EL PROBLEMA DE DIFUSIÓN-CONSUMO DE OXÍGENO EN TEJIDOS VIVIENTES

María E. Ascheri¹, Cristina V. Turner²

¹Facultad de Ciencias Exactas y Naturales. Universidad Nacional de La Pampa. Uruguay 151. (6300) Santa Rosa. La Pampa. E-mail: <u>mavacheri@exactas.unlpam.edu.ar</u>
²Facultad de Matemática, Astronomía y Física. Universidad Nacional de Córdoba. Valparaíso y Martínez. Ciudad Universitaria. (5000) Córdoba. E-mail: turner@mate.uncor.edu

RESUMEN

Se analiza un problema de frontera libre implícito que se origina a partir de la difusión de oxígeno en un medio que simultáneamente consume oxígeno, con una razón de consumo de oxígeno que depende del tiempo. Una combinación de métodos numéricos y analíticos son aplicados a este problema y los resultados son expresados, finalmente, en la forma de una expresión polinomial aproximada. Se obtienen, de esta manera, soluciones numéricas y aproximaciones analíticas de una ecuación diferencial parcial, que es la que describe la difusión de oxígeno en un medio absorbente. Las dificultades matemáticas esenciales están asociadas con la presencia de una frontera libre (que indica la máxima penetración de oxígeno en el medio) y también con la necesidad de determinar la distribución de oxígeno en el medio como una función del tiempo. Se deducen ciertas propiedades de la solución del problema original y de la frontera libre. Aplicando los resultados obtenidos, se presentan diversos ejemplos que surgen de considerar distintas expresiones para la razón de consumo de oxígeno, realizándose en cada uno de ellos el análisis correspondiente. Este problema tiene una aplicación particular en la investigación médica: la predicción del modelo puede ser usada en el tratamiento del cáncer por radioterapia[1].

ABSTRACT

An implicit free boundary problem is analyzed which is originate from the diffusion of oxygen in a medium which simultaneously consumes the oxygen, with a rate of consumption of oxygen which depends on the time. A combination of numerical and analytical methods are applied to this problem and the results are finally expressed in the form of an approximate polynomial expression. By this way, numerical solutions and approximate analytical of a partial differential equation are obtained, which describe the diffusion of oxygen in an absorbing medium. Essential mathematical difficulties are associated with the presence of a free boundary (which marks the furthest penetration of oxygen through the medium) and also with the necessity of determining the distribution of oxygen through the medium as a function of time. Some properties are deduced from the solution of the original problem and from the free boundary. Through the results, several examples are presented which arise of considering differents expressions for the rate of consumption of oxygen, being carried out in each one of them the corresponding analysis. This problem has a particular application in medical research: the prediction of the pattern can be used in the treatment of the cancer by radiotherapy [1].

INTRODUCCIÓN

La difusión de oxígeno en un medio absorbente, como un ejemplo de problemas de frontera libre implícitos [2], [3], [4], [5], [6], ha sido tratado por un gran número de autores usando diferencias finitas, funciones de Green y elementos finitos [7], [8], [9], [10].

En este trabajo se estudia el problema de frontera libre con una razón de consumo de oxígeno que depende del tiempo. Primero, se obtiene una solución analítica de este problema utilizando la transformada de Laplace y se deduce, a partir de esta solución, una solución analítica aproximada. Se derivan, además, algunas propiedades de la solución y de la frontera libre. Luego, se aplican a este problema métodos numéricos y analíticos, obteniéndose una solución numérica y una solución analítica aproximada utilizando el método de diferencias finitas para una red fija y el método integral, respectivamente. Finalmente, los resultados obtenidos son aplicados a varios ejemplos que surgen a partir de la elección de una determinada función para la razón de consumo de oxígeno que depende del tiempo. Se presenta aquí uno de estos ejemplos y se muestran algunas de las tablas y los gráficos que resultan a partir de los cálculos que se han realizado utilizando una computadora, usando el paquete MATLAB, así como también, las conclusiones a las que se han arribado.

