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We present a 3D BEMJpanel code to compute potential flows about ship-forms with
linearized free-surface conditions in order to compute the wave drag. Details of the 3D
panel discretization and numerical results, will be given in a companion paper [1], so that
this one deals with those aspects related to the implementation of the upwind technique
in order to capture the "physical" admissible solutions, i.e. those ones satisfying an
appropriated radiation boundary condition at infinity downstream.
The basic governing equations of potential flow with free surface are the Laplace equation
for the velocity potential with appropriated botmda.ty conditions, and the free surface
condition, which is based on the Bernoulli equation and relates the surface elevation with
the local absolute value of velocity. However, this problem is ill-posed in the sense that
allows multiple solutions, associated with the existence of a system of trailing gravity
waves. In real life, this wave Systf'ID originates in the ship and propagates to infinity
downstream. In 2D situations the trailing waves propagates to infinity downstream
without damping, whereas in 3D situations the amplitude of the wave pattern decreases
due to the spreading in the transversal direction, but keeping constant some quadratic
norm of the transverse profile, associated to the wave-drag. The expenditure of energy
in creating this wave pattern is at the cause of the wave drag. The set of governing
equations, as described so far, allows solutions with trailing waves propagating in both
(upstream and downstream) directions. Solutions with upstream propagating trailing
waves should be considered non-physical and, consequently, discarded. This is done by
means' of the addition of an "upwind" or "artificial viscosity" term. Once this term is
added, the unicity of the solution for the problem is recovered. In this paper we discuss
the theoretical and practical aspects of the implementation of such term.

Key words: 3D BEM, potential flows, wave drag, ship forms, free surface, upwind
technique, trailing gravity waves.

Consider a rigid body at a constant speed in a fluid media occupying the region z < 0 (see figure 1.
The trajedory of th••ho<lyfollowe .\ line parallel to the I coordinate, and it is such that the hody
is partially or totally submerged in the fluid. As the speed of the body is increased the pressure
field produced by the flow perturbs the free surface and a "wave pattern" is produced. Even for
inviscid flow, SOIlleenergy is dispensed by the body in order to maintain this pattern, and this is
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possible only ifa.-drag-forcea.ets-on-1;he body. This is called the "wave drag" and is one of the
components of the drag that persist even for a negligible viscosity, like the form and shock-wave
drag c;:omponents. The main application is in ship hydrodynamics, and it can be seen that for very
large ships, wave-drag and form-drag are the main components of drag.
Suppose that, due to the usual mechanisms of dissipation a steady state solution for the wave pattern
is fOlnl<i The velocity field is then governed by the following set of equations:

u =V'~} in 11
ll+ = 0

where u is the :Velocity of the fluid and +(x, y, z) the total potential. The "kinematic boundary
conditions" are simply the slip condition" at the free surf~e rfree and on that part rship of the ship
hull which is in contact with the liquid, an~ an equivalent condition at the infinite boundary f 00:

: = 0 in ffree + fship

l» A' ran =uoo·ntn 00

This system of equations is enough if the position of the free surface is known a priori. As this is
not the calle, we have to ~d a condition, in order to adjust the free-surface position. First, recall
that, as we suppose that the flow is inviscid, the Bernoulli equation allows us to obtain pressure as
a function of velocity and height:

!? + %1V'cPI2 + gy = cnst in 11
p

Mechanical equilibrium of the air-water interface implies that pressure should be equal from both
sides of the interface (neglecting surface tension). On the other hand, we suppose that air pressure
is constant and equal to P&tm, so that:
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Fig 2: Upwind terms discard non-physical solutions where the wave pattern extends upstream.

However a more detailed analysis shows that the previous problem is ill-posed and this can be
seen also through simple symmetry considerations. Thc previous system of equations is invariant
through coordinate inversion x -+ ~x, so that if the body is also symmetric, then for a given solution
pair <l>(x,y, z), 7J(x, y) to the above equations, then the mirrored pair: -<l>( -x, y, z), 7J( -x, y) is also
a solution. But it is easy to show that the drag for the mirrored solution is equal but of opposite
sign to that one for the original solution, so that two possibilities are open: the solution is symmetric \ '
and, then, the drag is ~1!ll. Or.eit!ter, the solution to the problem is not unique and an additional
condi):ion should be imposed in order to select those solutions that have "physica1sensc", that is,
among other considerations, the drag should be positive and the wave pattern extendsfrom the ship
to infinity downstream (see figure.
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Fig 3: Physical admissible solutions and upwind terms have a close analogy in compressible
aerodynamics. ~

