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SUMMARY

In this paper some adaptive mesh refinement (AMR) strategies for finite element analysis of
structural and fluid flow problems are discussed. For structural problems two mesh optimality
criteria based on the equal distribution of: (a) the glodal error, and (b) the specific error over the
tlements are studied. It has been found that the correct evaluation of the rate of convergence of
the different error norms involved in the AMR procedure is essential to avoid oscillations in the
refinement process. Extensions of these optimality criteria to fluid fiow problems are presented The
behaviour of the different AMR strategies proposed is compared in the analysis of some structural
and fluid flow problems.
INTRODUCTION

Tbe evaluation of diserctization ervors and the design of suitable meshes are nowadays two of the
challenging issues in the analysis of structures and fluid fiow problems using the finite element
method (FEM).

The topic of error estimation and mesh adaptivity in the FEM is by no means new. Zienkiewics and
Zhu [1-5] have introduced a successfull adaptive mesh refinemest (AMR) strategy for structural
analysis using a simple estimate based on the difference of the discontinuous finite element stress
{or strain) field with an “improved”smooth solution. This AMR strategy bas been applied to the
analysis of fluid flow problems [24]. Different authors [6~9}, [19] bave used similar AMR procedures
for plate bending and shell analysis. For a comprehensive review of the topic of error estimation
and adaptive mesh refincment sec the reference list of Chapter 14 of [26].

In this paper we present an overview of different AMR stratcgies based on the Zienkiewics and Zhu
error estimator [1-6] for structural and fluid flow analysis. We will show how the AMR algorithm
based on equal distribution of the error over all the clements requires a careful identification of the
rate of convergence of the different errar terms involved in the design of the new clement sise to
avoid oscillations in the refinement process.
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An interesting alternative AMR strategy can be based on the equal-distribution of the “specific
erroc”, i.e. the error per uait ares (or volume) in all the elements in the mesh. We will see that
this strategy allows to concentraie more and smaller elements in sones where stress conceatrations
{or discontinuities) occur, as it should be expected from the engineering point of view.

The layout of the paper is the following: In next section the basis of the error estimator and the
AMR procedures propased for sirectural analysis are detailed. Extension of the same concepts
to deal with fluid fiow problems are described next. Finally, two examples of application to the
analysis of a plate and two problems of hypersonic compresible flow are presested showing the

BASIC CONCEPTS OF ERROR ESTIMATION
In dealing with adaptive mesh refinement the following two concepts should be clearly defined:

(a) Ervor estimator. Since the “exact”solution is unknown, a method to appraximately evaluate
the error of the finite clement solution should be defined.

(b) Approzimete correci selution. A finite element solution is accepted as “correct™is the
uﬁma-tedmuﬁ(ﬁesmepuucﬁbed;bwlnd local conditions.
Both concepts (a) and (b) are explained further in next sections.

Error estimator

One of the most popular error estimators for structural analysis peoblems is based om the error
energy norm expressed as

Jel? = /n { - #{TD Yo - 5jen )

where ¢ are the exact stresses, # are the stress values obtained from the finite element solutioa
and D is the constitutive matrix [26].

Since the exact stresses are unknown they are approximated by
e~ (2)

where ¢* can be obtained by simple nodal averaring, Jeast squares local and global smoothing, or
other adequate projection methods 1}, [3]. A simple approach is to use a global nodal smoothing
with a lumped “mass” matrix givisg the nodal smootbed values, ¢, for each resultant strees
compoaent 7; a8

o = M3} /n NTs,d0 @)
where Mp.. = [, N;dQ and N, are the chosen stress interpolating functions. Eq. (8) yields an

accurate smoothed stress field for low order clements.
The strain energy of the exact solution is estimated as
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Both Jeff and JU] can be evaluated at the clement level so that
Bl = tell ., WP= P 14 0
=1 =1

where n is the total sumber of dlements in the mesh.
Definitien of correct solution
It is usually accepted that a salution is correct if the two following conditions are satisfied:
(a) The global error is Jess than a percentage value of the total strain encrgy, ic.
led < iU} (6)

