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RESUMEN

Se presenta un modelo numérico para la simulacién de infiltracién y flujo subterraneo
unidimensional en medios porosos de saturacién variable. El algoritmo consiste en
una discretizacién de la ecuacién de Richards que combina una linealizacién temporal
usando un esquema de Picard con una aproximacién espacial utilizando un método
mixto hibrido de elementos finitos. El algoritmo es computacionalmente eficiente
y conservativo. Se incluyen ademds algunas caracteristicas relevantes del problema
algebraico asociado y un ejemplo numérico de infiltracién en una zona de llanura.

ABSTRACT

A numerical model for simulation of one dimensional infiltration and groundwater
flow in variably-saturated porous media is presented. The algorithm consists in a
discretization of Richards’ equation that combines a temporal linearization using a
Picard iteration with a spatial approximation employing a hybridized mixed finite
element procedure. The algorithm is computationally efficient and mass conservative.
Some relevant features of the associated algebraic problem and a numerical example
of infiltration in a flatland region are also included.

INTRODUCTION

Prediction of water movement in variably-saturated porous media is an important problem in
many branches of science and engineering. The water motion is assumed to obey Richards’
equation. This equation may be written in terms of pressure head (p-based form) or water
content (6-based form) as the dependent variable. Only the p-based form of the equation can
be used for simulating water flow in soils with saturated regions, but unfortunately this models
are inherently non-mass-conserving([1],(2]). Celia et al. [3] greatly improved the performance
of p-based models by using an appropiate temporal discretization of a mixed form of Richards’
equation. The approximations that are usually applied to the spatial domain are finite difference
and finite element standard methods.

The object of this work is to present a numerical model to solve the mixed form of Richards’
equation based on a global hybridized mixed finite element procedure. The algorithm produces
perfectly mass conservative numerical solutions and it is computationally efficient.
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THE DIFFERENTIAL MODEL

We will consider the numerical simulation of underground water flow in a porous domain Q =
(0,1) with boundary 892 = '3 UT'T, where I'® = {z = 0} and I'T = {z = 1}. It will be assumed
that water flow obeys Richard’s equation stated in the form

9 Bea(tp) +V-§=0, z€Q, (1

i) §=~K(@)V(p+2), z€(),

where 6 and p are water content and pressure head, respectively; K is the hydraulic conductivity,
which is assumed independent of p for saturated soils but varies strongly with p in unsaturated
soils; z denotes the vertical dimension; and t is time.

Equation (1.7) states conservation of mass for the water phase and (1.27) defines the water flux
¢ in terms of Darcy’s law. Equations (1) are valid under the following assumptions: the porous
media i8 undeformable; the water density remains constant; and the air mobility is much greater
than the water mobility so that the air remains at essentially atmospheric pressure.

We will consider solving (1) with the following boundary conditions:

-7 = gin(t), on TT, 2)
QWt(t)v on FB'

oy

-
4

oy

The function g;,,(t) represents the rainfall data, while the term gyy.(t) is used to represent the
effect of the regional flow.
To solve the differential problem (1)-(2) we also need additional relations between the dependent

variables @ and p. We will uge the following water retention and hydraulic conductivity models
proposed by van Genutchen [4]:

8, -0,
) = T @

{1 (alp)™ 1 + (alp)]
Ko = K, [+ (@) 2

+6,, (3)

where m =1 — ,1-.; 0, and 6, are the residual and saturated water contens, respectively; K, =
K, () is the saturated hydraulic conductivity; and o and n are model parameters determined
by laboratory experiments ([5],[6]).

SOLVING THE DIFFERENTIAL PROBLEM
Time Discretization

Temporal discretization of (1) using a backward Euler method coupled with a Picard iteration
scheme may be written as follow:

0n+1.i+1 L

‘) At +V-grtiitl o g z€Q, (4)
") q'n+l.i+1 — __Kn+l,mv(pn+1,i+l + Z), z€ Q,

where superscript n and ¢ denote time and iteration level, respectively; At = t"*t! — ¢ is the
time step; 6714+ = g(pn+li+ly ynd gl = K(p"t15).
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Following [3] we expand ¢"*+1%+1 in a truncated Taylor series with respect to p,
0n+1,i+1 ~ 0n+1,6 + Cn+1.i(pn+1,i+l __pn+l,i) (5)

n+1,4
< n+ls _ 96
being C = 3

Using (5) in (4) and rewriting the equations in terms of the increment Jp*+! = pnt+ii+l _pn+li
we obtain:

9n+1,i —gn Cn+1,i R .
At + i Sptl 4 V. grtlitl = g z €9, (6)

”) qon+l,6+1 = __Kn+1,t'v(pu+1.i + JpH»l + Z), zeEQ.

