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Abstract. The study deals with the generalized solution of the title problem. The free vibration
problem of a rectangular membrane with partial domains each of uniform density and arbitrary
shape is tackled. Previous studies by other researchers include straight parallel to the borders
and oblique interfaces, and bent ones. The solution is found by means of a direct variational
method with a series composed with a complete set of functions. Two alternative sets are ex-
plored: trigonometric and power series. Such series are convergent to the exact solution. The
approach is straightforward and very efficient from the computational viewpoint. Diverse illus-
trations are included. The cases of an oblique straight line interface and an open curve line
which divide the membrane in two domains each of different density are first presented. Also a
rectangular plate with an interior closed domain is stated and the numerical example of a circu-
lar interior zone is included. Comparison between the two alternatives and with other authors’
results show excellent agreement. In all cases the results are excellent and the computational
cost is very low.
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1 INTRODUCTION

The natural vibration problem of rectangular membranes with arbitrary interface which sepa-
rates domains with different density is tackled with two alternatives approaches. Two sets of
base functions are used in the direct method. They are a trigonometric set and power series.
A variational direct approach developed before by the authors and applied to various structural
problems that makes use of an extended trigonometric (complete) set (see for instance Rosales,'
Filipich and Rosales? and Escalante et al.) is employed to solve the title problem. As is shown
the core problem is in someway included in a previous study of vibration of plates (Escalante et
al.). Also algebraic sets have been previously applied to solve other structural problems (e.g.
Filipich et al.%).

Although many researchers have addressed a great variety of membranes with regions of
different density such as rectangular, circular and annular membranes (e.g. references®'?),
many of them deal with continuous variation of the density or density varying in steps with
interfaces parallel to one of the edges. More recently Kang'! has solved the case of a straight
oblique interface and lately the problem of a bent interface.!? To the authors knowledge no
analytical solution is reported in the open literature of a rectangular membrane with regions of
different density with curve interfaces, either open or closed.

First the vibrational problem of a rectangular membrane with regions of different density
is stated. The direct variational method and the two different approaches are presented. One
is a trigonometric set that identically satisfies the boundary conditions of the membrane and
constitutes a complete subset and the other is the algebraic set. In the latter the boundary
conditions are accounted for by means of Lagrange multipliers. The statement and use of both
methodologies is straightforward and the results are of arbitrary precision.

The well-known analogy between the frequency parameter of membranes and simply sup-
ported plates is usually employed to solve membranes. This analogy is not valid when the den-
sity is not uniform. This thcorem has been demonstrated by the author though is not included
here for the sake of brevity.

As is known the differential problem of the vibrating membrane is governed by the Helmholiz
equation. This also represents the eigenvalue problem of cavities and the results herein pre-
sented may be applied to those problems.

2 PROBLEM STATEMENT

The linear natural vibration problem of the membrane (Figure 1) is governed by the following
equation (also known as Helmoltz equation):

Vw + Q%w =0 (1)

under the condition
w(p) =0 (2)
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Figure 1: General configuration of a membrane
where
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V() =wxx +wyy 3
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Q*QEp( 7y)w2 (4)

T

in which w is the natural circular frequency, 7' is the uniform tension per unit length of
edge applied on the membrane and, p(x,y) is the variable density per unit of area. The energy
functional U™ related with this problem writes

— //(A) (wk +w — Q*w?)dA )

In the case of a membrane with constant 7" and variable density on regions (density p; con-
stant in each region ¢ of a total of /V regions ) (e.g. as shown in Figure 2 for the case N = 3),
the energy is written as follows

a pb
—// (wk +w?)dXdY — —an// w?dXdY (6)
0J0 (An)

It is convenient to non-dimensionalize the problem using the following variables
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and the functional (6) now writes

11 N
2U = / / (w? 4+ Nw?*)dxdy — O Zrn // widxdy (10)
0.Jo =1 (An)

where the nondimensionalized frequency parameter {2 is

_ P
Q\/;wa (11)

The arbitrary curves (interfaces) that separate the regions should be given in the formy = f,,,(x)
withm =0,1,2,...,N).
The two alternatives are presented in the following sections.

3 VARIATIONAL SOLUTION WEM

First the title problem is tackled by means of a direct method using an extended trigonometric
base set. A complete set is employed to represent the main unknowns with uniform convergence
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and satisfying the boundary condition wry. The authors have developed a methodology named
WEM (Whole Element Method) (MEC in Spanish). This direct method (see for instance' ™)
makes use of a complete series of extended trigonometric functions which are systematically
stated for one, two and three domains and also for spatial or time problems, and other com-
plexities. In this work, the vibration of membranes, such series are given by a set that satisfies
a priori the geometrical boundary conditions and are elementary. Still, they constitute a com-
plete subset. The following complete series are used to represent the variables in the domain
0<z<1

i) AyjciS (12)
w = Zzl ZJI (jﬂ-)A'LJSZC]

