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RESUMEN
Se utiliza un metodo de simulacion Monte Carlo para estudiar el flujo de aguas sub-
terraneas en medios porosos fractales total 0 parcialmente saturados. EI movimiento
del agua se describe mediante la ecuacion de Richards que se resuelve utilizando
un procedimiento mixto hIbrido de elementos finitos. Se considera que las hetero-
geneidades espaciales de los parametros hidraulicos obedecen a la estadistica de un
movimiento fraccional Browniano (fBm) 0 de un ruido fraccional Gaussiano (fGn).
Se presenta un ejemplo numerico para ilustrar la implementaci6n del algoritmo y el
c3.lculode los momentos estadisticos de las principales variables.

ABSTRACT
A Monte Carlo simulation method is employedto study groundwater flowin variably
saturated fractal porous media. The water movement is assumed to be described by
Richards' equation which is solved using a hybridized mixed finite element procedure.
Spatial heterogeneties in the hydraulic properties are assumed to obey fractional
Brownian motion (fBm) or fractional Gaussian noise (fGn) statistics. A numerical
example showing the implementation of the algorithm including the calculation of
the statistical moments of the main variables is presented.

Field studies in soils sciences and hydrology during the last two decades have demonstrated
extensive variability in saturated and unsaturated hydraulic conductivities and water retention
properties. This conclusion has led to the development of stochastic models for the basic un-
derstanding and the prediction of water flowand contaminant transport processes in geological
environments.

To describe variably saturated flow and transport, the constitutive relationships of hydraulic
conductivity (K) versus pressure head (h) and water content (9) versus h must be specified. At
fieldscale, these constitutive relationships exhibit a high degreeof spatial variability [1]and they



are regarded as stochastic functions. As a consequence the flow equations have to be treated in
a stochastical framework.

The Gardner-Russo model [2,3] is commonly used to describe functional relationships in most
stochastic flow analyses. The main parameters oi this mode, are the saturated conductivity K,
and the soil pore size distribution Q.

The spatial variability of K, has been widely studied and it is commonly accepted that K, follows
approximately lognormal distributions. Recently, the concept of fractal geometry has been used
to describe continuously evolving scales of heterogeneity. Neuman [4], Kemblowski and Chang
[5] and Molz and Boman [6] had reported evidences of fractal structure in K, distributioIlB in
different soils. They found that K, distributions can be described by related stochastic functions
known as fractional Gaussian noise (fGn) and fractional Brownian n::'Jdon (iBm). The concepts
of iBm and fGn are generalizations of the classical concepts of GaUois;~n noise and Brownian
motion.

The experimental information on spatial distribution of Q is very limited. Russo and Bouton [1]
found that Q has also a lognormal distribution and negligible correlation with K,.

In this paper we use the Monte Carlo simulation method in conjunction with a iBm and fGn field
generator to analyze the water flow in a stochastic farmework. In each realization the Richards'
equation is solved using a hybridized mixed finite element procedure.

In this section we present a brief description of the spectra:: method used for the synthetic
generation of iBm and fGn. We consider a stochastic function which has the form logF(x) =<
logF> +f(x) where < logF > is a constant mean and f(x) is a perturbation field which obey
iBm or fGn statistics.

The spectral density of a iBm/fGn has the form of a power law:

where So is a normalization constant, k is the spatial frequency (wave number), and {3 is a
parameter related to the Hurst coefficient H and the Euclidian dimension E given by

{
2H+E

{3= 2H+E-2
for a iBm
for a fGn.

It should be noted that in the case of a fGn realization the spectral density given by (1) and (2)
is only an approximate expression because it is associated with an approximation to the auto-
covariance function; a closed- form expression of the accurate spectral deIlBity is not available.
On the other hand, the spectral density of a fEm process is associated with the corresponding
variogram [7].

The value of the Hurst exponent H indicates the type of correlation and degree of persistence
in fGn and iBn distributions. The range of H which is interesting and physically meaningful
is 0 < H < 1 [7]. For H > 0.5 there is a positive and infinite correlation both for fGn and
the increments of iBm while for H < 0.5 this correlation is negative and infinite. When H
approaches 0.5 the correlation becomes essentially zero and in this special case the classical
Gaussian noise and Brownian motion are obtained. The Hurst coefficient H is related to the
fractal dimension D by the equation H = 1 + E - D [9]. It is important to remark that the
values of H can be determinated from measured data and it is also possible to discrimine iBm
from fGn distributions [8J.