The next step will be define a spatial approximation of (6) using a global hybridized mixed finite
element procedure.
A Mixed Weak Formulation

Let us introduce some notation. For all nonnegative integers s, let (H*(§2),]| - ||.) denote the
usual Sobolev space. In particular, H°(Q2) = L2(2) and || ||¢ is the usual L?*~norm, with inner
product

(v, w) =/v wdz.
113

Also, for notational convenience, let
(v, w)r = v(0)w(0) + v(1)w(1),

denote the inner product on L*(T'), with the associated norm denoted by |- |o.r = ({-,-)r}}/2.
Let

V = {# € H(div,Q) : - 7 = 0 on 80},
W ={4$ e L*(N)}, :

provided with the natural norm.

Thus we can state a mixed weak formulation for problem (1)—(2) as follows: Assume that
(¢",p") € V x W are known and ¢ - 7 satisfy (2). Then, given (¢"+10,p"*+1.0) € V x W find
(°+14+1, 6p'1) € V x W such that @14+ . 7 satisfy (2) and

- grrls —gn ot i1 Sntlitl
‘) T’¢ + At 6? ¥ +(VQ ' 1¢)=0y 1/’€Wy (7)
grHlitt ) :
i) (Wv) - (L V-9 = ", V9 + (V2,9) =0, deV

In the next section we will solve approximately (7) using global and hybridized global mixed
procedures.

A Global Mixed and Hybridized Mixed Procedure
Let us consider a nonoverlapping partition 7.V* of (2 into subintervals Q; = (zx, zx41):

N,
Q=J0%; %nu=0 k#£L
k=1
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Set hy = Zk+1 — zx and h = max; hy. Let

VP = {F€ H(div,Q) : Flg, €V} and¥-7=0o0nT},

Wh = {ve Lz(n) : ¢'ﬂh € Wl?}7
where Vi* = Py(%) and W} = Py(Q4). Here Pp,(})) denotes the polynomials of degree not
greater than m in Q.

Then the global mixed finite element procedure for (7) can be stated as follows: Let (¢™",p*") €
V* x W" be given and such that ¢"" - 7 satisfy (2). Then, gwen (ghm+1.0, phint1.0) ¢ V" x Wh,
find (ghnrii+1 gphitly e VA x W" such that @»»+1i+1. 7 gatisfy (2) and

9h,n+1,i - ah,n Ch,n+1,i’ A .
t) ( At ’1/)) + ( At Jph"+1’¢) + (V ° ‘in+1,'+1)¢) = 01 ¢ € Why

5 gt hitl g LEESR Fevh
%) |\ Frarnr?) — Op V7)) = (" V-0) +(Vz,0) =0,  deV™

(8)

In order to define a global hybridized procedure, following ([7},[8]) we will remove the constrain
imposing the continuity of the normal components of the flux across the interior boundaries
Tr =001 N, k=2,--- ,N,. We also introduce a space of Lagrange multipliers A® which
elements A will be associated with the pressure head values at the interior boundaries I'y. Thus,
let

Ah={Ah:Ah|rh=A:EP0(Fk)v k=2,-'-,N,},
VE = {7 € L¥Q):¥la, €V and¥-7=0on 0.

The global hybridized mixed finite element procedure is defined in the following fashion : Let
(Qhm, phin ,ARY € VP x Wh x A® be given and such that Q"™ . 7 satisfy (2). Then, given
(Qh n+1,0 Ph n+1, 0, Ah,n-{-l 0) € V_h XW" XAh, find (Qh n+1,:+1,Ph n+1, |+1’ Ah n+1,£+1) e le x
W" x AP such that GM+14+1. 7 satisfy (2) and

ghn+li _ ghin chin+li R — .
) ( At ,¢) +( A7 5P"='+1,¢) + (V-G gy =0, yewh, ©
9

Ghmtlitl . ) N: it
") KTM'T’U _ (JPh’H'l,V . 1—;) _ (Ph,n+l,|’ . t-)') + Z(/\k,rﬂ' KES 7 "-;)Pk

k=2
+(Vz,8) =0, #FeVh

N,
i) Z(ph’ Qh,n+l,|+1 . 17)1‘,‘ =0, /-‘h € AP,

k=2

It can be shown that problem (9) has a unique solution. Moreover, the solution (Ghm+1i+1)
PhntLitly e Vh x Wk coincides with the solution (ghn+li+? p" MLt e Yh o Wh of

problem (8) (7).