where 1) is the user’s specified value of the permissible relative global error.
Eq.(6) allows to define s global ervar parameter, §,, as

et

= i @
. Clearly the values £, < 1 denole satisfaction of the global error criterram, whereas § > 1 indicates
that further refinement is necessary.
(b) The distribution of the clements in the mesh satisfies & “mesh optimality criterium”. This

can be expressed as

felli = fell, ®)
where Jleff; is the actual error norm in each clement i and jjefly; is the “ required” error morm in
the element, defined accordingly to the mesh optimality criterium chosen.
From eq.(8) we can define a local error parameter §;, for each clement i as

G-l ®

Note that a value of & = 1 defines an “optimal” cement sise, whereas £; > 1 and § < 1 indicate
that the size of element i needs refinement and de-refinement, respectively.

We can define now a single clement refinement paremeter, combining the satisfaction of the above
global and local conditions as

ey - Jelbe
4= = 0T kel uo
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Use of this parameter is discussed in next section.

The definition of the required error in each element, lelir;, is & key issue and it strongly affects the
distribution of the clement sizes. This definition can be based on different mesh optimality criteria
mdmedthmm&uundhn&mﬁomh@&aﬁ&&emdmmtcy.

MESH OPTIMALITY CRITERIA AND AMR PROCEDURES

Mesh optimality criterium based on the equal-distribution of the global error

Apowhrmahopﬁmﬁtyaﬁuimhrdmturdmdyﬂhbnedmthemuﬂedequd—
distribution of the error , i.e. a mesh is defined as optimal if the global error is equally distributed
ovu-theelemenk.Ontbchskdthhummptimwemdeﬁuthergquindemrfornchm
as the ratio between the global error and the total number of elements in the mesh, i.e.

tetr: = 11 1)

Com&ning(9)md(ll)yiddstheemiono{thebalmp&umem{-;u

&= Yo7 2
The element refinement parameter (see eq.(10)) is now obtained as
=t =i (13)

liU)in-1/2

The parameter {; can be readily interpreted as the ratio between the clement error and the
distributed value of the permissible error over the mesh. However, the form & = £i¢, allows
to derive the correct AMR strategy. Thus by noting that the convergence rates of the element and
global error norms are [18]

Iell = O™ = o) (10
fell > O(A™)

where m is the degree of the shape function polynomials (m = 1 for inear elements, m = 2 for

quadratic elements, etc.), and d is the number of dimensions of the problem (d = 1,2,3 for 1D,

2D and 3D problems, repectively) we can deduce that the new clement size k; can be obtained in
terms of the existing sise h; using the expression

-.__h_,-
k= (15)

with S (16)
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Note that eq.(16) differs from the usual form {1-9], [11]

=)V =&V an

The expression of { given by (16) takes into account the different convergence rates of the element
and global error norms. The authors have found that the use of (18) leads to a non-comsistent
mesh refinement which shows by an oscillating re and de-refinement of some mesh sones. These
problems are overcome if expression (16) is used (see first example).

Some authors [9], [11] get round this problem by introduciag a relaxation factor ¢ such that
£ = ef;&;, or by defining and “ad boc® value of exponent m in (17) {1].
A mesh optimality criterium based on the equal-distribution of the specific error

A clear alternative to the criterium of equal distribution of the error over all the elements is to
assume that a mesh is optimal if the error per unit area (or volume) is the same over the whale
mesh. 1t is clear then that

i _ e

=}

where a is the required specific error tolerance (@ < :d-lﬁl) Obviocasly in (18) Q2; and 2 denote the
element and total area (or volume) respectively.

