas been introduced. The better numerical behavior of the new
shape function has been both theoretically and numerically proved.

In our numerical experiments, two of which have been gshown here, the new method has
consistently presented three main advantages when compared with earlier propositions:
1) No negative diagonals are allowed to arise in the matrix wvhatever the shape of the
el ts. This es physics realisa to be maintalned.

11) The condition number of the resultant matrix appears to be greatly improved,
showing considerably lower solving times.

111) High roundoff errors are not likely to be produced because the values of the
shape functions are restricted always to the range [-1,1].

As a final comclusion it can be said that the new method produces faster and very
robust codes, allowing also great flexibility im the design of the grids.
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