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A general methodology for developing absorbing boundary conditions is pre-
sented [1,10,11]. In the plane case, it is based on a straightforward solution
of the system of ODE's that arise from partial discretization in the directions
transversal to the artificial boundary. This leads to an eigenvalue problem
of the size of the number of degrees of freedom in the lateral discretization.
The eigenvalues are classified as in-going or right-going and the absorbing
boundary condition consists in imposing a null value for the in-going modes,
leaving free the right-going ones. Whereas the classification is straightfor-
ward for operators with definite sign, like the Laplace operator, a "virtual
dissipative" mechanism has to be added in the mixed case, usually associated
with wave propagation phenomena, like the Helmholtz equation, or potential
flow with free-surface (the "wave resistance problem"). Numerical examples
are presented in two companion papers at this same conference. [2,8].

When solving PDE's on unbounded domains by "in volume" discretization methods
like finite elements or finite differences, a fictitious boundary has to be introduced
somewhere in order to get a bounded computational domain. For elliptic operators
of definite sign, like the Laplace operator, enforcing a Dirichlet or Neumann boundary
condition on this artificial boundary leads to a well posed problem that converges to
the unbounded domain problem. For mixed operators, generally associated with wave
phenomena, like the Helmholtz equation or potential flow with a free surface (the wave-
resistance problem), the limit process of pushing this artificial boundary to infinity may
not converge. and some sort of absorbing boundary condition has to be imposed on the
artificial boundary.

Absorbing boundary conditions are usually devised by fitting the solution on the outer
boundary with some series expansion of the outer solution. This expansion depends on
the operator. coordinate system (Le. whether it is plane or circumferential, cylindrical
or spherical. geometry), dimension (2D or 3D), the shape of the outer boundary (Le.
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whether it is the whole circumference or an angular sector in 2D, the whole sphere or
a solid angle sector in 3D). In some circumstances the outer solution is not known and
this strategy is not available.

In this work we propose a method to find absorbing boundary conditions in a purely
algebraic formulation. Given the matrix of coefficients for the problem on a mesh with a
structured portion (only several layers of nodes are needed) at the outer boundary, the
problem leads to a system of difference equations with constant matrix coefficients. This
system can be solved by standard operational methods via an eigenvalue decomposition.
The absorbing boundary condition consists in retaining only the in-going modes. Thus,
the method can be implemented as a "black box" numerical routine that takes as input
the matrix of coefficients of the discrete system, provided that the mesh is structured
near the outer boundary. In practice a few structured layers are enough.

2.1. Partial Discretization
Let's take as an example the Helmholtz equation on an infinite strip lyl < L in the
(x,y) 2D plane:

f).¢> + k2¢> = f
¢> = 0, at y = ±L
radiation b.c.'s at x = ±oo

The radiation boundary condition will not be specified yet but will be of the form
{(8¢>j8x)} = F{¢>}, where F is a (maybe) non local operator. Now assume that a
partial discretization by finite elements in the y direction is performed, so that we
assume a series of nodes (not necessarily equally spaced) in the y direction so that:

Nslab

¢>(x, y) '" ~(x, y) = L ¢>k(X)Nk(Y)
k=l

Replacing in (1) and integrating by parts in y we arrive to the following linear system
of ODE's:

t/J = [<1>1 ¢>2 • .. ¢>Ns1ab]

Mjk = rL

Nj(y) Nk(y) dy (mass matrix)
JY;;;.-L

Kjk = ~::LNj,y(y) Nk,y(y) dy (1D Laplace operator matrix)

fj(x) = l::L Nj(y)f(x,y) dy (load vector)



M and K are positive definite matrices.

2.2. Unbounded solution. "Viscous modes"
System (4) can be decoupled in a series of scalar independent ODE's if we make the
change of variables: U = S-let>, where S is the solution of the following eigenvalue
problem:

where K = k2M - K, A is a diagonal matrix and S a nonsingular change of basis
matrix. It can be shown from the properties of K and lvI, that such a decomposition is
possible with S and A real. Now, due to the minus sign in the definition of K above,
there are a eigenvalues of both signs, let us say:

for 1 ~ k ~ Ninv ("inviscide" modes)
for Ninv + 1 ~ k ~ Ns1ab ("viscous" modes)

j for 1 ~ k ~ Ninv
j for Ninv + 1 ~ k ~ Nslab

where J..!k = .Ji).J. A similar expression is valid for x > Lx but with other coefficients
a~ight±, b~ight±. In order to have a bounded solution for x -t -00 (resp. x -t +00) we
should have aJ:ft- = 0 (resp. a~ght+ = 0), and then:

Uk•x + J.tk Uk = 0,
Uk,x - J.tk Uk = 0,

enx=L* }
en x = _L * k = Ninv + 1, ... , Nslab

are the appropriate radiation boundary conditions, and L * > Lx.

