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A COMPARISON BETWEEN THREE VARIABLE-STEP ALGORITHMS
FOR THE INTEGRATION OF THE EQUATIONS OF MOTION IN STRUCTURAL DYNAMICS

Arturo Cassano t y Alberto Cardona §
Grupo de Tecnologia Mecinica
INTEC, Giemes 3450, 3000 Santa Fe, Argentina

ABSTRACT

Three variable-step algorithms for time integrating the equations of motion im structural and mechanism analysis
are compared. The analyzed algorithms ave: the Thomas and Gladwell scheme (1,2}, which we modified ia
reference [3] for application to syst of difi ial/algebraic equations (VSA23); the Hilber, Hughes and
Taylor scheme (HHT) [4,5] with a step-size comtrol strategy: and the DASSL code, developed by L. Petzold
[6} and distributed through the NETLIB computer library network. A short theory about the error estimation
techniques used by the \'SA23 and HHT algorithms is p d. Some ical test ples are shows,
representing the kind of problems the user is {aced 10 in practical applications.

RESUMEN
En este trabajo comparamos tres algon de paso variable para la integracion temporal de las
de movimiento en anilisis estructural ¥ de > Los algori lizados son: e eaq de Thomas
y Gladwell [1,2], o cusl modificamos en la referencia [3] pars - de sist de ; difer-

enciales/algebraicas (VSA23); e esquema de Hilber, Hughes y Taylor (HHT) {4,5] al cual incorporamos uns
estrategia de control del tamaiic de paso; y e cidigo DASSL. desarrollado por L. Petaold [5] y distribeido &
través de la red de computad por la bibk KETLIB. Presentamos uns breve descripeion tedtica soerca
de las técnicas de esti w0 del error das por los algori VSA23 vy HHT. Par iltimo, presentamos warics

jemplos que rep. an ¢ tipo de probl que enfrenta el 0 en apii

&p P

1. INTRODUCTION

hthxsp;per'e mp three variable-step algorithms for time integrating the equations of motion in strectural
aad mech dy ics. The objective is 10 determine which algorithm guarantees the better beharvior in a wide
spectrum of cases.

Vu»ablempmupsm.’«uny-dlmldwdedwuh b <h. ised by high nos-linearity and i
Both phesemena are typical of mechanism dy imulats Coutmtnepmsmgndowpvea“m

answer for these kind of problems. since it is very difficult w the weer o find an appropriate titne-step that does nat
lead te divergence nor generates costly computations.

represent clearly the dificultics ome i faced 10 when solving real probl - ! and hani dy

®

The comparison o be made is based oa two sumerical les. The les are very mmple. but at the same time
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The first case to be solved is a two degrees-of-freedom linear system. with very distinct eigenfreq bes. It
the kind of problems we have when treating a multiple degrees-ol-lreedom structure with & wide eigenspectrum. The
second test is a double pendulum, with geometric non-linearity and constraints in the formulation of the equations of

tion. The system Lo time integratc in this case 6 2 system of diflerential-algebraic equations, typical of mechanism
models.

2. ERROR ESTIMATION, SCALING AND STEP-SIZE SELECTION

The time-step varying strategy relios on three aspects: the error estimsator, the scaling of the error messure and the
algorithm for modifying the time-step based on the alterations of the scaled error.

This secti izes the techniques used in the Thomas and Gladwell (VSA23) and Hilber, Hughes and Taylor
(HHT) schemes. We do not present any theory about Petzold's DASSL code, since it was trieved from the comp
library network NETLIB and used “as is™ (we note however, that the techniques used for the error estimation is this
code are very similar in nature 1o those of the VSA23 code, and can be found elsewhere [6]).

In all cases, the error estimator we use is an estimatios of the local truncation error. Them, the time-step s modified
according to the variations of this measure.

2.1 The VSA23 code

The VSA23 code is a modified version of the Thomas and Gladwell method {1,2]. The p dure is briefly described
bere; a thorough deseription is given in references [3,7].

In VSA23, the local truncation error s d by comparison of the s of the integ to those given by
a higher order algorithm (e.g. a fast order accuracy algorithm is used as integrator while a second order accuracy
dgorizhnmthenfm).ldq:“bethepedlimmp'mbytheinwandlaq:“bethepuition
vector predicted wsing the rele lgorithm, both eval d at the equilibrium time i ty {3,7). Then, we can

estimate the local &10r €ayy id the following form (see figure (1)) :

v =y ~ iy m

®
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Figure 1 : Erver estimation in the VSAZLY code

Although the error estimation is HY puted at an intermediate time {4y, We use it directly as an sstimation
of the error at the end of the time step Loy, . ie.
Curt T Cauy (2)

This messure is afterwards scaled (using 2 characteristic length of the problem being solved) and used to determine
the step-size of the integratot.

The selection of the siep-size in this code is practically in the original form proposed by Thomes and Gladwell, with
some slight modificaticns introduced by the authors m {3.7]. The strategy is based on msintaining. at every time
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instant. the scaled error measure £, beneath a user specified rolerance TOL:

éas1 < TOL 3)

When the error estimation satisfies the user prescribed tolerance TOL, the step n is accepted and the next step-size
Muyy is predicted by

hagt — rhy
4
{08 TOL; with ra.t. 1.05r$2.0} @
Caq1

where the factor 0.8 is used to assure that the error computed using the new time step estimation will verify the
specified tolerance.

