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ABSTRACT

Numerical simulation plays nowadays an important role to predict the flow field
in many situations. To design a new mechanical device involving fluid dynamics,
a numerical simulation is well accepted and justified. However, many work stilf
remains to improve the numericali methods towards a fast, accurate and stable
convergence. This work presents efficiency studies to solve compressible and
incompressibie fluid flows using a finite-volume, explicit Runge-Kutta multistage
scheme, with central spatial discretization in combination with multigrid. An
extension of the methodology normally employed to solve compressible flows is
used to solve incompressible flow problems. Numerical results are presented for
a cylinder and the NACA 0012 airfoil for Mach-numbers ranging from 0.8 to
0.005 using the Euler equations.

INTRODUCTION

Today, numerical flow simulation plays more and more important role in the design process of
an aerodynamic body. It is already possible to solve the flow over a complete aircraft geometry
for specific flow regimes. The interest now is to develop efficient methodologies that can be
used to solve all speed flow problems. As the use of such methodologies is limited, these
limitations must be investigated in order to design at low costs.

" Physical and mathematical principles are important tools to analyse these problems. As the
analytical methods are limited, numerical methods allow us to analyse some important
phenomena, where experiments are usually too expensive or even impossible. In this way one
strategy is to approximate the governing equations of the problem.

There are well known methods to solve either compressible and incompressible flow problems.
When solving high speed flows it is common to approximate the differential equations using
high order interpolation functions [1] [2]. In order to turn the numerical procedure more stable
artificial dissipation is needed. The solution of low speed flows, however, is usually obtained
using hybrid interpolation functions, that are based on the physical aspects of flow behaviour
B114].

Extensions of the methodologies employed for incompressible flows have been applied, with
success, for the solution of all speed flow problems [5] [6] [7]. One drawback of these
methods was the use of staggered variables in order to provide an adequate pressure-
velocity/density coupling. This problem was partially solved using the colocated arrangement
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[8] [9] [10]. Other drawback of these methods is their accuracy and cost when solving
transonic flow problems over aerodynamic geometries.

Extensions of the methodologies used to solve compressible flows have also been applied to
solve all speed flows [11] [12]. Sometimes these methods are based on the introduction of

artificial density and are denoted as B-compressibility methods [13].

The potential equations were and sometimes are still used to solve compressible and
incompressible flow problems. This is done in order to simplify the analysis and to reduce the
computational costs. However, there are problems that can not be analysed using the potential
flow equations, for example flows with strong shocks and with vorticity. The only adequate
model for non viscous flows are the Euler equations, in which mass, momentum and energy are
conserved.

In order to efficiently solve problems with fine grids, techniques to accelerate the convergence
to the steady state are required. Some of these approaches, namely the local time-stepping,
residual averaging and multigrid techniques [14] [15] [16] are normally employed. The first
allows to obtain steady state solutions with less computational effort. Residual averaging is
used to increase the Courant number of an explicit scheme and consists in replacing the
residuals by an average of neighbouring residuals. The idea of the multigrid approach is to use
a sequence of successively coarser meshes to efficiently damp disturbances in the flow field.
This work presents studies to solve compressible and incompressible fluid flows using the
finite volume explicit Runge-Kutta multistage scheme with central spatial discretization in
combination with multigrid. It is an extension of the work developed in [17] specially for high
speed flow problems. Numerical results are presented for cylinder and the NACA 0012 airfoil
for Mach-numbers ranging from 0.8 to 0.005 [18] using the Euler equations. This is done in
order to show that the same methodology can be employed to solve compressible as well as
incompressible flow problems.

GOVERNING AND APPROXIMATE EQUATIONS

The governing equations for non viscous flows are the Euler equations. They can be written in
cartesian coordinates for bidimensional problems as:
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The total energy and total enthalpy are
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To close this system of equations the state equation for a perfect gas is used
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where R is the universal gas constant, p the density, u and v the velocity components and p the
pressure. The governing equations can also be cast into the integral form [2]

| a—gdw JEwyds=0 3

As the governing equations are valid for an arbitrary control volume, they are also valid for the
quadrilateral \71‘], and can be approximated as follows
oW, , - 1 -
== j (FR)dS=---Q, @
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This form of conservation laws allows discontinuities and is consistent. However, it ts well
known that when the magnitude of velocity becomes small, in comparison with the acoustic
speed, the time-marching schemes converge very slowly. Then preconditioning is employed in
order to assure rapid convergence. It consists basically in multiplying the vector W by a
special matrix, that modifies the general form of the governing equations [11]. Based on the
conservative variables, the following preconditioning matrix is employed

oW oF oG
AL A ) 5
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where [11]
1 0 0 0
0 1 0 0
I'= 0 0 1 0
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Inspection of this preconditioning matrix indicates that the energy equation is transformed into
an equation for temperature for low Mach-numbers. Thus the eigenvalues of the resultant
system of equations will be very similar when the Mach-number goes to zero, laying the basis
of construction of efficient solvers [12] to solve incompressible flows [18].