2.3. Inviscid modes
The same reasoning can not be applied directly in the case k ~ Ninv (inviscid modes)
since in this case both e+il-'kX, e-il-'kX do not decay or grow for x -t ±oo. Now the
governing equation for the j-th mode (9) is equivalent to a ID Helmholtz equation with
wave number k; = -Aj' If we impose a given boundary condition (say Neumann or
Dirichlet) in a boundary at x = ±L* and let 1* -t 00 the solution does not converge
to anything and it may even become unbounded for certain L * (those for which the
acoustic cavity is such that k; corresponds to a "resonant mode"). In contrast, for
the elliptic modes the solution converges uniformly to that one satisfying (11). In this
case, the corresponding equation is equivalent to a ID steady heat transfer equation
with Newtonian cooling. The situation for the inviscid case is rather paradoxical, since
one expects that if we have some exciting acoustic source in the mid portion of a very



long tube, and increase the length of the tube indefinitely, the resulting pattern will be
independent of the position of the tubes or the type of ending (open, rigid, membrane,
or whatever else). The same occurs in 2D or 3D. If we think at an emitting source in
the center of a very large rigid sphere ((a¢>/ an) = 0), and let the radius of the sphere
go to infinity, the solution does not converge neither, even if in this case the solution
decays with some power of the distance to the origin. The solution to this paradox is
that in real world there is always some amount of physical dissipation.

It is well known that a small dissipation can be added to the Helmholtz equation by
replacing k2 by k2 + i8 in (l.a) , with 8 a small positive number (also known as a
"Rayleigh viscosity parameter"). In this case the inviscid Ak's shift slightly towards the
negative imaginary part semi-plane, i.e. Ak = -a - i8', with a,8' real and positive,
and 8' ~ 0 with 8. The corresponding solutions are now e+il"k6"', e-il"k6"', with J1.k62 =
IAI + i8, and Re {J1.ko} > O. The first decays towards +00 and we call it "right-going"
and, conversely, the second decays towards x = -00 ("left-going"). Boundedness of the
solution imposes then: b~eft+ = 0, b~ight- = O. We can now take the limit 8 ~ 0 and the
appropriate absorbing boundary condition is:

Uk,,,, - iJ1.k Uk = 0

Uk,,,, + iJ1.k Uk = 0

at x = L
at x =-L

The classification as left- or right-going comes from the fact that, if we come back
from the frequency domain (Helmholtz equation) to the time domain (wave equation),
right-going modes have a positive x-component of group velocity, and vice-versa.

1m {I'}
iJ1.k6X- iJ.Lk [ J1.plane I

(right-going) (pureinviscid)

(pureinviscid) (left-going)
-iJ1.k -X -iJ1.k6

Figure 1: Inviscid eigenvalues are classified by adding a negligible viscosity
parameter.

Standard matrix manipulation allows to come back from the U basis to the ¢ basis and
the absorbing boundary condition is:



2.4. Summary of the method
In brief, the method can be described as follows:

• Look for solutions with a dependency:x: ei"X in the x direction
• Solve the characteristic equation for the eigenvalues {t,t}. They are classified according

to:
I> Viscous if Re {f.!} i' 0, inviscid otherwise.
I> The viscous modes are classified as right-going, if Re {f.!} < O. left-going if

Re{f.!} > O.
I> To classify the inviscid modes, add a small dissipation, and classify them as in

the previous point.
• Retain only the right-going modes (viscous or inviscid) in the general expression.
• The radiation boundary condition is found by differentiation of this general form.

Off course, this corresponds to a boundary which is located at the right end of the
domain. For a boundary at the left end, the left-going modes should be retained.

It can be shown that the resulting solution is independent of the point where the condi-
tion is imposed, provided that this position is outside the region where the source term
is non-null or inhomogeneities (k is variable) exists. Several numerical examples on
calculations with the Berkhoff's equation for propagation of water-waves in mild-slope
bathimetries (very similar to the Helmholtz equation) are shown in [2].