The element error parameter £ is defined now as the ratio between the element and global specific
errors, i.c.

e 1] (2)" o

The element refinement parameter is obtained from (9), (10) and (19) as

kel (27
6=t =05 (5) =0
The way we have defined the clement error strongly affects its convergence rate, given now by

s < ou) @)

The new element size is therefore obtained from (15) with the expression of § given by

¢ = (&)™ = (¢)/m (2)
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Note that this expression coincides with (17) and it has been (apparently) wrongly used by different
authors in the context of the optimality criterium based on the equi-distribution of the global error,
studied in previous section [1-9], [11]. The results obtained here clarify the correct form to be used
for each mesh optimality criterium chosen.

To our knowledge the criterium of equal-distribution of the specific error was originaly introduced
by Bugeda [20] and it has successfully been used in the context of optimum structural design
problems by Bugeda and Oliver [21].

ERROR ESTIMATOR AND AMR STRATEGIES
FOR FLUID FLOW PROBLEMS

For creeping incompressible fiow problems the following error norm based on the analogy of Stokes
flow with elasticity has been successfully used [24]

belt = [~ Tie' - 81 - bp - Al - Zupan (23)

where ¢, &’ and p are exact values of stresses rates, deviatoric strains and pressure and (.) stands
for computed values.

Since ¢, o and p are not known, an approximation of higher order accuracy than that given by
the finite element method is used as

fel* = /n (1" - §Tle™ = &) - p* - BllEL — &) (20)

Values of ¢* and ¢’* can be obtained by projecting the discontinuos numerical solution into a
continuos basis. The simplest option is to use nodal averaging of discontinuos element values.
However, more sophisticated local and global smoothing techniques can be used as discussed in a
previous section (sec €q.(3)). For values of p* identical procedures can be used. However if p is
continuous it is usual to neglected its contribution in the error norm [24].

The porcentage error in the mesh is now defined as

Bl el
A T T ek )
with O = [ (@5 - gaen (26)

The AMR strategy can now be based on the same global and local error criteria studied in a
previous section for structural problems and it involves the following steps:

1) Compute global and local error parameters §, and §; (viz. eqs.(7) and (9)). Computation
of & can be based on the criteria of equal distribution of the global error (eq.(12)) or of
the specific error (eq.(19)).

2) Compute pew clements sises by eq.(15) with the element refi t parameter { as given
by eqs.(16) or {22), accordingly to mesh optimality eriterium chosen.




For high speed fiow situations the same AMR strategy can be used. However the flow-clasticity
mdogydoanotholdmd(ﬁ)villyieldonlynappmxim:ﬁondtheumnlmm
howeveer useful for practical applications.

A common alterpative for one-dimensional compressible flow problems analysed with Enear
clements, is {0 assume the exror for each problem variable v as given by

¥ e B C(AY

g[_ (2

where | - |; means an average value over the ith clement. The condition of uniform distribution of

(" [g{ = & (constant) (28)

Abmeconcq;bmbeextmdedto2D/3Dﬁowituﬁonstod¢rivethebﬂowhg AMR strategy:
1) At each element center the following matrix is computed

FPv . . 1,2 for 2D problems

M= 3z;0z; 77 1,2,3 for 3D problems

(29)

where v is the variable which ervor is to be computed. Tipically v = p (density) or v = M (mach
sumber) are chosen.

2) The cigenvalues of M are computed (i.e. X', A? for 2D problems). From eq.(28) it can be

written

APl = (AIPA] = (™) ames (29)

where A™™ and A™3* arc the specified value of the minimum element size and the maximum
cigenvalue computed in the mesh, respectively.

3) Eq.(29) yields the new cement sizes as
Mok 277 io12 2D (30)

Usually 4} = h? is taken, thus implying cqual sise elemeats. However the possibility of stretching
the elements (i.e. A} 3# A?) has also been successfully exploited in practice [22,23].

The mesh is redefined using the new dement sises given by (30). This can imply cither refinement or
enlargement of some element sones. The definition of the new mesh can be based on the enrichment
of the previous one, subdividing or eliminating elements, or in the complete regeneration of a pew
mesh (22,23,25]. For the second option an efficient mesh generator for triangular or quadrilateral
dements of different orders has 1o be used. This mesh generator should allow to combine structured
with unstructured meshes in the same domain. An example of application is the modelling of the
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boundary layer region with an structured mesh whereas an unstructured mesh can be used for the
rest of the flow domain. The unstructured mesh generator used in all the examples presented in
next section is based on the ad ing froat technique [20,22,23].