TIME-STEPPING SCHEME

The system of governing equations is discretized separately in time and space. The
discretization follows the finite volume method. A modified Runge-Kutta time-stepping
scheme [1] [2] is chosen, because its stage coefficients can be tuned in order to optimise the
damping of transient disturbances, which is important for application of a multigrid method. As
the classical fourth order Runge-Kutta method requires the evaluation of convective fluxes
QY and dissipative fluxes D’ for each stage (m-stage; k =0, 1, ..., m), this scheme leads to

storage problems. A simplified Runge-Kutta scheme, requiring lower storage is given by [2]
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The dissipation terms 55.; are introduced by adding dissipative fluxes, which preserve the
conservative form, to the semi-discrete system written as [1]

%Jr%[Qu -B,]=0 ©

For steady state problems the stage coefficients can be selected purely with respect to stability
and damping properties. The following coefficients lead to an efficient 5-stage scheme

o =1/4, o,=1/6, @,=3/8, o,=1/2, oa5=1

NUMERICAL RESULTS

In the following, numerical results for a cylinder and the NACA 0012 are presented and
compared. One way of proving the validity of the numerical Euler solutions is to compare them
with potential solutions.

First computations were performed for incompressible flow over a cylinder. A O-grid topology
with 160x48 cells is used. The position of the outer boundary is around 40 diameters away
from the cylinder.

Fig. 2. shows the pressure contours computed for Mach = 0.05. The corresponding pressure
coefficient is presented in Fig. 3. The analysis of these results indicates good agreement with
the analytical solutions [17 ].

In the following, compressible and incompressible flows over the NACA 0012 airfoil are
presented. Results were obtained using a C-grid topology that consists of 256x64 cells. The
position of the outer boundary is around twenty chord length away from the airfoil and the far
field boundary condition is modified due to a vortex [2] [17] [18]. Five grids were employed in
the multigrid process.

First computations were performed at Mach = 0.8. Fig. 5 shows the pressure contours
computed for Mach = 0.8 and o = 0°. Fig. 6 shows the pressure coefficient computed for
Mach = 0.005. The analysis of these results indicates that the present methodology can be used
to solve compressible as well as incompressible flows accurately. Fig. 7 indicates that two time
steps and a W-muiltigrid cycle (with 4 coarse grids) are advised in the multigrid process for low
Mach-numbers. Fig. 8 compares the convergence history for Mach = 0.1 with and without the
use of multigrid techniques. The computational time can be reduced by a factor of 10 when
using this technique.
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Fig. 1 Grid for cylinder, 160x48 cells

-0.25

-0.5
0.75




ENIEF 9° Congreso Sobre Métodos Numéricos y sus Aplicaciones

238

EULER
« THEORETICAL

dO

300

ANGLE

200

100

0.05

Fig. 3 Pressure coefficient for cylinder, Mach
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Fig. 4 Grid for NACA 0012, 256x64 cells
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Fig. 5 Pressure contours for NACA 0012, Mach = 0.8 and o = 0°
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Fig. 6 Pressure coefficient for NACA 0012, Mach = 0.005 and o = 5°
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Fig. 7 Convergence histories for NACA 0012 for Mach 0.01 and o = 5° ‘
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Fig. 8 Convergence history for NACA 0012 with and without multigrid techniques,

Mach=0.1
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CONCLUSIONS

Extension of a compressible code [17], based on the node-centered arrangement, to solve
incompressible flows is presented and compared for a cylinder and the NACA 0012 airfoil. The
finite volume spatial discretization and the Runge-Kutta time-stepping scheme are used to
efficiently solve compressible as well as incompressible flow problems. Special care has been
taken on the treatment of influence coefficients used to obtain the time-step and the artificial
dissipation.

Present numerical results permit to conclude that it is possible and preferable to accelerate the
convergence to obtain steady state solutions using the multigrid technique. However, for low
Mach flows the efficiency of this technique was not so big as for transonic flows presented by
[17]. Two time-steps were necessary at each grid and the W-multigrid cycle in order to
efficiently use the multigrid approach for the solution of small speed flows.

The comparison between the theoretical and numerical solutions is encouraging. Especially the
use of multigrid techniques and its combination with preconditioning leads to reasonable rates
of convergence. Besides, the same code can be employed to solve compressible as well as
almost incompressible flow problems.
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