The notation used in the previous series is as follows: s; = sin(inz),s; = sin(jry).c; =
cos(imx),c; = cos(jmy). i1 denotes 7 = 1 and j; denotes j = 1. These expansions are intro-
duced in (10) and after finding its extreme, the eigenvalue problem is reduced to the solution of
the following equation (the equation is particularized to the case of two regions with densities

p1 and po)

Z Z 0 A Z Z Apg®ijpq = (13)

P11 q1
with q)z‘qu = 12ipeijpg + A2 j i — PG+ (p2/ o1 — 1] (14)
1 1
€ijpg = / cicpdx/ 5j84dy (15)
0 0
1 1
Gijpg = / Sispdx/ CjCqdy (16)
W= d d 17
Hiing s,sp T sjsq Y (17)
@ 2
Hijpg = / szspdx/ 5j84dy (18)
o fi(z)

where «, § and fi(z), fo(x) are the limits of the region with different density in the z and y
directions respectively.

Numerical examples that illustrate the methodology will be shown in Section Numerical
illustrations bellow. They include membranes of two regions of different density with straight
or curve interface and a closed inner region.
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4 DIRECT METHOD WITH POWER SERIES

A set of algebraic functions (power series) is used as base functions in the direct method. In
order to satisfy the boundary condition, Lagrange multipliers are introduced. Instead of using
expressions (12) the following power expansions are introduced

w=> Y Ayz'y (19)
=0 =0

Evidently, this expansion constitutes a complete set in this problem although the boundary
conditions of the membrane are not satisfied (as before with functions (12)). Recall that w(z, y)
should be null at the boundaries (£0.5, y), and (z, +0.5) if the axes are located in the center of
the square membrane (after non dimensionalization). These conditions are to be handled by the
use of Lagrange multipliers to expand the governing functional (10). The extreme condition on

the functional will lead to the following linear homogeneous system

(20)

BA+KL=0
KA=0

B of components by is a square matrix of order (M + 1) - (M + 1) while K of components
krs is arectangular matrix of order 2(M +N) - [(M+1)(N+1)]. Also I = (N+1)i+j+1Vij,
J=(N+1)p+qg+1¥pq, (i,p=0,1,...,M)and (j,¢g =0,1,..., N). The b;;’s write

brs = (0.5) P — (—1)HPH[] — (—1)7+e ] (21)
. . N*
p 2 J4 2 (n)
. . + A"~ : - Q Tni0sr 22
G+p-1DG+a+1) (Z+p+1)(9+q—1)] 2t (22
where
05 fn(z)
o7 = / 2Pz / y iy (23)
—0.5 fn—l(w)

and f,(x) are the limits of the successive regions. Additionally the Lagrange conditions lead to
S=N+1)i+54+D

=055 R=j+16=0,1,...,M),(7=0,1,...,N = 1)
1 = (=05 R=7+Nz=0,1,...,M),(j =0,1,...,N — 2)
BSY = (05 R=i+2(N-1)+1(=0,1,...,M),( =0,1,...,N)
= (=05 R=i+(M+1)+2(N-1)+16=0,1,...,M),(j=0,1,...,N)
(24)
The eigenvalue problem may be stated as follows if matrix B is not singular,
|IB||KB'K'|=0 (25)
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Table 1: Frequency parameter values of the homogeneous rectangular plate

Order | Exact Algebraic set Trigonometric set
M=N=4 | M=N=9 | M=N=11 | M=N=4 | M=N=8 | M=N=10
3.5939 | 3.5939 | 3.5939 | 3.5939 | 3.5939 | 3.5939 | 3.5939
4.6962 | 47784 | 4.6962 | 4.6962 | 4.6962 | 4.6962 | 4.6962
6.1062 | 64336 | 6.1062 | 6.1062 | 6.1062 | 6.1062 | 6.1062
6.5211 | 6.7116 | 6.5211 | 6.5211 | 6.5211 | 6.5211 | 6.5211
7.1877 | 7.4137 | 71877 | 71877 | 7.1877 | 7.1877 | 7.1877
7.6556 | 8.5745 | 7.6565 | 7.6556 | 7.6556 | 7.6556 | 7.6556

| | | | N | et

Table 2: Frequency parameter values of membrane with straight interface. Trigonometric series. Example 1

Order Frequency parameter
M=N=5 | M=N=8 | M=N=10 | M=N=12 | Kang and Lee''
1 27686 | 2.7681 | 2.7681 2.7680 2.768
2 3.9686 | 3.9664 | 3.9661 3.9659 3.966
3 4.8466 | 4.8452 | 4.8450 4.8449 4.845
4 5.0089 | 5.0062 | 5.0061 5.0060 5.005
5 5.8535 | 5.8445 | 5.8432 5.8427 5.842

Any of the two involved factors may be null but since the eigenvalues obtained with | B | do
not involve the boundary restrictions, the frequencies are to be found with

| KB'K' |= 0. (26)

S NUMERICAL ILLUSTRATIONS

First a rectangular membrane of dimensions 1 m in the X direction and 1.8 m in the Y direction
is addressed. As a reference the values of a rectangular plate with homogeneous density are
reported in Table 1 found with the direct method with two proposed sets. Now the non homo-
geneous case with two regions of different density (p2 = 2p,) separated by an oblique interface
is tackled (see Figure 3, Example 1). The interface is given by the line Y = 0.3X + 0.7. The
values obtained using the Direct Method with trigonometric functions (Eqs.(12)) are depicted
in Table 2 for various number of terms of the series. The values reported in Kang and Lee!!
are depicted in the rightmost column. In this reference a superposition of two semi-infinite
membranes is proposed and a sum of trigonomeitric functions employed to solve the governing
differential equation. The methodology is somewhat involved and some spurious frequencies
are found which are discarded by comparison with other methods (e.g. FEM). On the other
hand, the herein presented direct method with a complete trigonometric set yields all the fre-
quencies without being necessary such an analysis of the results.

