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RESUMEN

En este articulo se pr ta la formulacién de un nuevo elemento triangular de limina plana para
el anilisis de estructuras laminares de materiales compuestos. La formulacién del elemento esta
basada en una combinacién de la teoris degenerada de liminas y el uso de un supuesto campo
de tensiones de corte. La interpolacién sobre el espesor estd basada en una aproximacion lineal
“leyer-wise™. Los grados de Libertad sobre el espesor son eliminados en Jos niveles de ensamblaje
usando una técnica de subestructuracién. Se presenta un ejemplo del buen comportamiento del
elemento.

SUMMARY

In this paper the formulation of a new triangular facet shell element for analysis of composite
laminate shell structures is presented. The element formulation is based on a combination of
degenerate shell theory and the use of an assumed shear strain field. The thickness interpolation
is based on a linear layer-wise approximation. The thickniess degrees of freedom are eliminated at
assembly level using a substructuring technique. An example of the good behaviour of the element
is presented.

INTRODUCTION

Composite laminates are nowdays widely used for a variety of structures in automobile, aerospace,
building and medicine equipment industries, unongst many others. The analysis of such structures
is performed today via numerical techniques and in particular using the finite element method
(FEM) [17,18]. A classification of the most popular theories for the mdym of laminated plates
and shells in the context of FEM could be the following:
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1) 3D elasticity theory
2) Single layer theory
3) Layer-wise 2D theory

Obviously the use of 3D elasticity models introduces little simplifications in the analysis. However,
3D FE models for real laminated structures are nowdays still costly due to large number of
aunknowns involved plus the difficulties intrinsic to pre and postprocessing.

Single layer (SL) theory provides the simplest approach for analysis of laminates. Displacements
in SL theory are expanded along the thickness direction in the form (1)

hii S .
wlz) =3 wl=y)d  (i=1,23) 8

=0

where m; are the number of terms of the expansion for the ith displacement component. Note that
(1) leads to a continous shear strain field along the thickness direction which in turn produces a
discontinuous shear stress field at the laminate interfaces if each laminate has different material
proporties. Eq.(1) is the basis for deriving first order (m; = my = 1 and my = 0) 1] and higher
order, quadratic (3,16} or cubic {2,11] SL theories. A recent survey of different finite element models
based on Sl theory can be found in {14].

The layer-wise 2D theory was proposed by Reddy {12,13] to overcome the stress continuity
limitations of SL models. In layer-wise theory the 3D displacement field is first expanded as a
linear combination of the thickness coordinate as

‘o A
'i(zsyfz) = u?(zry) + Z"i‘z’ y)z"’j(z) (2)
J=1

where n; is the number of divisions across the thickness. The displacements u’ (:,y) are now
interpolated over each layer interface using a standard finite element appronmahon The thickness
interpolating functions &; arc piece-wise constant across the thickness direction. This implies that
displacements are continuous across the thickness but the shear strains are discontinuous. This
allows to obtain a continuous field of transverse shear strains at the layer interfaces.

In this paper a triangular facet shell element for the analysis of laminate shells based on layer-wise
2D theory is presented. The element can be considered as an extession of the linear/quadratic
triangular Reissner-Mindlin plate element based on an assumed shear strain formulation presented
by Zienkiewicz ef al. |[17], Papadopoulus and Taylor [10] Odate ¢! ol [4,5]. The in-plane
displacements are linearly interpolated within each layer and they are eliminated during the global
assembly process using » substructuring technique. Recent successful applications of this element
for analysis of laminated plates carried out by the authors have been the motivations of present
work [6]. Details of the element formulation are given in next section.

ELEMENT FORMULATION

Figure 1 shows the element geometry and the local coordinate system z’,y’, 7’ defining the local
displacements u/,v',w, respectively. Axes 2’ and ' are contained in the element plane, whereas
7' is normal to such a plane. The element has n; layers with n; + 1 interfaces. The in-plane local
displacements u’,v' in local coordinates within the kth layer are interpolated as




- 155 -

{¥}- g Niesn) [{ e lsma{h}mo { :,:: }]

[
+ 3 Nilbimeizs [NHO8L + MM ®

i=4

’, (]
where {:,""} are constant in-plane displacement through the laminate thickness, {:,‘b}
L0 (1
are variable in-plane displacements through the laminate thickness and Aut. are displacement
increments in the mid-side nodes and in the direction defined by the unit vectors e;_3 (see Figure

1).
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Figure 1 Finite element definition.

The normal displacement w' is assumed to be constant through the thickness

. Following this
assumption we can write

3
o' =Y Nt n *)

i=1
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In (3) and (4) we have

N(¢m)=L; for i=1,23

Nem) =4Lils , N(6n)=4Lls , Ne(6n) =4LsLs (5e)
where L; are the standard shape functions of the 3 nodes triangle [18] and
o= =1 (35)

Eqs.(3) and (4) imply a hierarchical quadratic interpolation for the horizontal displacements w'
and v over each interface whereas a linear interpolation for w is used. Note that for a single layer
the element simplifies in its flat form to the linear/quadratic triangle based on Reissner-Mindlin
plate theory proposed by Zienkiewics et ol [17], Papadopoulus and Taylor [10] and Ofate ef ol
[4,5).

