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Presentamos un metodo numerico para resolver el problema directo bidimensional
en magnetotelurica. Las ecuaciones de Maxwell son tratadas como U1l sistema de
ecuaciones diferenciales de primer orden, y se introducen condiciones de frontera ab-
sorbentes para minimizar efectos indeseados en los bordes. La solucion aproximada
se obtiene utilizando un algoritmo de elementos finitos hibrido mixto de descom-
posicion de dominio. Se presentan resultados obtenidos en una supercomputadora
de arquitectura en paralelo IBM SP/2 de la Universidad de Purdue.

We present a numerical method for solving the bidimensional forward problmem in
magnetotellurics. Maxwell's equations are treated as a system of first order partial
differential equations, and first order absorbing boundary conditions are introduced
to minimize undesired border effects. The approximate solution is obtained by means
of a mixed hybrid domain decomposed finite element procedure. Results obtained
on a parallel supercomputer IBM SP/2 at Purdue University are shown.

The magnetotelluric method consists in inferring the electrical conductivity distribution of the
subsurface of the earth from measurements of natural electric and magnetic fields on its surface.
This is a typical example of the so called inverse problems. When dealing with it, it is necessary
to have at disposal numerical methods able to solve the forward problem (that is, to determine
the induced electromagnetic fields in the subsurface given a electric conductivity distribution,
when a plain electromagnetic wave impinges normally on the surface of the earth) as efficiently
and accurately as possible.



In this direction we present an algorithm to solve the direct 2D problem in magnetotellurics.
Briefly stated, the problem consists in solving approximately Maxwell's equations for a given
earth conductivity model.

The presented method, which deals with Maxwell's equations as a system of first order partial
differential equations, is a mixed hybrid domain decomposed finite element procedure [lJ. The
chosen boundary conditions are first order absorbing ones, which allow for both a significant
reduction in the size of the computational domain, and also for a reduction of the undesired
effects generated by the artificial boundaries.

It is possible to find in the literature many algorithms devised to solve the forward 2D problem
in magnetoellurics. See for example [2], [3J, [4J, [5], where global finite element procedures are
designed to solve it. The method we introduce here is related to the ones described in [6], [7],
[8],[9], [lOJ, [11].

The domain decomposition technique naturally leads to the implementation of the procedure on
parallel computers. Numerical results shown in this work were obtained on a IBM SP/2 parallel
supercomputer at Purdue University.

In the next section we present the model and the differential problem to be solved, and afterwards
we introduce the numerical method employed to solve it. Finally, we show some numerical
results, and draw the conclusions.

V' x H = (<7 + iwe)E,
V' x E = -iwl-'H.

where E, H are electric and magnetic fields, e is the electric permitivity, (j the electric con-
ductivity, and I-' the magnetic permeability of the medium. Together with these equations, the
boundary conditions at the interface between two media of different physical properties must be
considered. They are the continuity of the tangential and the normal components of the electric
and magnetic fields, and the continuity of the normal component of the current density and
magnetic flux.

The term iweE (where w is the angular frequency) in the precedent equation represents dis-
placement currents. It is in magnetotelluric sounding negligible compared to <7E (conduction
currents). Therefore, displacement currents are discarded from now on.

Let us consider equations (1) in a tWlrdimensional domain!1. Assume that !1 represents an
horizontally-layered earth with an imbedded cylindrical inhomogeneity. The uppermost layer of
!1 represents the air, with a very low (but positive) conductivity, and the other layers represent
the subsurface, where the anomaly is located. We consider the z axis to be positive downwards,
and the y llXis to be the symmetry llXis. According to the description of our doma.in, the
electrical conductivity distribution is

{

(j (z) in !1p (earth)<7(x z) - P
, - <7p(z) + (j.(x, z) in!1. (inhomogeneity)



Assuming that both sources and boundary conditions are also independent of y, it is well known
[2J,[5]that the electromagnetic response in n can be described by two uncoupled electromagnetic
modes; the T E-mode involving field components (H"" Ey, H.) and the T M-mode involving field
components (E"" Hy, E.). In what followswe will, for the sake of brevity, analyze in detail the
latter and leave the former, arguing that its analysis shows no further difficulties.

8E", 8E. .
-- - -- = -lwp.Hy'8z 8x

Equations (3) and (4) have analytic solutions Ep(z) = (E",p(z), 0, 0), and Hp(z) = (0,Hyp(z), 0)
when an uniformly layered earth and an impinging wave of the form

E - Ep = (U""O,Uz),

H - Hp = (0,Vy, 0) = (0, v, 0),

(i) U", = E", - E",p,
(ii) U. = E.,
(ill) v = Hy - Hyp. (7)

In order to simplify the notation, let us write for a scalar function e(x, z), curl e = (-~, ~)
and for a vector function W = (W",(x, z), W.(x, z)) in the plane (x, z), define the scalar function
curl W = ~ - ~. With the notation just introduced, the equations for the scattered fields
can be written in the followingway:

(8)

aU = curl v - (g,O), with 9 = (a - ap)E",p. (9)

Some authors [5], [14], instead of working with these equations, derive the second order TM
equation

-v· GVv) + iwp.v = - ~ (';) E",p - iwp. (1 - ';) Hyp. (10)

for the potential v and from its solution derive U. With this formulation, derivatives of the
conductivity a in the right-hand side of (10) are involved.