3.1. The Laplace equation
The Laplace operator (Poisson equation) corresponds to k = 0 in the Helmholtz equa-
tion. As expected, it can be shown that all modes are "pure viscous". Coming back to
the discussion on the first paragraph of §2.3. it is evident that as there are not inviscid
modes, one can safely impose Neumann or Dirichlet conditions on the outer boundary,
and putting them far enough from the computational domain, the solution will con-
verge to the "unbounded domain solution". Thus, absorbing boundary conditions play
a very different role in wave propagation phenomena than for positive definite operators,
like the Laplace equation, elasticity, Stokes flow, where all the modes are pure viscous.
Whereas in the later case absorbing boundary conditions can be used in order to reduce
the size of the computational domain, whenever an inviscid mode exists an absorbing
boundary condition is needed in order to have a convergent solution. The use of this
kind of absorbing boundary conditions is similar to the use of "infInite elements" [14].

3.2. The ship wave-resistance problem
When a body moves near the free surface of a fluid, a pattern of trailing gravity waves
is formed. The energy spent in building this pattern comes from the work done by the
body against the wave resistance. Numerical modeling of this problem is a matter of
high interest for ship design, and marine engineering [3-7]. As a first approximation,
the wave resistance can be computed with a potential model, whereas for the viscous
drag it can be assumed that the position of the surface is held fixed at the reference
hydrostatic position, i.e. a plane. This is, basically, the Proude hypotheses. With
this assumption, we are neglecting the interaction produced by the boundary layer,



which tends to produce a larger body, whose wave pattern, in turn, tends to modify the
potential flow which is the input to the boundary layer process. Even if a potential model
is assumed for the liquid, the problem is non-linear due to the free surface boundary
condition.

Most ship design codes in industry are based on a potential model for the fluid and a
linearized free surface boundary condition. The governing equations are the Laplace
equation with slip boundary conditions on the hull and channel walls, inlet/outlet con-
ditions at the corresponding planes and the free surface boundary condition. The free
surface boundary condition amounts to a Neumann boundary condition with a source
term proportional to the streamlined second derivative of the potential. However, the
problem as stated so far is ill posed, in the sense that it is invariant under longitu-
dinal coordinate inversion (x -+ -x), and it is clear then, that it can not capture
the characteristic trailing waves propagating downstream-. To do this, we can either
add a dissipative numerical mechanism or impose some kind of "absorbing boundary
condition" .

It can be shown that the addition of a third order derivative to the free surface boundary
conditions, adds a dissipative mechanism and captures the correct sense of propagation
for the wave pattern. This is equivalent to use a non-centered discretization scheme for
the second order operator and falls among the well known "upwind-techniques". The
amount of viscosity added is related to the length of the mesh downstream of the body.
If the viscosity parameter is too low, the trailing waves arrive to the downstream bound-
ary, are reflected in the upstream direction and pollute the solution. If it is too high, the
trailing waves are damped and incorrect values of the drag are obtained. Extending the
mesh in the downstream direction allows the use of a lower viscosity parameter, since
the waves are damped in a larger distance, but increases the computational cost (core
memory). Numerical experiences show that this third order streamline viscosity term
is too dissipative and the meshes should be extended downstream too much. Dawson
[4] proposed a method, where the fifth order derivative is used instead, with a very
particular finite difference discretization. It is astonishing the fact that standard dis-
cretization of the same operator does not work, neither do higher order operators (say
seventh order). As a result, most today codes are still using some kind of variant of the
Dawson scheme. However, this very particular viscosity term is hard to extend to gen-
eral boundary fitted meshes, not mentioning to unstructured computational methods
like finite elements. It is by this cause that most codes are based on a highly structured
panel formulation.

Another possibility suggested here is to use an absorbing boundary condition in the
downstream boundary. If such a numerical device could be found, then there is no need
to add a numerical viscosity term, since the trailing waves are not reflected upstream,
and a usual centered scheme can be used for the free surface boundary term. As a bonus,
if such a centered scheme could be used, then the trailing waves would not dampen and
the drag could be computed in terms of the momentum flow through a plane arbitrarily
located downstream of the body. Absorbing boundary conditions are well studied for
other wave phenomena like the Helmholtz equation in acoustics, but are harder to find
in the context of the free surface flows studied in this paper. Broeze & Romate [5]
developed an absorbing boundary condition for potential flow with a panel method but
in the context of following a temporal evolution of the free surface problem.



