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RESUMEN

Se estudia un procedimiento simple para obtener el empalme de dominics cilindricos por el métode
de diferencias finitas. Se realizan transformaciones de coordenadas en cada dominio pars conseguir
normalizaciones apropiadas y se desarrolla un algoritmo para empalmar perfiles de temperatura y
Bujos caléricos en las interfaces. Este procedimiento se aplica a una cimara de reaccién cilindrica
para evaluar el grado de vulcanizacién de compuestos de caucho en funcién del tiempo de reaccidn.

ABSTRACT
A simple procedure to obtain the matching of cylindrical domains in the finite difference method is
studied. Coordinate transformations are carried out in each d in to get appropriate normalizations

and an algorithm to match temperature profiles and heat fuxes at interfaces is developed. This
procedure is applied to a cylindrical reaction chamber to evaluate the degree of vulcanization of
rubber compounds as function of reaction time.

INTRODUCTION

Heat transf pled to chemical reaction is an important phenomenon in tire vulcanization. This process
occurs in two stages: first, there exists aa induction time where the curing reaction does not take place, and
then, the chemical reaction starts and proceeds with a rate that varies in time. Now, it is well recognized
that an appropriate description of the state of cure in a rubber compound requires the consideration of both,
induction time due to thermal history and non- -isothermal vulcanization kinetics {1]. With this purpose, one
di ] models are frequently used with simplified boundary ditions {1], [2].

The present work is devoted to generate a simple numerical algorithm through finite differences to describe
the process of curing in the reaction chamber shown in Figure 1, which was designed by researches of FATE
S.ALL.C.L for quality testing procedures.

The reaction chamber is composed of a cylindrical rubber sample that receives heat from the mold (upper
and lower disks and wall). The disks are in direct contact with heat sources, at constant tempeutm Other
parts of the mold exchange heat with ambient air.

One should note that the green sample, initially at ambient temperature, receives heat from the mold, and
since the rubber has s very low heat conductivity, temperature profiles varies in space and time.

A numerical algorithm describing this problem must be simple enough (short computational time) so that
it can be used in microcomputers to generate rapid feed-back informations for the control of variables in
the production line. Therefore, we show here a procedure to match in discrete form cylindrical domaias of
the chamber, allowing one to formulate the numerical algorithm ia simple finite differences.
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This work only presents the formulation of the mathematical model and also the procedure for matching
the cylindrical domains. Temperature profiles and degree of vulcanization are also presented in a figure.
H , the validation of this algorithm through comparisons with experimental results was carried out
mthreeud:mofFATESAICL in an unpublished technical report.

Figure 1: Curing chamber.

MATHEMATICAL MODEL

Since there is not momentum transfer in the chamber, the balance of thermal energy in cylindrical coordi-
nates r and z can be simplified as follows,
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and it must be satisfied in the rubber compound , the disks and the wall. In equation (1), T; is the
temperature, g; is the density, k; is the thermal conductxnty and ¢; is the heat capacity. The subindex ¢

takes values 1, 2 and 3 to indicate rubber, wall and disks, respectively. Theurm?nthcn&eofhu&
generation dmto&hecurmgu&ctmlndm be expressed,

a3 = sna-Zr (2)

K(T) = b expl- ) (3)
1) dt
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where k,(T) is & rate constant with an Arrhenius type tempersture dependence and Q,, is the total heat

of reaction. Also, E, k,, T, and {, are kinetic constants independent of temperature and QQ- is the degree
[_J

of vulcanization that depends on time and position.




When dimensionless time 1; reaches unit} in equation (4)., the upper limi‘t tin thf integral corresponds to
the onset of vulcanization. Further physical aspects of this problem are discussed in [1].

The next step consists in writting equation (1) to (4) for each domain of the chamber in dnmennonlm form
by using scales defined in Figure 2. In this figure we show the computational domains obtained through
considerations of symmetry.
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Pigare 2: Computational domains.
* Heat Balance in the Rubber
We propase the following definitions,
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where Tyo is the initial temperature of the rubber compound (ambient temperature) and R, is the gas
constant. Therefore, equations (1) to (4) generate the following dimensionless problem,
%, _
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with the following constraints,

I=0 Jor <0 , [40 for 521 (&)
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It is then easy to prove that the initial condition for equation (5) is,

r<0 , 0SR<1 , 0<Z<1 , #=1 )
and the boundary condition for r > O are,
a4,

R=0 , 0<2Z2<1 , aR=° . (10)
30,
O<R<1 , Z=0, zo=0 (11)
at the centers of symmetry,
= M _ e -
R=1, 0<£Z<1 , 'ﬁ—KuaR and 0, =4, (12)

0<R<1 , Z=1 and 0, =08 (13)

at the disk - rubber interface, with Ky, = ky/k, and §; = T3/T10. 1t is also clear that equations (12) and
(13) imply equal heat fluxes at interfaces.

