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Abstract

Several models[1,2,3,4]have been developed in order to reproduce the corneal
behavior in ophthalmological procedures as tonometry, radial keratotomy and pho-
tokeratectomy with Excimer Laser. It has been found that the viscoelastic effect of
a biological soft tissue, as the cornea, is negligible in tonometry[5]. Nevertheless,
clinical studies on humans showedrefractive changes with time in radial keratotomy.
Wound healing is responsible for the long time effect (measured in years). On the
other hand, the short-time effect (hours or days) has not been clarified.

In this work a 3D viscoelastic finite element model is developed taking into
account incompressibility and large strains. An internal variable is introduced by
means of a multiplicative decomposition of the deformation gradient. The final goal
of the study is to determinate the importance of the viscoelastic effect in radial
keratotomy.

In order to simulate the viscoelastic effect in the cornea after a refractive procedure, as
the radial keratotomy, we developed a three-dimensional incompressible viscoelastic finite
element in large strains.
We follow the Le Tallec's approach [6,7J where a differential form is chosen which in-
troduces an internal variable through a multiplicative decomposition of the deformation
gradient. This model is chosen so that it was thermodinamically consistent, preserving
incompressibility, and easy to solve as is the initial hyperelastic model.
The viscoelastic incompressibility constraints the admissible solution of the internal vari-
able (five unlmown instead of six unlmown of the deformation tensor). This reduces the
computational cost instead of a weak form of it.
The final mixed problem in three variables displacements-pressure-internal variable is
reduced to an standard mixed problem displacements-pressure by eliminating the internal
variable .
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The cornea is a soft tissue composite layered material made up of collagen fibrils and
ground substance. X-ray diffraction measurements made on wet rat tail tendon (which
is composed primarily of collagen type I and ground substance) showed that 55% of the
volume of the fiber is occupied by collagen molecules and the remaining 45% by water.
Such information is available for enucleated human corneal stroma, but not for stroma in
its normal hydrated state.
It is assumed that collagen fibers Poisson 'ratio is 0040 and ground substance's Poisson
'ratio is 0049. This result could change in the case of incisions made in the cornea where
the material could swell.
Hanna et al. [2]used a finite element model to simulate the corneal lamella. They calculate
the macroscopic constitutive properties from the experimental microscopic ones. They
found that the fibrils filled approximately 35% of the total volume. They assumed that
corneal shrinkage induced by fixation was 20% identical in both collagen and ground
substance. They found similar values for radial Poisson's ratio (0.47), and moderate
compressibility in the plane of the cornea (0.26). They found elastic modulus values of
11 MPa and 39 KPa for corneal plane and radial plane, respectively.
Kobayashi et al.[3] determined the viscoelastic response of intact cornea subjected to
physiological intraocular pressure determined from local deformations. The tests results of
five paired eyes showed that in prepressurized enucleated eyes, the viscoelastic response
was insignificant while significant viscoelastic response existed in the nonpressurized eyes.
Seiler et al. [10] studied the viscoelastic properties of human corneal strips with and
without Bowman's layer by relaxation measurements to determine the relative contribu-
tion of Bowman's layer to the biomechanical properties of the cornea. At a strain of 2%,
the stress was measured to be (5.06±2.01)KPa and (4.72±1.30)KPa with and without
Bowman's layer, respectively. They found fast relaxing time of 10.58 s and slow relaxing
time of 269 for intact cornea.
Seiler et al. obtained the shear compliance spectra by applying dynamic mechanical shear
compliance spectroscopy to different corneal tissues as a function of corneal hydration and
temperature in the frequency range from 0.1 mHz to 100 Hz.
In this work we will try to simulate the viscoelastic behavior of the cornea described by
this authors. We will also simulate the viscoelastic effect in the Refractive Surgery, in
particular with arcuate incisions for the correction of astigmatism.