We choose to solve system (8) and (9) simultaneously, allowing for discontinuities in the con-
ductivity a, and avoiding the numerical calculation of the vector field U once the scalar v is
known from (10).

Instead of using the normally applied Dirichlet boundary conditions, in order to minimize the
effect of the artificial boundaries we will use the absorbing boundary condition [15]:



1

where a = (2~1')~. Here T is the unit (counterclockwise) tangent vector and an the boundary
of the domain n.
In order to solve numerically system (9)-(11) we write it in weak form. In order to do so, we
consider the space

H(curl ,0.) = {>ItE (L2(n»2 : curl >ItE L2(n)},

which is provided with the natural norm 1I>1tllHc= (1I>1t1l~+ IIcurl >ltll~)t.
Testing (9) against >ItE H(curl ,0.) and integrating by parts [16], using (11) we obtain

(uU, >It)- (v, curl >It)+ (a(1 - i)U . T, >It. T) = -«g, 0), >It), >It E H(curl ,0.). (12)

Also, from (10) we get

As usual we have denoted (v, w) = In v· wdx, and (v, w) = Ian v· wdS.
Thus, we give a mixed formulation for (9)-(11) as follows: Find (U, v) E H(curl ,0.) x L2(n)
such that

(uU, >It)- (v, curl >It)+ (a(1 - i)U . T, >It. T) = -«g, 0), >It),

(curl U, tp) + (iw/lv, tp) = 0, tp E L2(n).

>Itin H(curl ,0.),
(14)

Domain decomposition at the differential stage

Let us subdivide our original domain in a grid of non-overlapping rectangular subdomains
njk, j = 1, .. , nzj k = 1, ..n.. Let anjk be the boundary of the subdomain njk and set
anjk = U.=L,R,B,TI'jk' with I'jk s = L,R,B,T being the left, right, bottom and top seg-
ments building the boundary anjk of the sub domain njk .

Being our goal to solve equations (14) in each subdomain njk, consistency conditions are to be
imposed on all interior -artificial- boundaries I'jk (i.e., on all segments I'jk such that I'jk nan =
0). The natural ones are the continuity of the tangential component of U jk and the potential Vjk
on I'jk' But instead of them, we will use an equivalent Robin transmission boundary condition
of the form [17]

with l3}k > 0, and

{j*k·} = {j-1,k} on rJk'
{j"k"} = {j, k - I} on r~,

{j*k·} = {j+ l,k} on rj1,
{j*,k·} = {j,k + I} on rfk'

We can state now the differential domain decomposition procedure as follows: For all pairs (j, k)
find (Ujk, Vjk) such that

(uUjk, >It)jk - (Vjk' curl >It)jk - L(Vjk' >It. Tjk)rj. + (a(1 - i)Ujk . Tjk, >It. Tjk) Hi.
';

= -«g, 0), >It)jk'

(curl Ujk, tp)jk + (iW/lVjk, tp)jk = 0,
>ItE H(curl ,njk),

<p E L2(njk}'

Index s; runs over all interior boundaries and Blk e!!anjk n an. We get the hybrid formulation
of problem (17) when using eq. (15) to replace Vjk in the third term of the first equation above.



As we have already stated, our goal is to localize calculations on each subdomain fljk. Taking
into account that (15) and (16) involve adjacent subdomains, the following iterative procedure
is suggested for (17): Choose (UJk' vJk) arbitrarily. Then compute (Ui:1, vi: 1) as the solution
of the equations:

(aUi:1, 'I!)jk - (vi:1, curl 'I!)jk + L:(fijk Ui:1 . 'Tjk, 'I! . 'Tjk)q.
'i

+(a(1 - i)Ui:1 • 'Tjk, 'I! . 'Tjk)Bj.

= - L:(fijkU~/-ko ''TjOko -vjoko, 'I!·'Tjk)r;. - ((g,O), 'I!);k, 'I! E H(cuil ,fljk),
'i

(curl Ui:1,<P)jk+ (iWj.lVik+l, <P)jk= 0,

We can now define the discrete version of the iterative procedure (18).

The finite element procedure

In order to simplify the description of the numerical procedure, we use the same partition
(uniform rectangular cells) of the domain fl for both the domain decomposition, and the finite
element procedures. As we want to approximate simultaneously two different kind of functions
U and v we need to define two different spaces. Let therefore

be the appropriated ones, and let Vji = V"lo;., WA = W"lo;. be their restrictions to the do-
main fljk• Here, p.,t denotes the polynomials of degree not greater than s in x and not greater
than t in z.

Note that since functions in W" are allowed to be discontinuous across the interior (artificial)
boundaries, imposing the Robin transmission boundary conditions (15) on them would imply
that the discrete approximation of v, v" E W" is a constant. We then introduce a set of Lagrange
multipliers associated with the potentials >'jk ~ V~k on the interior edges fjk

s' = R for s = L,
s' = T for s = B,

s' = L for s = R,
s' = B for s = T.