The case of a square membrane (1 m by 1 m) with a curve interface was also studied. Figure
3, Example2, shows the case of the membrane with two regions with different density and a
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Figure 3: Geometrical scheme of the three examples of nonhomogeneous membranes

curve interface. In particular, the parabola Y = 0.8X?2 — 0.5X + 0.4 is chosen as the interface
curve. The values of the first five frequency parameters are reported in Table 3, found with the
direct method using both the trigonometric and the algebraic sets.

Finally a rectangular membrane (1 m x 1.8 m) with an inner closed region with different
density was analyzed and the frequency parameter results depicted in Table 4. In particular, the
density of a circular region, with center in the center of the plate and radius 0.4 m is twice, three
times and five times the density of the membrane (i.e. 7 = p2/p1, 7 = 2,3, 5).

As expected, the effect of a region with larger density is to lower the frequencies. Figure
4 shows the influence of the change of density on the sucessive frequency parameters. With
respect to the methodology, the direct method offers a very simple and reliable tool to solve this
type of problem. Given the simplicity of the boundaries the trigonometric set satisfies the end
conditions previously constituting a complete subset. On the other hand the algebraic set (power
series) requires the use of Lagrange multiplier to fulfill those conditions. The convergence is
better with the trigonometric set and has the particularity of being similar even in the higher
frequencies. In the comparison with results from other authors (Example 1), though all methods
attain the same values, the advantage of the present methodology is that no selection” of results
have to be performed. Additionally the use of complete sets in the direct method ensures the
convergence of the solution to the exact one, i.e. the results are of arbitrary precision. For
instance if one needs frequencies accurate to three decimal places, the number of terms should
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Table 3: Frequency parameter values of a square membrane with curve interface. Example 2.

Order Frequency parameter
Trigonometric set | Algebraic set

M=N=10 M=N=8

1 3.3373 3.3374

2 5.2591 5.2595

3 5.6367 5.6377

4 7.0885 7.0904

5 7.4718 7.4729

Table 4: Frequency parameter values of membrane with an inner closed region of different densities. Example 3.

Order | Trigonometric set (M=N=10) | Algebraic set{M=N=11)
r=2 =3 r=5 r=2 =3 r=5
2.7386 | 2.2856 1.7995 2.7389 | 2.2860 | 1.7999
4.0156 | 3.4927 2.8318 4.0168 | 3.4948 | 2.8345
5.0200 | 4.1793 3.2807 5.0210 | 4.1806 | 3.2821
5.4314 | 49317 4.1367 5.4386 | 4.9614 | 4.2051
6.2559 | 5.3985 43270 | 6.2600 | 5.4070 | 4.3384
6.6140 | 6.1391 4.8361 6.6225 | 6.1442 | 4.8414

QNN B W DN =

be increased until the significant digits remain constant. Thus the resulting eigenvalue is exact.

6 FINAL COMMENTS

A direct method approach is herein employed to solve the vibrational problem of non homo-
geneous rectangular membranes. Two different base functions that belong to complete sets are
inserted in the governing functional. Then the variational approach gives the necessary equation
to solve the eigenvalue problem. In particular the density is varied in steps and three examples
were numerically solved: an oblique interface, a curve interface and an closed inner region.
Both the trigonometric and the algebraic sets exhibited an excellent performance, giving be-
tween 4 and 5 digits of accuracy with only 10 terms. As mentioned before, the well-known
analogy between plates and membranes that is valid with homogeneous membranes, does not
hold in the case of non homogeneous membranes. Thus, the frequencies of membranes with
different densities may not be found from the plate results.

REFERENCES

[1] M.B. Rosales. A non-classical variational method and its application to statics and dy-
namics of structural elements(in Spanish). Ph.D. Thesis. Universidad Nacional del Sur,
Argentina, (1997).

[2] C.P. Filipich and M.B. Rosales. Arbitrary precision frequencies of a free rectangular thin

647



MECOM 2005 — VIIl Congreso Argentino de Mecanica Computacional

sr=1 =r=2 =3 =r=5
8
L3
5 71 ’
© + . =
g g
5 = y
o 4 8 :
> *
L H X
t 3 1 & *
2 I I T I T I
0 1 2 3 4 5 6 I
Order of frequencies

Figure 4: Rectangular membrane with a circular inner region. Influence of density ratio on the frequency parameter
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