This situations is similar to transonic flow where beyond some critical Mach number, there is a
multiplicity of solutions, with "compression" as well as "expansion shock waves". The physically
acceptable solution is that one with no expansion shock waves. This is also termed "to satisfy the
entropy condition" and is related to the "Second Principle of Thermodynamics", i.e. the generation
of entropy should be strictly positive at shocks. Usually, this condition is imposed through the
addition of an "upwind", or "numerical diffusion" tcrm. A very common method for the full
potential equation is the "upwind in density". In this method the density is evaluated at a point a
small distance upwind of the point where velocities are evaluated. This small distance has to be of
the same order of the local mesh size.
Inspired in the above mentioned "density upwind technique" for transonic flow, we implemented
a scheme which we termed "elevation upwind", where the dynamical wndition (4) over the free
surface is replaced by:

where P is a point on the surface, slightly upwind from the point where the kinetic energy term is
evaluated.
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THE PANEL METHOD
The underlying panel method is described in detail in a companion paper presented at this same
conference [1]. For a given position of the free surface the potential field is obtained from a linear
system of the form: .._.- ".

where p. is the vector of perturbation potentials at the centroids of the panels, tT is the vector of
mass fluxes through the panels, and A and C are full square matrices of interaction coefficients
between panels. The vector of fluxes is known from the unperturbed solution (usually a constant
velocity flow u = Uoc) and then we have just to solve (6) for the potential vector. Now if the
surface is free to adjust itself under the gravity field, then there is an additional set of unknowns,
that is the elevations of the Ilodes on the free surface '1. But the interaction coefficients depend on
the geometry of·the panels, so that the previoWi system should be rewritten as:

and we have to add the dynamical conditions coming from the upwinded Bernoulli equations (5),
which, in discrete form are:

Now, equations (7) and (8) are a non-linear system on the pair {p., '1} to be solved with an appro-
priated method. We propose in the following section a NewtoIl-Raphson based technique.

THE "DI!?CRETE" NEWTON~RAPHSON TECHNIQUE
Since equation (7) is linear in p., a simple iterative method based in fixed-point iteration should be
the following.

1) Choose an initial elevation field: '10, n+--O
2) Compute the potential field ,p" from:

A( '1"),p" = C( '1") tT( 11")

3) Compute the new position of the free surface by solving for '1"+l from:

F('1n+\,p") = 0

4) If not converged: n f-- n + 1, go to 2)

This strategy is simple and involves only minor modifications to the standard panel code, but it
exhibits very low rates of convergence even for very small elevations, in which case the system



is almost linear. We propose then to resort to a Newton~RaphBOll based ·algorithm. Now, the
computation of the increments {t:.pn+\ ~n+l} should be obtained from an equation like:

Another possibility is to propose a Newton-Raphson scheme for the "continuum equations" and
then to discretize that system. The resulting scheme is different from the previous one (since the
discretization and Newton-Raphson solution don't commute) and has some advantages. Firstly, the
formulation is by far much more simple as we will see later and, secondly, the number of unknowns
in system (11) is 2Nr. + N.bip where Nr. is the number of panels in the free surface and N.hip the
number of panels on the ship skin, whereas in the proposed formulation the number of lmknowns
is simply Nr. + N.bip' Since in general, Nr. > N.hip and in a lot of situations Nr. »N.hip, this is
a significant save in cOIIlputing f.~s.ources.

Suppose now that we have approximated values for the perturbation potential ¢J (defined by cP = \
Uoo . X + ¢J) and elevation fields (¢J, .,,)n. As usual, we will consider that the next iteration values
( ¢J, "I )n+ 1 will be close to (¢J, "I) n and this a first order expansion is performed in the increments:

¢J' = </>n+t _ ¢In

"I' = TJn+l - "In
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Fig 5: The "transpiration l1ux" method