2.1 Viscoelastic constitutive law
2.1.1 Small Strain

When a viscoelastic material is subjected to a step loading, there exist both an instan-
taneous and a long term equilibrium response. The standard linear solid or Kelvin model
is composed of combinations of linear springs with spring constant j1. and dashpots with
coefficient of viscosity 1/ • It is able to model the two responses in a simple way.
If we add the force exerted in the elastic branch with the force in the viscoelastic branch
we have



e(t) = ee + ev = L [1+ (~ - 1) e-t1r]
fJ-o fJ- + fJ-o

where Eo = fJ-+fJ-o measures the instantaneous elastic stiffness, Eoo = /.Lo measures the long
term elastic stiffness, and T = (v/ fJ-) [1+ (/.L/ fJ-o)] is a characteristic relaxation time which
indicates how long it takes for the material to reach its long term equilibrium response.

We generalize the above simple model to three-dimensional situations involving isochoric
large deformations.
In the finite strains case, the right Cauchy-Green tensors G, G., and Gv measure the total
deformation, the elastic part and the viscous part of the viscous branch, respectively.
Variable Gv is an internal viscoelastic variable.
In analogy with the small strains case we assume a free energy potential of the form:

where Wo measures the stored energy of the elastic branch (long term behavior) and we
measures the stored energy of the viscous branch which, disappears in relaxation.
The intrinsic dissipation in the dashpot must satisfy the Clausius-Duhem inequality (2°
law of thermodynamics),



where l/ is a symmetric definite-positive tensorial viscosity.
If the model is linear,

K fn-ooCv(t) = - e-sK/vC(t - s)ds
l/ 0

2.1.3 Finite Strains. Multiplicative decomposition of the deformation

In the finite strains case the additive decomposition of the deformation is equivalent to a
multiplicative decomposition of the stretch'\ = ,\e,\v.
If we decompose F = RU and R = I then U = UeUv = UvUe. But if Ue and Uu are
not coaxial then UeUv op UvUe and this is not physically true in crystals. So the addtive
decomposition of the deformation in finite strains is not physically true.
A better approach is taken into account. In crystals we were allowed to formally decom-
pose the deformation at microscopic level into

'P = 'Pe 0 'Pv

Therefore the deformation gradient and right Cauchy-Green strain tensor are

F= FeFv
0.= FJ'o.eFv

J = JeJv
where J = det(F) > O.This idea is taken from plasticity where F = FeFp [16].
So, by applying the first principle of thermodynamics in an isothermic process we have

work - free energy = dissipated heat

Then, in a reference configuration we have

1 .
2"8: dO. - d'll = 1>(Cu) : do.v

where 8 is the symmetric Piola-Kirchhoff stress tensor. By introducing the isotropic
components, the viscoelastic constitutive laws are

8=28'l1(o.,o.v)_ 0.-1
80. P

det(o.) = 1

1>(' ) - _ 8'l1(o., o.v) 0.-1
o.v - 8o.

v
+ q u

det(o.v) = 1

The first equation is a standard hyperelastic constitutive law with o.v as a constitutive
parameter. The third equation is a first order differential equation in time where the
variable Cv introduces the time dependence in the model. The other two equations are
the incompresibility relations. If the material were elastically compressible the second
relation would be dropped.



2.2 Equilibrium equations. Variational formulation
By writing the weak form of the equilibrium equations in a fixed reference configuration
0, neglecting the body forces, considering tp pressure external forces in ao, and choos-

ing an adequate dissipation form (<p(G'v) = -v C; I) we obtain the classical variational
formulation together with the dissipative constitutive laws

in P : GRAD T/ dV = J8fl (tp . T/) dV

In q(detF - l)dV = a

C"-l aw(C,Cv) C-I - a
v v - ac

v
+ q v -

det(Cv) = 1

where CV(" to) = given.cvalue with to the initial time. We call the third equation as
dissipation equation.