* Heat Balance in the Wall

We define ¢;; = £322, to find that,
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Equation (14) bas the following initial condition,
R, T,
== < =2
.r<0 , osxs& , 0S2Z2<1 , & T (15)
Boundary conditions are,
M a8,
R= , 0€Z<1 , 31—;"5:133 and 6, =4, (16)
at the rubber - wall interface, with K, = k, /k,, and
<R ¥ _ g -T=

at the wall - air interface. T,, being the air temperature far away from the wall. B, = %ﬁ* is the Biot
number and h is the heat transfer coefficient by natural convection. Also,

R =1, M_g, % -
E ’ Z=1 » az—xaaz and '1—', (18)

at the wall - disk interface, with Ky; = ky/k,. Finally, the symmetry assumption requires,

O<R

[7a

0<R< , 2=0 , — =0 (19)

m|p

* Heat Balence in the Disks
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We define ¢y = ¢33 = 829 15 obtain in this case the following heat balance equation,

Py’
_ 12 s 2 O30 20
3 “RkTak * N am (20)
Equation {20) requires the initial condition,
<0, OSRSE L 1SISE L m=1 (21)
Boundary conditions are,
R H. T.
< puind = — 29
OSR<Rg » ¥=% -+ b=7, @)
where T, is the temperature of the heat source in contact with the disk,
as a6
6<R<1 , Z=1 , az‘ K,,az’ and 0, =48 (23)
at the rubber - disk interface,
R, _ o8, 36, _
1SRS ., Z=1, zz=Kugy ond h=4h (29)
at the disk - wall interface, and
R, R, 80, b
2 <R — zZ=1 , #, 25
EERSE . =B(h-12) (25)
at the disk mhomntdmhdm‘&=bg*hemg£h&otnumbunthumfmInnddmm,
_R B, a0 o T
R=F . 1sIST , PE=-BO-1) (26)

at the disk - air vertical interface; B; = -é being the Biot number at this interface. Finally, symmetry
implies,

R=0 , o<z , =— = (27)
H.
COORDINATE TRANSFORMATIONS

1t is clear that the range of variations of coordinates, described by equations (15), (21), (25) and (27) and
summarized as follows,

(28)

1€2< >

u:m

are not suitable for the purposes of writting the coupled heat transfer problem in finite differences, with an
appropriate degree of {reedon in the choice of grid sizes in each computational sub-domain. This problem
can be solved with the following coordinate transformations in each domain:

® Rubber Domain
Coordinates are kept the same.

® Wall Domain
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We propoase to transform radial coordinate according to,

- r—- R

= , 0<R<1 29
E= 3% (29)
and define the corresponding differential operator,
[ 1 a
32 T -1 a8 (0)
where x = R, /R;.
* Disk Domain
‘The transformation is, R
= r 2
B=g =5, 0sk<1 (31)
and we define the corresponding differential operator,
[} 1 3
= e (32)
3R < IR

vhae:':&/}l».
In addition, it is necessary a new axial variable,

Z—E.' = Z-1 ) 03251 (33)

where x~ = H,/H;. The corresponding differential operator is,

a 1 3
Z=F-03 (34)

ltisthmdwthunewcoordin&tainthedishmdthevnn:ndddcwdinatuinthemhberury in the
range (0,1) as wished for the numerical algorithm. Nevertheless, we have to match derivatives at interfaces
with different coordinates and this must be solved by an appropiate consideration of the metrics in each
domain.

MATCHING OF DOMAINS

Since we have to equate temperatures and their derivatives at interfaces from each side, and the physical
distances are measured with different dimensionless radial and axial coordinates, it is necessary to localize a
point at any interface by requiring that the metrics measured from any side of the interface be both equal.
Thus, if ds is the arc length, we have,

ds = ds; = ds; p;; (35)

vheredc.-a.ndda,mmlengthsdeﬁnedindomlinsiuldjrapecﬁvely,andp.»,»istmlin‘funcﬁonu
follows,

-~
2

d = dR

ds; = p;;ds; = d -1
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H

]

i

dz

(= -1)

Cousider the interface of two domains designated now ¢ and b. Let Aa be the grid size for domain a and
Ab for domain b. If i, and i, are integers so that,

i. = 1..N, y W= L.N (38)
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and

1 1
As = -N_. » Ab = i‘; (37)
it'udwthltﬁor:udci.ddmﬁnlnmﬂundnwrﬂddémﬁnbwm
" &) =i Acpy (s8)
hence, As
i = i 77 Pub (39)
Therefore, we define, ,
w =] - 6l (40)

where 1, istheintexerputoh’;. Then, any function F evaluated at ¢, in damain ¢ can also be evaluated
at the same node on the other side of interface (domain b) with the following weighted approximation,

P o= F(1-v) + P w (@)

where the upper index b indicates that the function F is evaluated at the interface from the side of domain
b at a place that is coincident with node i, on the side of domain a.

Thus, since nodes of grids in different domains are not illy coincident at interfaces and grid sises are
chosen according to the needs for computing sharp temperzture profiles, it is clear that the above equations
allow us to match temperature and their derivative from different domains. We can choose freely the grid
sizes in each domain according to different physical situations and manage any desired grid refinement for
the accuracy of results. Finally, we have to mention that transient partial differential equations are solved
through the Alternating Direction Implicit {ADI). Figure 3 shows isotherms in the rubber and Lines of
constant degree of vulcanization for a typical run (see Table I). It is observed a thermal boundary layer an
the rubber - disk interface.

Table X: Data used in the run of Figure 3.
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Figure 3: lsotherms and degres of vulcanization in the rubber.
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