FORMULACIÓN DEL PROBLEMA

El problema original fue introducido por J. Crank y R. Gupta [7]: primero se dejà difundir oxígeno en un medio; parte del oxígeno es absorbido por el medio siendo, por lo tanto, eliminado del proceso de difusión. La concentración de oxígeno en la superficie del medio es mantenida constante. Esta primera fase del problema continúa hasta alcanzar un estado estacionario en el cual el oxígeno no penetra más allá en el medio. El suministro de oxígeno es entonces cortado y la superficie del medio es sellada de manera que no entre ni salga más oxígeno. El medio continúa absorbiendo el oxígeno disponible en su interior y por consiguiente, la frontera, que establece la separación entre la zona de concentración positiva y nula de oxígeno y que marca el ancho de penetración máxima en el caso estacionario, comienza a retroceder hacia la superficie sellada. Durante esta fase del proceso, las dificultades matemáticas esenciales son, fundamentalmente, las de localizar el movimiento de la frontera libre y determinar la distribución de oxígeno en el medio como una función del tiempo. Estos autores estudiaron el problema asumiendo que la razón de consumo de oxígeno, que se denota con m, es constante. En el presente trabajo se generaliza el problema considerando m=m(t), m>0, m $\in C^1(0,t)$ y creciente. El proceso de difusión de oxígeno en un medio que simultáneamente consume oxígeno, puede ser representado por la siguiente ecuación diferencial parcial

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} - m(t), \tag{1}$$

donde,

C(x,t): es la concentración de oxígeno libre a difundirse a una distancia x desde la superficie externa del medio (x=0) en el tiempo t.

- D> 0: es el coeficiente constante de difusión.
- m(t): es la razón de consumo de oxígeno por unidad de volumen del medio.

El problema de difusión-consumo de oxígeno consta de dos partes:

- (a) El problema estacionario.
- (b) El problema de frontera libre.

(a) Un estado estacionario es alcanzado en el caso en que la concentración en cada punto del medio se

hace independiente del tiempo, es decir, $\frac{\partial C}{\partial t} = 0$ en todas partes, cuando el gradiente de la

concentración se hace cero en el punto x_0 y para $x > x_0$ y donde también, la concentración es cero (x_0 señala la más distante penetración de oxígeno en el medio). Se asume, además, que al llegar a este estado m(t) toma un cierto valor constante m₀. La primera parte consiste entonces en hallar la solución estacionaria C(x) y el punto $x=x_0$ de manera que satisfagan el sistema

$$D\frac{\partial^2 C}{\partial x^2} - m_0 = 0, \qquad 0 \le x \le x_0 \tag{2}$$

$$C = C_0, \qquad x=0 \tag{3}$$

$$\mathbf{C} = \mathbf{0}, \qquad \mathbf{x} \ge \mathbf{x}_0 \tag{4}$$

$$\frac{\partial C}{\partial x} = 0, \qquad x \ge x_0 \tag{5}$$

para $t \ge 0$ (C₀: concentración de oxígeno entrante por la superficie externa del medio x=0). La solución del sistema anterior está dada por

$$C(x) = \frac{m_0}{2D} (x - x_0)^2, \qquad x \le x_0$$
 (6)

$$x_0 = \sqrt{\frac{2DC_0}{m_0}},\tag{7}$$

y para $x \ge x_0$, la concentración es cero.

(b) La segunda etapa empieza cuando la superficie x=0 es sellada. El oxígeno existente en el medio, en la región $0 \le x \le x_0$, continúa siendo consumido por el mismo. Entonces, el punto de concentración cero retrocede hacia la superficie sellada x=0. Se representa con x₀(t) la posición de dicho punto en el instante t de manera que $x_0(0) = x_0 = \sqrt{\frac{2DC_0}{m_0}}$ y se asume que m(0)=m₀.

En la segunda etapa, el problema consiste en hallar $c(x,t) y x_0(t)$ soluciones del sistema

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} - m(t), \qquad 0 \le x \le x_0(t), \quad t \ge 0$$

$$\frac{\partial c}{\partial t} = 0 \qquad (8)$$

$$\frac{\partial c}{\partial r} = 0, \qquad x = 0, \qquad t \ge 0 \tag{9}$$

$$c = \frac{\partial c}{\partial r} = 0, \qquad x = x_0(t), \quad t \ge 0 \tag{10}$$

$$c(x,0) = h(x) = \frac{m_0}{2D} (x - x_0)^2, \qquad 0 \le x \le x_0, \tag{11}$$

donde t=0 es el instante cuando la superficie x=0 es sellada.

La última condición muestra que $\frac{d}{dx}h(x)\Big|_{x=0} = -\frac{m_0 x_0}{D} \neq 0$, la cual revela una discontinuidad en el

gradiente de la concentración. Esta discontinuidad se debe al gradiente cero en la superficie, que es instantáneamente impuesto cuando la superficie es sellada. Debido a esta discontinuidad, los métodos numéricos basados en diferencias finitas están expuestos a dar soluciones incorrectas en las proximidades de la superficie para tiempos pequeños. Sin embargo, habrá un intervalo de tiempo antes que la perturbación en la superficie tenga un efecto sobre la solución en las proximidades de $x=x_0(0)$ para un determinado orden de exactitud especificado. Así, se puede obtener una solución analítica que dará una buena aproximación para tiempos pequeños, asumiendo que la frontera $x_0(t)$ no se mueve inicialmente. Es decir, se quiere resolver un problema de frontera fija.