Algebraic Problem associated with the Global Hybridized Procedure

Let us describe the algebraic problem associated with (9). First note that V;* = span{wf, oft},
and W = span{yy}, where
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-1+ &2 e L ze {1, z€ Qg
L hy ? R x
Z)= 2)= zZ) =
vk (2) {o, z ¢ O ok (2) {0 ¢ O ¥i(2) 0, z¢ M

Set

P:,,.+1,i+1(z) - P:+l’i+1¢k(z), k=1,---,N,,

Q":'n+l,i+l(z) — Q£l|n+1,i+l(p£,(z) + Qf’n+1’i+l(ﬂf(2), ,IC = 1’ . ,N,.

Choose 9 = . in (9.7) to get

9n+1,|‘ L A Cu+1,;‘
At R

RSP 4 QErtltl L QRetLIHL g k=1,..- Nz (10)

Then, take ¥ = pf in (9,§) and ¥ = ¥ in (9,i4), and apply a trapezoidal rule to compute the
first term in (9.i7) to obtain

L 14 2KL,n+1.i . . i1 hk
i) Qk RS S __khk_[‘”)’:+1 + P’:l+1,l _ A:+1|l+ + _2_]’ k=2,--- ,N,, (11)
' Qg RAHLE 4 , hy
i) QErthtl = ok [§pitt 4 pptli _ zntlitl < k=L N -1

hi
where K1t and Kf’"“" are de hydraulic conductivity on the left and right borders of €
evaluated using At and AR}, respectively.

Next note that (9.7i¢) is equivalent to

QU+ QIR =0, k=2, N,. (12)

Using (11) in (12) we get the following expresion for the the Lagrange multipliers in terms of
sp+?

R+l

AnHLIHL 4 K:,"+l’i(6pi+l +Pn+1,:‘+fl_t_e_)+ k-1 (6Pi+Y 4 prtli _ hk—l) (13)
k k hk k k 2 hk—l k—1 k—1 P
where
hihy—1

Ag

hk-lx;f'"+l" + thf_.r;H,l

Finally using (11) and (13) in (10) we obtain a tridiagonal system of equations for the unknowns
P E=1,---,N,.
The steps in a full time iteration can be indicated as follow:
i) Give as initial guess for (Py 1% A2*14) the previous time solution (P, A}).
ii) Solve the tridiagonal system to obtain §P;*, k=1,--- ,N,.
iii) Update Lagrange multiplier A:“"“H using (13). .
iv) Check the convergence for P,:'“"“. If it. has not been achieved, shift P,:'““ using

P,:""l" = P,:'+1" + 8P+ and start a new iteration ( go to ii)).
v) When the converge has been achieved the fluxes can be computed using (11).
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We implemented a dynamic time step control which significantly improved the CPU efficiency.
The time step is increased whenever the Picard scheme converge in less than 3 iterations; At is
decreased whenever the number of iterations is greater than 10. The automatic time adjustments
is stopped when the time step becames either smaller or greater than preselected minimun and
maximun step sizes.

NUMERICAL EXAMPLE

The algorithm have been used to simulate the infiltration and variation of water table lavel in
a flatland region in the Province of Buenos Aires.

The hydraulic parameters of the soils were taken from the example in the work by Celia et al.
[3}. The domain lenght is 4 meters and the size mesh is 1 cm. The monthly average net rainfall
was used at the upper boundary (gi») and an extimated value of regional flux was applied at the
lower boundary (gout). In order to start the numerical simulation a hydrostatic initial condition
with the water table at 2.6 meters from the surface was chosen. We simulate 8 years, from 1972
to 1979.

Figure 1 shows saturation profiles for severals times of the simulation. The evolution of water
table levels in the period and mesured field data are shown in Figure 2. Satisfactory agreement
is achieved.
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Figure 1: Saturation profiles
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Figure 2: Time evolution of water table comparing the numerical results with measured data
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No plot of mass balance as a function of time is provided because the mass balance ratio (total
additional mass in the domain / total net flux into the domain} is always unity.

CONCLUSIONS

We have present a numerical algorithm for simulation of 1-D infiltration and groundwater flow
in variably-saturated porous media.

The method solves the mixed form of Richards’ equation using a Picard linearization in time and
a global hybridized mixed finite element procedure. Numerical results show that the algorithm
produces solutions that are essentially mass conservative. Implementation of dynamic time step
control greatly improved the CPU efficiency.

From the numerical example we can see that the algorithm can be a powerful tool to predict
water movement in flatlands regions.
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