On the other hand, we have to find a linearized expression for the potential increment ¢J' when a
small perturbation in the free surface r/ is produced. As both ¢>n and </>n+l should be harmonic and
with homogeneous bOlwdary conditions at the ship and infinity boundaries, and these boundaries
don't change with the perturbation on the free surface, it is clear that this equations apply also for
the increment ¢J'. The only thing that changes is th., free surface position, and we should be able to
put this as a source term in the boundary conditioll for the increment. This can actually be done
through a "transpiration flux" technique, which is a perturbation expansion technique [3] and can
be easily understood from ~...gllre 5. Let un be the vclccitJ, at the n-th iteration corresponding to 6
position of the free surface given by "In. Then, a small perturbation in the position of the free surface
"I' can be simulated by adding "blowing" at those points where the new position TJn+l = "In + r/
tends to separate from the old position "In, whereas "suction" should be added at those points where



11,,+1 tends to approach '1". The detailed perturbation expansion shows that the transpiration flux
should be: U" . VfI', and then the complete problem for fI' is:

1::.t/J' = 0, en n
8t/J'
EJn =0,
8t/J' "V'
EJn=u, '1,

Solving for '1' from (13) and replacing in (14.3), we arrive to a boundary condition for </>':

a:.' + (!(U'" V)(u"· V)t/J') =- !(u'" V)RBernoulli
Ln' 9 upw 9

This is the upwinded version, which is indicated by the subindex in the second term of the left hand
side, which me~~..Jbe ~.Y.!lIl..Q-Uj1ol).j;ityshould be evaluated. a little distance upwind from the
current location where the other terms are being evaluated.

NUMERICAL IMPLEMENTATION OF
THE FREE SURFACE BOUNDARY CONDITION

Recall that tT in (6) stands for the mass fluxes coming from the non-perturbed flow. For the
incremental problem, the applied fluxes are the right hand side of (15) minus the second term of
the left hand side. Thus the discrete equations are: \ '

where D is the discrete version of the upwinded second order derivative operator along the streamline
(aJ.so termed "diffusive operator"), and r the discrete residual of the Bernoulli equation. To solve
for p.,one has to solve a linear system with coefficient matrix A + CD. Matrix D is scaled by
K = U?x,/g ex Fr-2 (assuming a fixed ship length L), where Fr = Uoo/vYL is the non-dimensional
Froude number. It can be shown that as Fr is increased, the CD term tends to unstabilize the
problem. The condition number of the system highly depends on the amount of numerical diffusion,
i.e. to the length scale used in the upwinding.
To set up a numerical approximation for the diffusive operator is not straightforward. Firstly, if
one tries to set up a FEM approxiination over the underlying 2D FEM mesh that results to restrict
the panel mesh to the free surface, then one has the difficulty that the potentials given by the panel
method should be considered at the center of the panel, so that prior to any FEM manipulation,
s conversion from elemental to nodal values should be performed, what is an additional source of
error. SecQndly, one can't integrate by parts the streamlined second derivative operator since:

[ 1/1(u"· V)(u". V)</>'dI' = - { (u"· V1/I)(u"· Vt/J')dr-
Jrfree Jrfree·

.- f 1/I(V.U)(u".V</>') dr + boundary term (17) •
Jrfree

where 1/1 is any weight function. One is tempted to discard the V . u term due to incompressibility,
but recall that the integral is not over a volume but over a surface and then the divergence term
has to be interpreted as its 2D projection (V . u)r = (au/ax) + (Bv/8y) == - (8w/8z) which is
not necessarily zero. The situation is further complicated since the boundary term is in fact, a line
integral over the intersection between ship-hull and free surface and has not ll.D. evident physical
interpretation. Third and last, the upwinded version should involve third order derivatives, what
precludes the use of the standard (SUPG for instance) upwind techniques.
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We, then, resorted to a "mesh-less approximation", but takiJJg profit of the underlying panel mesh.
Recall that mesh-less approximations to a given differential operator consist in selecting a "cloud"
of neighboring points and least-sqilares fitting the values at these points by a (high order enough)
polynomial. Then, the differential operator is approximated as the operator applied to the poly-
nomial. A key point of the method is the selection of the cloud and weight for each point of the
cloud. The usual method in the literature is to use weights which depend on the distance between
the nodes and with compact support, i.e. they are null for those nodes outside a circle with some
specified radius. The cloud is simply those nodes with a non null weight. In this work, we used
the underlying panel mesh to select the cloud and the weights, based in the distance (in the sense
of "graphs") from the current point to the potential candidates to be incorporated in the cloud.
Consider for instance, the dark shadowed panel in figure 6. The panels are considered nodes in a
non-oriented graph, and two panels are considered linked if they ·have at least one node in common.
Then we mark those panels linked to the 'current panel as being "on its first layer". Those panels
linked to those on the first layer, but not pertaining to it, are marked as the second layer, and so on.
The doud is selected as those panels pertaining to, at most, the nlay-th layer. The number of layers
should be in accordance with the order p of the polynomial to be fitted, and this, in turn, should be
in accordance with the order of the differential operator t. The order of the approximation will be
O(hO) with 0 = p _·t + 1, so that we need p ~ 1 in order to have a convergent approximation. On
the other hand, if we think at the one-dimensional case, then we need at least p + 1 poin~ in order
to fit a polynomial of order p. But the number of points in the stencil in the ID case is 2nl•.y + 1,
so that we need 2nl•.y ~ p.