Usando la transformada de Laplace se obtuvo que la solución analítica de (8) sujeta a la condición inicial (11) y a las condiciones de contorno (9) y c=0, $x=x_0$, $t\geq 0$ está dada por

$$c(x,t) = \sum_{n=0}^{\infty} (-1)^{n} \left[\inf_{0}^{t} m(t-u) \left[erfc \left(\frac{2nx_{0} + x_{0} - x}{2\sqrt{D}\sqrt{u}} \right) + erfc \left(\frac{2nx_{0} + x_{0} + x}{2\sqrt{D}\sqrt{u}} \right) \right] du - \frac{m_{0}t}{2} \sum_{n=0}^{\infty} (-1)^{n} \left[erfc \left(\frac{2nx_{0} + x_{0} - x}{2\sqrt{D}\sqrt{t}} \right) + erfc \left(\frac{2nx_{0} + x_{0} + x}{2\sqrt{D}\sqrt{t}} \right) \right] - \frac{m_{0}t}{2D} \sum_{n=0}^{\infty} (-1)^{n} \left[(2nx_{0} + x_{0} - x)^{2} erfc \left(\frac{2nx_{0} + x_{0} - x}{2\sqrt{D}\sqrt{t}} \right) + (2nx_{0} + x_{0} + x)^{2} erfc \left(\frac{2nx_{0} + x_{0} + x}{2\sqrt{D}\sqrt{t}} \right) \right] + \frac{m_{0}\sqrt{D}\sqrt{t}}{D\sqrt{\pi}} \sum_{n=0}^{\infty} (-1)^{n} \left[(2nx_{0} + x_{0} - x) exp \left(- \left(\frac{2nx_{0} + x_{0} - x}{2\sqrt{D}\sqrt{t}} \right)^{2} \right) + (2nx_{0} + x_{0} + x) exp \left(- \left(\frac{2nx_{0} + x_{0} + x}{2\sqrt{D}\sqrt{t}} \right)^{2} \right) \right] + 2 \frac{m_{0}\sqrt{D}\sqrt{t}}{D\sqrt{\pi}} \sum_{n=0}^{\infty} (-1)^{n} \left[exp \left(- \left(\frac{2nx_{0} + 2x_{0} - x}{2\sqrt{D}\sqrt{t}} \right)^{2} \right) - exp \left(- \left(\frac{2nx_{0} + x}{2\sqrt{D}\sqrt{t}} \right)^{2} \right) \right] - \frac{m_{0}x_{0}}{D\sqrt{\pi}} \sum_{n=0}^{\infty} (-1)^{n} \left[exp \left(- \left(\frac{2nx_{0} + 2x_{0} - x}{2\sqrt{D}\sqrt{t}} \right)^{2} \right) - exp \left(- \left(\frac{2nx_{0} + x}{2\sqrt{D}\sqrt{t}} \right)^{2} \right) \right] - \frac{m_{0}x_{0}}{D\sqrt{\pi}} \sum_{n=0}^{\infty} (-1)^{n} \left[(2nx_{0} + 2x_{0} - x) erfc \left(\frac{2nx_{0} + 2x_{0} - x}{2\sqrt{D}\sqrt{t}} \right)^{2} - (2nx_{0} + x) erfc \left(\frac{2nx_{0} + x}{2\sqrt{D}\sqrt{t}} \right) \right] - \frac{m_{0}x_{0}}{D\sqrt{\pi}} \sum_{n=0}^{\infty} (-1)^{n} \left[(2nx_{0} + 2x_{0} - x) erfc \left(\frac{2nx_{0} + 2x_{0} - x}{2\sqrt{D}\sqrt{t}} \right) - (2nx_{0} + x) erfc \left(\frac{2nx_{0} + x}{2\sqrt{D}\sqrt{t}} \right) \right] - \frac{1}{\left[m(u) du + \frac{m_{0}}{2D} (x - x_{0})^{2} + m_{0}t, \qquad 0 \le x \le x_{0}, \qquad t \ge 0.$$
 (12)

Si $t \le 0.020$ y para funciones apropiadas para m(t), los seis primeros términos de esta expresión pueden ser aproximados sólo poniendo los correspondientes a n=0 cuando los términos menores que