And finally, the hybridized mixed iterative finite element domain decomposition procedure is
defined as follows (superscript h is not explicitly written):

1. Choose initial values (UJk' VJk' >.Jk) arbitrarily.

2. Compute (Ui:1, vi: 1, >'it) as the solution of



(O'Ujt, 'If)jk - (vjtl ,curl 'If)jk + L,.(l3jkUjtl . Tjk' 'If. Tjk)rj.

+(a(l - i)Ujt . Tjk' 'If. Tjk) B;•.. ,. (= - E••(I3Jkuh· .Tjk - >'j.1., 'If. Tjk)rj. - (g,O), 'If)jk,

We can now point out some features of the proposed algorithm.

• The absorbing boundary condition introduced makes it unnecessary to consider big nu-
merical domains.

• The algebraic problem associated with this algorithm is much easier to solve than that
corresponding to a global finite element procedure, since the program reduces to the eval-
uations of algebraic expressions determining Vjk, UJk' and >'jk' for all s,j, k in each cell
o.jk at the current iteration level.

• Because of the mixed treatment and the domain decomposition technique employed no
global linear system appears, which means that simpler and faster calculations can be
done, and that less data storage is needed.

• As in each step when the solution in the cell o.jk is built we employ information of the
adjacent cells (through Robin's condition), it is possible to improve the efficiencyof the
algorithm using a red - black scheme Le., the domain 0. is considered a chess-board and:
a) the solution in the red cells is actualized using the solutions and Lagrange multipliers
in adjacent cells , b) Lagrange multipliers are actualized in all red domains. c) we repeat
steps a) and b) for the black cells.

Previous to the example, we can describe how the algorithm works on a parallel computer.
The parallelization of the problem is done by assigning a certain number of processors in each
direction of the numerical domain. The most efficientway to use them is to divide the problem
into, as close as possible, an equal number of unknowns for which to solve on each processor
(18). Because each one needs to make calculations for a subset of the unknowns (a portion of
the "chess-board" with the same number of red and black cells, in our case), and because the
processors are making their calculations simultaneously, the time needed to reach the solution
is reduced by a factor approximately equal to the number of processors involved. The ratio
is not exactly the number of processors, because at each iteration information must be inter-
changed between 'adjacent' processors and this process, although very fast, is not instantaneous.

Data can be classified in two kinds, local and global. The former are e.g., conductivities of
the cells, and the latter are variables that each processor needs to handle, as the frequency or
position of the inhomogeneities. All processors read the same input data and, when needed, each
transforms local into global data. As we have already said, data on the boundaries of regions
corresponding to adjacent processors must be transferred among them. This is done in each
iteration at the beginning and after actualizing the black cells.

We perform our calculation on the model proposed in [5], which is shown in Fig. 1. The
rectangular anomaly, which has a conductivity 0'2 = 0.5 (0.m)-I lays buried in an homogeneous
background with conductivity 0'1= 0.01 (0.m) -I. Because of the absorbing boundary condition,



we do not need to extend our computational domain far away from the anomaly and we take
as computational domain a square, with side length of 8 km. A requirement of the presented
algorithm is to consider a non-zero conductivity for the air region, which was chosen to be
0-0 = 10-7 (Om)-l and with a height of 1 km.
In order to perform the calculations, the relative error required to stop the iterative process was

chosen to be 10-5 (numerical experiments showed that beyond this number the results obtained
did not displayed any observable change). The grid size was 64 x 64 cells, which yields a cell-size
of 125m. As we chose a frequency of 1 Hz for the example we show, this figure results less than
one third of the skin-depth, which improves accuracy in the calculation [19]. Although fields E

x [km]

Figure 2: TM apparent resistivity at a frequency of 1 Hz, [Ohm-m]

and H are obtained, it is customary to display derived quantities

Clll/z phase of ZI/Z = ~ Impedance•_ z•• l;;
PI/Z - /''''
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because they are independent of the modulus of the impinging wave, usually unknown. Fig. 2
and Fig. 3 show results obtained for the apparent resistivity Pyz and impedance phase q)yz
respectively, which are in very good agreement with the ones displayed in [5],calculated using a
different procedure. Finally we show in Fig. 4 the performance of the algorithm on the already

Time [s]
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mentioned parallel computer. The program was run three times, with four, eight and sixteen
",ocessors respectively. Parameters were the same as in the example mentioned above. The
algorithm converged after 280 iterations.



Instead of dealing with the second order problem, we treated Maxwell's equations as a system of
first order partial differential equations. Absorbing botUldaryconditions were introduced, what
allowedto consider smaller computational domains. The problem was solved by a mixed hybrid
domain decomposed finite element procedure. The algoritlun was successfully implemented
on a parallel supercomputer, being the results obtained in accordance with already published
calculations. It was observed that when the number of processors, and therefore the number of
domains associated to them, gets closer to the grid-size the efficiencyof the method diminishes,
because of the time needee. to interchange information among them. The results obtained
encourage us to face the extension of the algoritlun to deal with the forward 3D case, and also
with the inverse problem both in two and three dimensions.
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