Fia 8: The number of layers in the stencil must be increased for the panels at the boundaries,
I.e. those in contact with the ship hull as well as the infinite bounaary.

In our case, we approximated the upwinded streamlined second order derivative operator in terms
of the centered one by (see figure 7):

Where k, k' are those panels pertaining to the first layer such that the streamline that passes
through the center Ci of panel i traverses the segment C"C", that joins their centers. The term in
brackets rePre~ts the value of (1)4». at the point B where the streamline intersects this segment, so \ '
that P = B C", / c" C,.,. On the other hand, 0 :os: a :os: 1 controls the amount of numerical diffusion,
a = 0 implies no upwind, and a = 1 implies "full upwind": (1)opw4»i = (1)4»B. The centered
operator corresponds then to I = 2, and then we choose p = 2 and nh.y = 1. This will give an O( h)
approximation according to the analysis given above.

Fig 9: Stf"JJcils for the Laplace operator on a homogeneous square mesh. Right: interior panel
(see coefficients in Table I). Left: Boundar;r panel (see COefficie.Ilts in Table II).

A special treatment has to be given to those panels that are on the boundary- 8. We mean by
this, those panels for which an inner layer (layer number strictly lower than nlay) is in contact \ .



Table I: Coef:licients Cij for the Laplace operator
00 a square mesb for an interior panel

i-I i i+ 1

i+l 4fg 1/9 %
j % -2% %r-"

j-l % 1fu "%

Table II: Coef:licients Cij for the Laplace operator
on a square mesh for a boundary panel

i-2 i-I i i+l i+2
"--

j=1 0.07404 0.21651 0.41890 0.21651 0.07404

i=2 -0.00793 -0.60317 -0.77779 -0.60317 -0.00793

j=3 0.23492 0.18254 0.16508 0.18254 0.23492

with the boundary. This elements risk to have a singular matrix at the moment of solving the least
squares system for the polynomial fitting. One solution is to add elements from the side of the
panel opposite to that one which is in contact with the boundary. This can be thought as taking
"one-sided" stencils in a finite difference context. In our case, we took simply nlay = 2 for those
panels in contact with the boundary.
The weights where taken as Wj = iil1, where d is the topological distance from the current panel to
the j-th panel, what is the same to the number of the layer to which the j panel pertains and to ~ 1.
This means that the weight of those panels on the I +1 layer are equal and to times that ones on the
previous 1 layer. Setting to low tends to give a stencil more concentrated to the center. But setting
it too low can give a stencil too sensible to the position of the nodes in some configuratipns. We
have set to=O.1 in the examples. As an example, we show in Tables I and II, the stencils obtained
for the Laplace operator on a homogeneous mesh of square panels of mesh spacing h, for interior
and boundary panels (see figure 9), i.e. the method gives an approximation of the form;

and we show in the tables the coefficients Cij in both cases.

CONCLUSIONS

The solution of the wave-drag problem in ship hydrodynamics requires the approximation of an
upwinded streamlined second order derivative operator. The complexity of the operator in addition
to the restrictions of the underlying panel discretization make it difficult the use of standard (i.e.
FEM/FDM) discretization techniques. The proposed "mesh-less" approximation has been proved
to be an interesting tool since it gives a large freedom in the operator to discretize and the order
of approximation. All this in the context of a general, unstrudnrp.o panp.I mesh"
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