On the other hand, if the error estimation is greater than TOL, the step n is rejocted and 2 new try is made wsing &
time step given by

ha o~ rha
= {0.8 :‘OL; with rs.t. 0.55r50-9} 2]
w4l

2.2 The Hilber-Hughes-Taylor algorithm

‘This algorithm is currently implemented in MECANO (3] as a constant step-size i We ad d » simpl
strategy, based on estimating the local error by differences between the predicted hﬂlet order denuhvu, and trans-
formed it into a variable-step one [9]. The resulting scheme preserves the second order accuracy of the HHT for

appropriate values of the algorithm parameters.

Let Q. 8a.Q, be the computed positions, velocities and accelerations at time t,. Then. it can be easily shown that
the positions predicted by the HHT algorithm at (a4 can be expressed in the form:

Qe = +hada + 3HI0+ 20L6 ©
where . -
b= Qnit = Ga
he
and where Ay = la41 — t is the current step-size and 8 is aa algorithm par nfi ing its y and

Comparing (6) viththe'l‘;ybr‘smismuonnd't..ﬂcumzhbdmbokh‘nlbehﬂ
“complete” term
_ B q®)

. o}
q‘®)(1a) is the third order derivative of q(f) at ¢, with respect to time, which can be estimated from the differemce
between acceleration vectors: P . .

q sl =G

(a)_- % o ®
Then. the estimation of the local truncation error is:

| .

.-»1='6" (Gmer — B) 9)
The following strategy has been foll d. in arder o d 2 fi valwes to serve as a basis for comparison. We
distiaguisbed between two kinds of degrees of freedom ia & meckaniosn model: the values of positions and of rotations.
Following Shampine and Gordoa [10], we pote them a refe ¢ value a1 cach degree of frcedom by adding up two

terms: a relative and an sheolute part:
Yrefs = hn!*qthn (19}
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with Q.,, ; 8 characteristic value for the idered DOF. evaluated using the rule:
Ld o for position DOF's
Ureei = ;i"“‘ (1)

T for rotation DOF's
Ly is the diagonal of a box coataining the entire finite element model and NEL the sumber of elements.

A scaled measure of the error is computed using the Lo, norm and compared 10 a user-specified tolerance TOL:

fasr = max (_—-c:: ) < TOL 12)
This condition is used as criterion of acceptance or rejection of a computed step.
The time step is adjusted trying to maintain the error estimation below the tok The waristion is made by
fdlann; & strategy intended to keep the time step unchanged during long periods, svoiding & continucusly time step
g mode of operation that would deteriorate the algorithm performance.

By following ideas presented in refereace [10], we tried to keep the error value equal 0 TOL/2 at any time instant

snd distinguished between four different conditions to select the time step:

i. Hthe puted error is greater than the tol we reject the previous step and recompute it using an increment
equal to half the previous value.

i. If the error is less than the tolerance, but greater thaa half its value, we accept the computed time step but
decrease the next time increment trving to make the error equal to half the talerance (see figure 2).

iii. if the error is less than half the tolerance, but greater than one eighth TOL/2, we accept the computed time step
and keep the value of increment at its current value. This criterion is based on cousidering that, if we double the
time inci the error would be greater than the desired limit (one balf of the tolerance).

iv. If the error is Jess than one six h of the tol we accept the puted step and double the time increment.

Figure 2 displays the different actions to follow during the time step selection process.

—a auw .
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Figure 2 : Tame step selcctaon process i the HHT algorithm
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3. NUMERICAL EXAMPLES

A very important property of a time iategration algorithm for structural dynamics, is that it should be capable of
performing the analysis without introducing too much spurious dissipation (i.e. highly excited modes should not be
damped out).

In a user-selected step-size strategy. the user himaelf cb the comp to be inod in the resp (and those
10 be damped out) by selecting an appropriste time step A. A well-known rule is to make A = Ty /10, whese Ty is
the smallest period of the components he wanis to sccurately time integrate.

In a variable-step strategy, the user does not contral the time step b directly. The method automatically adjusts it
based o error monitonng considerations. The step-size selection strategy should be such that whea, for instance, high
frequency modes are strongly excited. the algorithm integrates them accurately (i.c. by respecting the & = Ty /10
rule)

! Ky Ky :
e
L XY L] *

Frygure 3 : lincar 2 DOF’s system

In order to test the performance of the VSA23, DASSL and BHT algorithis, we first analyse a 2-DOF lLinear oscillator
(figure 3). The system parameters will be varied to test two conditions:

1. a first west in which the energy of the high frequency mode is equal to the encegy of the low frequency one;

i, a second test in which the energy of the high frequency mode is much lower than that of the low Hequency ome.