The spectral density S,,(k) has a singular point at zero spatial frequency which corresponds
to the case of an infinitely large porous media. However, the limit of the heterogeneity could
not be larger than the aquifer size. Therefore there is a lower frequency cutoff kmin which is
determinated by the lengh of the domain. We also consider an upper frequency cutoff kma.,
proportional to the inverse of the finite element mesh used for the numerical simulation of water
flow.
In order to obtain an expression of So in term of the variance 17} we integrate the spectral density
(1) over the frequency domain in the range (kmin, kma.,). Then the spectral density of a !Bm
and a fGn can be expressed as follows:

kmaz < Ikl < kmin

elsewhere

where C(E) = 1,11"-1, (211")-1, for E = 1,2,3, respectively.
To generate a mm or a fGn realization we proceed here in the spirit of Voss [9]. The first step is
to generate a set of uniformly distributed random numbers associated with the center of each cell
of the finite element mesh using a random number generator. Then the fast Fourier transform
(FFT) of this set of numbers is taken and the resulting numbers are multiplied by a transfer
fllllction T(k) proportional to [S,,(k)]1/2 in the wave number space. Finally, taking the inverse
FFT a set of numbers with the desired spectral density (4) is obtained.

The Gardner Russo model was used to describe retention and hydraulic conductivity curves
[2,3]. This model reads as

K(x,h) = K.(x)exp(a(x)h) (5)

( )
2/(m(x)+2)

fJ(x, h) = (fJ.(x) - fJr(x)) exp(O.5a(x)h) (1 - O.5a(x)h) + fJr(x)

where fJr and fJ. are the residual and saturated water content, respectively, and m is a parameter
related to tortuosity.

For simplicity we let 1Tl = 0 in this study. The variabilities of f}r and fJ. are likely to be small so
that we consider them constants over the domain. Then, the local heterogeneities are modelled
assuming that both K. and a are stochastic processes obeing either !Bm or fGn statistics.



Table I gives the values chosen to generate the realizations and Figure 1 shows 2D realizations
of the conductivity field K, generated as mm and fGn processes.

K, (cm/s) Q (cm-')
<F> 0.(J058 0.028
0'1 0.1 0.010

H 0.8
9, 0.6
9r 0.1

We will consider the numerical simulation of water flowin a rectangular domain O. It will be
assumed that water flowobeys Richards' equation stated in the fonn

i) a9(h) + 'V . q = 0at
ii) q = -K(h)'V(h + z)

where q is the water flow,z denotes the soil depth assumed to be positive upward, and t is time.
The corresponding boundary conditions were chosen to be of Dirichlet type on the left and right
boundaries and of Neumann type on the bottom and top boundaries. The initial condition was
selected as that of hydrostatic equilibrium.
Equation (6) was solved employing a hybridized mixed finite element procedure in space com-
bined with a backward Euler in time scheme and a Picard iteration with adaptive time step as
explained in [10]. This procedure produces perfectly mass conservative numerical solutions and
accuratelyaproximations of both pressure head and water flow.

The Monte Carlo simulation method consists in solving Richards' equation for a large number
of realization of K, and Q. The simulation is terminated after the mean field of a particular
variable (9, for example) have converged to within a small tolerance. This tolerances is taken
to be 1% of the mean field.

In order to show the implementation of the algorithm we will consider the effect of infiltration
in a rectangular domain having a width of 1200 cm and a depth of 800 em, with a horizontal
water table situated at 650 cm from the top bondary. The hydraulic properties of the porous
media are described by the parameters shown in Table I.

The selected boundary conditions are a constant infiltration of 1.5 cm/day applied in a centered
interval of 400 cm at the top boundary, no-flowat the bottom boundary and specified pressure
heads corresponding to the hydrostatic state at the two lateral sides.

Figure 2 shows the water content after 25 days of simulation for a realization of mm and fGn
distributions. In both simulations the effect of the local heterogeneities is clearly observed.

To insure the convergenceof the mean fieldsof all the variables we runned 200 realizations. The
average values and variances for the water content, pressure head and z-component of water flow
are shown in figures 3, 4 and 5, respectively.





We have presented a numerical method to include the effect of local heterogeneities in the hidro-
geological variables employing the theory of stochastic processes and relating filed measurements
with the spectral properties of such variables. The method employes a robust and mass conser-
vative finite element procedure to compute accuratly the water flowin this type of heterogeneous
soils. This procedure can be combined with the solution of the transport equations to obtain
concentration statistics of contaminant substances in soils.
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