It has been shown that the undesirable defect of *locking” in thick plate ¢lements when used for
thin plate analysis can be avoided by imposing “a priori® a shear strain field compatible with
the discretized displacement field [5,6]. In the element presented a linear shear strain feld with
constant values of the tangential shear strains along each side is imposed. Further details of the
clement formulation, including a discussion of the compatibility conditions to be satisfied by the
displacement, rotations and shear strain fields can be found in [4,3,17,18].

The local strains for the kth layer can be obtained as

E' = B‘II
Bl (6)
-
where ¢} and &, are defined as
a'l bv' 8!' avl T
%= [0 a7 (3 + 32| (7
' W (O O T
' — ——— ——
€= 57’3;'(0,' +8:’)] ()

(3

Note that ¢'. are the local strains due to the combination of membrane and bending effects and e,
are the transversal shear strains. The form of matrices B, and B, is given in Table L.

For convenience we write the local displaccment vector a’ for the kth layer as

o = a2 g (8)
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where

& ok &k sk sk 1 T 2] & k k I
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I'o = [\llm,"-u U’u' l’m. v’n. "n. ﬂ‘un "’u. W'aslr
The nodal displacement a' are transformed to global axes by
a'=Ta
and
a = [atal*, 2%

k k k k
af = [uf,nf,w,k,u:,v:,w;,uf,v,‘,w, oAuuyA"arA"u]T

vy
ag = luou'm.Won"m,m,wu:ﬂu,vu,'ﬂul

where the transformation matrix is given by
_ [T o o
T={0 T ©
o o T

with

where I3 as the 3x3 unit matrix and

. T 0 Agrz Az’y Apry
IR E

0 T Agg X,l, Ay

and A/, the cosine which the local axe z’ forms with the global axe z, etc (Figure 2).

The element stiffness matrix for the kth layer can be written as
xld) = PTHe)f
with

K = B'DBdJV
Ale)

(83)

)

(10e)

(103)

(10¢)

(11)

(12)

where B = { gb } (see Table I) and D is the constitutive matrix for orthotropic laminates [11-14}.
8
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k+1
B,={ B, B!, Bj
(3x33) (3x12) {(3x132) (3x9)

'3 k nt k nt k
B‘=[Bfl'8h’3h'sb('8 'Bb.]

B = [B{,, B}, BY,)

with
™ 0 o
aN; k _ ark s
B:.= OON ﬁ o N Bb‘-N B:‘ 1—1,2,3
3w % 0

Bl =B} ey i=4,56

Bf = JIm le ’ Bf+l ’ BW]
(2x3) (3x12) (3x12) {3x9)

aiz bz 0 : aj2 by

0 : 0 0 :
Bf:ooo;“’zf}gos"z%osof};o
0 bz 0

a13 513 0 : 0 0 as ] 0 €32
B£+i-°Bb

00 -1 :00 1 00 0
B.,=000§»00—7155007‘2-
00 -1 :00 0 :00 1

_J1-2 -v2n 4 ]

M=1"¢" va 1-¢
27 Y /. _ 2Ly
WETQE P ONT TR ST

¢;, 8; = components of vector ¢; = fci,:;]T i=1,23
LY = length of side ij
k% = kth layer

J = Jacobian matrix

Table I Local strain matrices for the triangular facet shell element of Figure 1.
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X
Figure 2 Transformation from local to global axes.

A more explicit form of the local element matrix K'(®) is given in Table II.

It is worth noting that the tangential shear must be defined by an unique direction on each
edge of contiguous elements. The signs in matrix By, of Table I correspond to a definition of the
direction of e; in the directions of increasing (global) node numbers for the end points of each
element edge [4,5,17).

The volume integral (12) involves integration over the layer thickness & and the area A(®) of
each layer interface. The simplicity of the linear thickness shape functions N* allows to perform the
thickness integration explicity whereas a 2 x 2 Gaussian quadrature must be used for the interface
wrea integral.

The global assembly process has the following steps. First the element equations for each layer
are assembled at the interface level giving a global stiflness equation for each individual layer. Then
the different layer equations are assembled through the thickness to give the total global equation
system.

ELIMINATION OF LAYER DEGREES OF FREEDOM

The assembly of the stifiness matrices of the different layers ressembles the assembly of 1D bar
elements (see Figure 3). This allows to climinate the degrees of freedom, at, of a layer after they
have been assembled the global stifiness matrix. From Figure 3 we deduce that after assembly of
the stiffness equations of the first layer, the variables a’ can be eliminated as

at = K - k(e - k(ag) (13)

if the stiffness equations of the second layer are now assembled the global equations can be written
in terms of a®, a’ and a, variables using (13) as
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K - g 4 o)

Ky Ky 0
x'{"=¥[x’u XK'y 0 ]

0 0 6Kl
where
Ky = [ oBfDByda
{32 x12)
with
B, = [B},By] _
B; = lBMn Blh B“]
and

K'a = [, B DBA
oxs)

k') =&t [, BTDB,dA

‘TABLE IL Local demest stifiness matrix for a single layer.