These tests clearly point out some qualities and deficiencies of the algorithms whan dealing with structural dynamics
problems, and are fully described in section 3.1

L F(t)T

S

L}
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s
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t

Fugure | doubdic pendulum

A second example we made 15 that of a double-pendulum system Tie test shows the perfc of the algorith
when dealing with a differential-algebrac system with masy deg of freedom and J ints m the for-
mulatios  The initial configuration » at rest and a temw \arving horzontai force acts at mode ! s described m
hgure 4
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3.1 Linear oscillator

The equations of ponding 10 this ple are of the form:

1 0]fq 10001 -11fql _
o 2B} 2 5 - o
and sfter solving the associated eigenproblem we found the two eigenfrequencies: wy = 100.005 ; wy = 0.900M9. If

® = [$) , @] is the matrix of eigenvectors, we can project the system (13) onto its modal base, y = #7q, with y
being the modal displaccruents vector. It lts in aa pled system of the form:

h+w] =0
{'." o (14)
»+u: =0
We impoee initial conditions to (13) such that
0 =q ;i q40)=0 (15)
Then, the initial system energy will be of the strain type. We compute then modal energies in the form
E=gulsds (16)

where E; is the total initial energy associated to mode i. This energy distributios will remain unchanged during the
integration, since the system is linear and undamped. As we have said earlier, we test two cases that differ in the way
the modal energies are excited:
i Ey=1; E3=1. This case represents a structure in which high frequency modes are strongly excited. The initial
comditions (in order to bave the above distribution of initial energy) are: gg; = 0.01428285 ; ¢o, = 1.41428285.
ii. E; = 1; Ep = 10000. Now, the high frequency modes have a small spurious excitation and they do not participate
in the global response. The initial configuration for this case is: go, = 0.000282843 ; goo = 1.41428425.
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Figure 5 . high frequency modc behavior for the hnear system when Ey = E,

The results of case (i) are shown in figure 3. As it may be seen. the Thomas and Gladwell modified method (VSA23)
and the Petzold one (DASSL) have a large amount of pumernical dissipation an the high frequency mode. This is mot
desirable. since in Lhis case the high frequeacy mode has au importaut part of the total cnergy.
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Figure § : time step cvclution when E; = E3

On tbe other hand, the HET scheme has a good behavior, without introducing too mmch dissipation in the high
frequency mode. In figure 6, thchuedepevdﬁtufo:tktbucmeth«hnpx-sud. Note that the VSAZS and
DASSL algorithms incresse the step-sive by fillering out the high frequemcy mode. They lead to an ecomomic, bet
wrong, integration of the equations of motion: in figure 5 we can see that at ¢ = 1, both VSA23 and DASSL hawe
completely filtered out the high frequency mode, which had one half of total system energy. We next test the case im
which the high freq y mode s excited by a small spurious amount of energy. No' u-uidhd-nblelhnth
algorithms be capable of detecting this condition snd filter the high frem oscill

)
—_— a2y
m—-csc SBASSL

- Y
.0 1.28 12.90

Figure 7 : high freqwency medc bchamor for the lkimeor system when E, = E,/10000
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Figure § : time sicp svolstion when E; = Ey/10000
The results of this case are shows in figwres 7 and 8, where the evolution of the computed displ and of the

time step for the theree methods are compared. fi‘giﬁlgfgstlggﬁannﬂﬁ
methods, and thet the high frequency mode is filtered out as expected.

3.2 Double pendulum
We Ei!gggictggﬁgalﬂoggsguﬁ%

ical prob Other joms were tested, but we bad many troubles to start the integration when using
siﬁebgiggilglfgsprnrﬁﬁﬂgY
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Figuve 8 : hovizontal pasition of node 2 for the dosble penduinm model
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Figure 10 : borizoxtal position of beth nedes for the double pendvinm model using DASSL

In figure 9, the evolution of the horizontal displacement at node 2 is shown. This degree of freedom cscillates with
a smalier period than that corresponding to node 1. Nevertheless, it is very important to the system response and
it would be desirable that the algarithm do not filter it However, the VSA23 and DASSL algorithms are seea 4o
introduce a strong spurious damping. afiecting it significantly. In figure 10 are plotted the horizontal displacement

of nodes 1 and 2 as resuits from DASSL. In that figure, we can app

a do-blocking of the hinge at node 2.

On the other hand, in figure 11 we present the same curves, now due to the HHT algorithm and they are seen to be
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horizontsl position of both nedes for the donble penduium model unng HHT
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fie it P y ing the agalysis). In figuse 12, the evolution of A is presented for the three

methods.

4. CONGLUSIONS

A pari of three '“:‘..,al‘ﬂith-h-bum.mlndpih,imﬁuﬁ&wr

step-sclection strategy has appeared to be more effective since:

nmmﬁmm&mwym the algorithm does not dissipste them. B 3 tly
P itations of high frecy y modes.

nl.o-‘- y des are tly integrated

i, mtmnoduumm-ﬁdum&end\mhw&edm&mm

v. It hes d order acy, leadiag to ibly larger time steps than the other algorithis for the same accuracy
of results.

v. The computationsl efiort is smaller than in the other algorithms, since it esti the local error by comparing

higher order derivatives which are aiready p in computations.
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