Consider the flow around a ship moving at constant speed in a channel of constant
section which, for simplicity, is assumed to be a rectangle of depth H and width Ly as
shown in figure 2. The fluid to be modeled occupies region n which is bounded by: the
channel walls and bottom ECh' the inlet/outlet boundaries Ein/out, the wetted surface
of the ship EshiP and the free surface Efree. The governing equations are:

6.¢J = 0, in no
¢J.n = 0, at Ech

(15a-e)
¢J,n + K-1 ¢J,xx = -(Uoo/ pg)!::.P,x, at Efree

radiation b.c. 's, at Ein/out

Where the ship has been replaced by a pressure distribution!::.P. This is the "hover-craft
problem", which is simpler than the full ship problem but retains most of the numerical
difficulties associated with the propagation of the gravity waves. Partial discretization
of the problem in the transverse direction is performed by assuming an approximation
of the form:

Nslab

¢J(x,y,z) '" ~(x,y,z) = L ~k(X) Nk(y,z)

and results in the following system of ODE's:

MtjI,xx - KtjI +1 Nj ¢J,n dy = 0
I:free 0

where 1\1: = M - K-1Mfree' M and K are as in (5) but integrating over the section of
the channel, and Mfree is the "free surface mass matrix":

Gk(x) = (Uoo/pg) 1 Nk!::.P.x dy
I:free 0

The characteristic equation looks now of the form:

and due to the negative sign in the definition of 1\1: it results that a certain number of
modes (usually equal to the number of nodes on the free surface) are inviscid (see fig-
ure 3). As discussed previously, we have to add a dissipative term in order to determine
whether they are right- or left-going.
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Figure 3: Potential flow with free surface (Wave resistance problem.) Perturbation
of the system with a small dissipative term shifts all the in viscid eigenvalues
into the right-going plane.

Other numerical algorithms, notably those based on the work of Dawson, do not use
radiation boundary conditions, but instead they add a numerical viscosity term propor-
tional to 8 <P,xxxxx, where 8 is a "numerical viscosity parameter" (also called a "Rayleigh
viscosity coefficient"). A term proportional to -8 <p,xxx is also dissipative but the damp-
ing of the waves is too strong to be admissible for numerical calculations. Since after
determination of the sense of propagation we take the limit 8 --+ 0, precision does not
matter here, and we choose by simplicity the low order <p,xxx dissipative term. The
perturbed free surface boundary condition is:

A detailed analysis shows that each pair of inviscid eigenvalues differentially move into
the Re {tL} < 0 semi-plane as shown in the figure, so that all the eigenvalues are right-
going. This is in contrast with the Helmholtz case, where for each par of inviscid
eigenvalues ±itLk one of them is right-going and the other left-going, The absorbing
boundary conditions are, then, of the form:

I
Uk = Uk,x = 0
none

at x = -L*

at x = +L*

The aspect of the amplitude for both type of modes is shown in figure 4. Note that the
inviscid modes have null amplitude upstream of the perturbation region. Once all the
modes are summed up and the solution is reconstructed, this results in the characteristic
trailing wave pattern following ships.

Further algebraic manipulation leads to expressions similar to (13). However, (23)
implies that Ninv boundary conditions should be moved from the downstream boundary
to the upstream boundary and this causes difficulties for the solution of the linear
system. This problem is treated in detail in (11). Numerical results using this technique
are shown in a companion paper at this conference [8].
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Figure 4: Mode amplitude for the inviscid and pure viscous modes in the wave-
resistance problem

3.3. Polar/Spherical coordinates
For the circumferential case (or spherical in 3D), the plane boundary condition is im-
posed very far from the zone of interest, and then this boundary condition is "condensed'
through a structured condensation region to the interest zone. The process of conden-
sation can be performed very efficiently in terms of both core memory and CPU time
by means of an eigenvalue decomposition which is very similar to that one that leads
to the DNL boundary condition. Details of this implementation for the 2D Helmholtz
equation are given in [2].

The DNL methodology allows to develop absorbing boundary conditions for a wide
variety of problems in unbounded domains, ranging from positive definite operators
(Laplace equations, elasticity equations, for instance) to wave-like propagation phe-
nomena (Helmholtz equation, potential flow with free surface). A great advantage over
common methodologies as the DtN from Givoli and Keller is that it can be implemented
as a "black box" numerical module that takes as input the matrices relating several lay-
ers of nodes on a structured portion of the mesh near the outer boundary. Numerical
results are presented in companion papers at this same conference [2,8].
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