EDLxD_ D el r+ XY
-k k) Lt St ] B o
a
Simmetry K & 2 =
1) _ Ind f
kKl £, + KV

(14)

The variables of the second interface a? can now be eliminated by an equation similar to (13).
The procedure is repeated by subsequently assembling the equation of & new layer and eliminating
the variables of the kth interface, at, in terms of those of the k + 1 interface, at*1, and the
displacements a,.

This elimination technique yields a final systems of equations involving only the variables of the
last (upper) interface a™*1 and the others variables a,, i.e.

e By a5

where (<) means that the coefficients have been adequately modified by the elimination process.
Solution of (15) allows to recover all the variables of the lower interfaces in terms of those of
the upper ones and the thickness independent variables a,. This elimination technique was first
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Figuze 1. Porm of the global stiffaess equati m the analysis of a lami d plate with n; layers.

suggested in the context of laminated platc analysis by Owen and Li [7], and it can be casily
extended to vibration a non linear analysis {7,8,9].

EXAMPLE

The example studied is the analysis of 2 jaminate cylindrical shell simply sapported across its
boundary. The laminate is composed of three layers of Graphite- Epoxi composites with orientations
90/0/90 with respect to the global axe y of Figure 4 where the geometrical and material properties
are also shown.

The analysis has been performed using three meshes of 4 x 4, 6 x 6 and 8 x 8 clements. The
thickness direction has been divided in 3, 6 and 24 layers for the 4 x 4 mesh and 24 layers for
the other two meshes. Table III shows some of the numerical results obtained. Also the in-plane
displacement across the thickness direction are given in Figure 5. Finally Figure 6 shows the stress
Oyr and og; distribution across the thickness in the indicated coordinates z,y.

CONCLUSION

The triangular facet shell dement proposed combines the advantages of the 2D layer-wise solid
mode] with those of assumed shear strain models to deal with thin shell situations. The knear
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load
boundary conditions
D,:ﬁ,:ﬁ ¢X§7=o¢ﬂd ;;:20
az.y) = gosin(xx[2a)sin(xy/2L)
u.=‘1___0 d,zo and ,=2L

E; = 25 x 10%psi

E,=1x10°psi Mesh

G =5x10%psi

- s
properties G, = 2 x 10°ps1

Ve = vy = 0.25 %
==
==~
=N

go = 1.00 E\\
=SS0

h = 25in = 3

L = 5wm

a = 50in

Figure 4 Simple supported sq lamisated plate {3 layers of Graphite-Epox composites $0/0 ‘90 whith

respect 1o axe y) Ceometry and matenal properties [
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MESH LAMIN.
4x4 3
6
2¢
6x6 24
8x8 2|

MAX
MIN

MAX
MIN

MAX
MIN

MAX
MIN

MAX
MIN

DISP X
point valee

(a k&, 4)

8 =230

DISPY

point value point  value

0.257E-6 {s,0,h)

0.4.5) .4STES (a,0,0)

(e %,0)
(0.4.9)

0.334E4 (a,0,h}
-0.507TE5 (a,0,0)

(a,%,4) 0379E$ (a,0,h)

(0. %.9)

(o, &, h)

-0.525E-5 {a,0,0)

0.374E-€ (a,0,A)

{c, ; 0) -0.535E-5 (a,0,0)

(a, &.A) 0.3T3E-6 (a,0,h)

(0, %.0)

0.539E-5 (a,0,0)

0.325E-5
-0.282E-§

0.337E-5
«0.294E-5

0.346E-$
-0.303E-5

0.358E-5
-0.312E-5

0.361E-§
-0.317E-$

Oex Oy
valee

point
0) 686 (ak 3 215
f:', z.b) -7.67 (: i é) -6.15
(e, %,0) 918 (a,%,3) 350
(o, %, h) 847 (e, é‘, %) -6.56

ko) 1090 (e, k,2%) 390
f:é,n; -10.60 ((:f é) -7.00

(e, %,0) 10.70 (a, %, &) 394
(m&,4) 1030 (£, z§) .31

(a,k,0) 1030 (a,k 4) 400

(@ 5.8) 1020 (o, £.B) 234

TABLE III. Some displacement and stress results for the example of Figure 4.
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Figure 5 Comparison of in-plane displacement {i= z = 0, y = L) across the thickness for different meshes
and layer discretisations.

thickness interpolation used allows to elliminate the thickness variables at assembly level, thus
reducing considerably the computational effort. The example presented shows the capability of
the elemeant for the analysis of laminate composite shells.

Current rescarch on this topic by the authors includes the extension of the element formulation to
account for geometrically and material non linear effects.
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