It is interesting to mote that this last AMR strategy is in fact equivalent to that based on the
equal distribution of specific error studied in & previous section. This explains its better ability to
capture the discontinuities induced by shocks in practical hypersonic flow compatations [18], [22],
[23], [2s].

EXAMPLES
Analysis of a plate bending problem

The first example is the analysis of a simply supported square plate under uniformly distributed
loading. Figure 1 shows the geometry of the plate, material properties and the initial mesh of 68
six nodes triangular Reissner-Mindlin plate elements based on an assumed shear strain formulation
[14-16]. The plate edges are soft simply supparted (v = 0) to ensure the development of a boundary
layer due to the zero values of the twist moments along the supported sides. The values of m and
din ¢q.(16) are m = 1 and d = 2 in this case.

L =100

| t =05 (thickness)

E =1092

=03

B.C.: Soft simply supported
Load: Uniform q=0.5

Symmetry

Figure 1. Symm!rkqnmmduuﬂotdywm'itl‘wﬂ'iu*nm Inmitial
mesh of 68 triangular plate elements [14,15).

Figure 2 shows the sequency of refined meshes obtained with the three AMR strategies studied in
the first part of the paper. A value of the permissible global error § =5% has been chosen in this
case. First column (strategy A) shows the results obtained using the criterium of equal-distribution
of global error over all the elements and the {wrong) value of { defining the new clement sizes, as
given by eq.(17). Note the oscillations in the AMR process clearly shown by the alternative re and
de-refinements of the same mesh zones.

Results labelled as strategy B in Figure 2 bave been obtained with the same mesh optimality
criterium, but using now the correct expression for ¢ as given by ©q.(16). Note that the refinement
oscillations dissapear and the AMR process converges in & consistent mannez.

Fimally results for strategy C have been obtained with the mesh optimality criterium based on the
equal distribution of the specific error, with the element sise parameter { as given by eq.(22). It
tan be clearly seen that: (a) The AMR process converges without oscillations, and (b) This AMR
strategy concemtrates more and smaller elements in the vicinity of the supported edge (where the
erTor 18 greater due to the boundary layer effect), whereas in the center of the plate bigger elements
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with AMR strategies based on: {A) Equal distribution of global erroc and inconsistent definition of parameter
€ (vis eq.(17)); (B) Jdem with § coasistently defimed by eq.(16) and (C) Equal distribution of specific ecror.
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than in previous cases are allowed. The prize to be paid is the increase in the total number of
clements with respect to strategies A and B for the same global accuracy.

A summary of the main results obtained for this example is given in Table I. Columns 1, 2 and 3
show the number of clements, the total strain energy and the global error parameter §; for each
mesh. Columns 3, 4 and 5, 6 show the average value of the local error parameter ({?). and its
mean deviation (e),: over each mesh for the two optimality criteria studied, respectively. From
the numbers shown in the table we deduce:

(a) Strategy A (equal distribution of global error and nom consistent definition of £) converges
to the global permisible error chosen. On the order hand, the remeshing inconsistencies
previously mentioned yield oscillations in the mean deviation of the local error parameter
{column §).

(b) Strategy B (Equal distribution of global error and the right definition of ¢) also converges
to the global permissible error and it shows a consistent distribution of the local error (see
column 5). Note a small oscllation in the mean deviation of § for the final remeshing
stages once the “optimal mesh” has been reached.

(c) Strategy C (Equal distribution of specific error) converges to the global error showing no
oscillations in the distribution of element sizes. However, note that the number of elements
involved in the final meshes is much bigger than that obtained with strategies A and B.
This is due to the finer discretization due to the zones with high stress gradients.