When the internal variable Cv is given the continuous problem reduces to a standard
well-posed mixed problem where

T/ E H = {w E WI,S{O;E),wlro = a},

q E P = LS'{O;R),
...!.. +...!.. = 1
3S s.

The number S 2 1 is such that the integrals in the weak form of the equilibrium equations
make sense for any choice of u and T/.For example WI,S = HI and LS' = L2.

We will not use the mixed form of the incompressibility constraint det{Cv) = 1. Instead
of this we propose a constrained space of the internal variable such that

Cv E A = {A E L2(0),det(A) = I}

The incompressibility condition can be rewritten by developing the expression of the
determinant in the third line:

a31cof 31A+ an cof 32A + a33 cof 33A = 1

Since Cv is positive definite, the diagonal cofactors are different from zero. Then we can
write

1- a31cof 31A- a32 cof 32A
a33 = ----------

cof 33A

So in the dissipation equation we have five unknowns (the components of Cv, taking into
account that is symmetric, except a33, which is given by the above equation), and we have
five equations since the six components of the diSsipation equation are not independent
because of the incompressibility condition. That is A = {ai, a2, a3, a4, as, a6} where a6 =
a33 = a6(al,a2,a3,a4,a5)'



Since the main cost is associated with the solution of the first equation giving u as a
function of the viscoelastic variable, either an explicit or an implicit scheme have a similar
cost per time step.
We choose an implicit scheme because it is unconditionally stable. This is important in
situations where the time scales are of different order of magnitude.
The Euler scheme is chosen; it is not second order accurate as the midpoint rule, but it
requires less computer memory and has very nice stiff stability and long term convergence
properties [6].
Let interval-time 6..t > 0 ; for each iteration n ~ 0, we have to solve

J FJ:+l (2~~«~';.'+1,c:':1)- p~+l(C"+l)-l) : TJh dV = l./tp. TJh) dV
fl,

As a first test of this viscoelastic approach, we study the deformation of a rectangular
strip in pure traction with

Wl(trGe) + w2(detGe)

kl tr Ge - klln( det Ge)



We observed a time history of the displacements observed at the free edge of the strip.
The finite element mesh consists of 80 elements of order 1 with 180 nodes. We observe a
transition in time from a stiff instantaneous response to a softer long term behavior. The
adimensional numerical values were kj = 1e5, 1/ = 0.0, E = 1e6, f = 100,1)= 5e4.
The next calculation studies the history of the deformation of a human eye after surgery.
The finite element mesh consists of 2 layers of 23 rings of 20 elements in each layer. The
boundary is fixed. The posterior layer is loaded by a constant pressure equivalent to the
intraocular pressure.
The refractive surgery consists of 2 arcuate incisions of 60 degrees of arc in a radious of
3 mm from the apex of the cornea.
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Time history of the edge displacement of the incision.

In this case we show the time history of the apex z-displacement.

Time history of the apex z-displacement.

We observed that in any case the cornea increase the depth chamber leading to a myopic
shift.
The keratometric curvature (max curvature vs min curvature at 3 mm from the apex)
changed with the time. The time history of flattest axis (greater radiolis of curvature) is
showed



The time history of the steepest axis.

We observed a flatenning of the overall radious of curvature with the time as we expect
from clinical results.

A viscoelastic finite element as proposed by Le Tallec has been implemented and applied
to the solution of large strains displacements in the comea after surgery.
The implementation was performed in an object oriented program for finite element analy-
sis. Tasks as introduction of new constitutive laws have been greatly facilitated in this
environment.
We observed the creep of the comea in several ways as the displacement of the incision
edge, the incision gape, the elevation of the apex, and the keratometric curvature.
The overall flattening in the steady case is in agreement with the fact that the deepest
effect of the surgery is the instataneous response after surgery, and after some time (days,
months ... ) the comea tends to recover its old shape a little.
This is a preliminary result. More cases have to be simulated. An open question is about
the viscoelastic parameters in refractive surgery.
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