Also note that by comparing columns 5 and 7 some conclussions between the different
“philosophies” of the AMR strategies based on the equal distribution of the global and the specific
errors can be drawn. For instance, we can see that the simultaneous satisfaction of both optimality
criteria is not possible, as expected. Further instructive conclusions can be extiracted from these
results and they will be reported in a separate publication [18].

Mach 5 inviscid flow over a compression corner

Figure 3 shows the geometry of the problem and the initial mesh of 250 three node triangular
elements with equal interpolation for all variables. The analysis has been performed solving the
compressible Euler equations using a Taylor-Galerkin approach [21}], [23], [25] with the AMR
strategy presented in last part of previous section. Figure 3 also shows the sequence of adaptive
remeshings and the results for the pressure contours obtained with each mesh. The improvement
in the definition of the shock is obvious.

Hypersonic inviscid flow over a double ellipse

The final example corresponds to the laminar inviscid non reactive flow past a double ellipse
for Moo = 8.5 and a = 30° [25]. Again numerical results have been obtained by solving the
compressible Euler equations with a Taylor-Galerkin approach and 3 node equal interpolation
triangles. Figure 4 shows the finite clement meshes obtained after three consecutive remeshings
using the same AMR strategy as in previous example. Figure 4 also shows the Mach number and
pressure contours, and the plots of the pressure coefficient and the Mach number variation along
the stagnation streamline for the finer mesh are.

CONCLUDING REMARKS

In this paper two different mesh optimality criteria based on the equal distribution of the global
and specific error in a finite element mesh have been studied in the context of structural and fluid
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problems. We have seen that the correct evaluation of the rate of convergence of the different errar
norms involved in the AMR strategy is essential to avoid oscillations in the refinement process.
Also, the mesh optimality criteria based on global and specific error distribution are conceptually
very different. Thus, whereas the former leads to meshes with smaller number of elements, the
second captures better the effect of high gradients. Further research should allow to balance the
possibilites of these two criteria for use in practical structural and fluid flow applications.

Equsl Sotibution| Equal Totibet
[ 14 ] & of global error of specific error

clements
@ Do | e (D)o
STRATEGY A
M0 68 28.€32598 | 2.7074 1.000 .In 1.064 3.740

M1 358 29.454666 | 1.5824 | 1.000 3.018 2.17¢ | 18.052
M2 829 29.803484 | 0.9516 | 1.000 1.582 3.492 | 32.316
M3 939 29.759661 | 0.9216 | 1.000 1.430 3.559 | 28.100
M4 966 29.861299 | 0.8514 | 1.000 1.166 4.023 | 37.199
M5 863 29.697644 | 0.9680 | 1.000 2.425 3.513 | 22.261
Mé 1040 29.884956 | 0.8550 | 1.000 1.554 3.653 | 38.984

Mo 68 28.632598 | 2.7074 | 1.000 3272 1.084 3.740
M1 415 29.635824 | 1.5622 | 1.000 4.304 LTI | 18635
M2 923 29.839586 | 0.9878 1.000 2.672 2.762 | 30.087
M3 1007 29.836037 | 0.9274 1.000 1.489 3.163 | 20.758
M4 1038 29.847635 | 0.8818 1.000 1.262 3.400 | 33.205
MS 1024 29.843843 | 0.8702 | 1.000 1.319 3.490 | 35.147
Mé 981 29.834833 | 0.3532 1.000 1.3%0 3.783 | 39.833

Mo 68 28.632598 | 2.7074 1.000 3.272 | 1.064 3.740
M1 369 29.485505 | 1.5276 1.000 2.752 | 2.277 | 19.408
M2 1617 29.662097 | 0.8594 1.000 7874 | 2.137 T.863
M3 3079 - | 20.486021 | 0.9380 | 1.000 | 43.741 1.037 0.662
M4 3941 29.633166 | 0.9258 1.000 | 45.376 | 0.877 0.310
MS 4243 29.740783 | 0.67T2 1.000 ] 24.215 | 1.519 0.829

TABLE L. Symmetric quadrants of as uniformly Joaded plate with “soft” simple supports. Some statistical results of
the AMR peocesses.
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