 10^{-6} son despreciados y, los segundos sumandos del primero, segundo, tercero y cuarto términos y los primeros sumandos del quinto y sexto términos pueden ser ignorados con un error menor que 10^{-5} . La concentración para $0 \le t \le 0.020$, puede entonces ser aproximada por la siguiente expresión

$$c(x,t) \approx \int_{0}^{t} m(t-u) \operatorname{erfc}\left(\frac{X_{0}-x}{2\sqrt{D}\sqrt{u}}\right) du - m_{0}\operatorname{erfc}\left(\frac{X_{0}-x}{2\sqrt{D}\sqrt{t}}\right) \left[t + \frac{1}{2D}\left(X_{0}-x\right)^{2}\right] + \frac{m_{0}\sqrt{D}\sqrt{t}}{D\sqrt{\pi}} \left[\left(X_{0}-x\right)\exp\left(-\left(\frac{X_{0}-x}{2\sqrt{D}\sqrt{t}}\right)^{2}\right) - 2X_{0}\exp\left(-\left(\frac{x}{2\sqrt{D}\sqrt{t}}\right)^{2}\right)\right] + \frac{m_{0}X_{0}x}{D}\operatorname{erfc}\left(\frac{x}{2\sqrt{D}\sqrt{t}}\right) - \int_{0}^{t} m(u) \ du + \frac{m_{0}}{2D}\left(x-X_{0}\right)^{2} + m_{0}t, \quad 0 \le x \le X_{0} = x_{0}(0).$$
(13)

Ahora, substituyendo x por x=0, la concentración en la superficie es

$$c_{0}(t) = c(0,t) \approx \int_{0}^{t} m(t-u) \ erfc\left(\frac{X_{0}}{2\sqrt{D}\sqrt{u}}\right) du - m_{0} \ erfc\left(\frac{X_{0}}{2\sqrt{D}\sqrt{t}}\right) \left(t + \frac{X_{0}^{2}}{2D}\right) + \frac{m_{0}\sqrt{D}\sqrt{t}X_{0}}{D\sqrt{\pi}} \left[\exp\left(-\left(\frac{X_{0}}{2\sqrt{D}\sqrt{t}}\right)^{2}\right) - 2\right] - \int_{0}^{t} m(u) \ du + \frac{m_{0}}{2D}X_{0}^{2} + m_{0}t.$$
(14)

Haciendo $c_0(t)=0$, se puede estimar el tiempo final, t_0 donde la frontera libre llega a la superficie x=0.

Se derivan ahora algunas propiedades de la solución y de la frontera libre.

Proposición. La concentración c(x,t) es una función positiva y es una función decreciente de la variable x. Además, si $\frac{d}{dt}m(t) > 0$, entonces la concentración es una función decreciente de la variable

t y la frontera libre $x_0(t)$ es una función decreciente de la variable t.

MÉTODOS DE SOLUCIÓN DEL PROBLEMA

En cuanto la frontera comienza a moverse, se recurre a métodos de solución numérica. En el análisis presente, las concentraciones en los puntos intermedios de la red han sido calculadas usando una simple fórmula explícita de diferencias finitas. Cerca de la frontera libre es usada una fórmula tipo a la de Lagrange, como lo sugirió Crank [11]. La ubicación de la frontera libre es determinada por una serie de Taylor. La región completa $0 \le x \le x_0(0)$, es subdividida en M subintervalos de ancho δx y se toma $x_r = r \delta x$, donde, $0 \le r \le M$, r entero (M $\delta x = =x_0(0)$).

Método de diferencias finitas para una red fija

Concentraciones en los puntos intermedios

Se asume que las concentraciones en cada uno de los puntos de la red en el nivel de tiempo j-ésimo son conocidas y la posición de la frontera libre en ese tiempo está en algún lugar en el intervalo r-ésimo entre $x_{r-1} y x_r$ dada por $x'_0 = (r-1)\delta x + p'\delta x$ donde, $0 < p^i < 1$ y es también conocido.

Posición de la frontera libre en un sistema de red fijo

Entonces, las concentraciones en el nivel de tiempo (j+1)-ésimo, hasta e incluyendo el punto de la red (r-2) δx pueden ser calculadas usando las conocidas fórmulas explícitas

$$c_{0}^{j+1} = c_{0}^{j} + 2 D \frac{\delta t}{(\delta x)^{2}} (c_{1}^{j} - c_{0}^{j}) - m(t^{j}) \delta t$$
⁽¹⁵⁾

$$c_{k}^{j+1} = c_{k}^{j} + D \frac{\delta t}{(\delta x)^{2}} (c_{k+1}^{j} - 2c_{k}^{j} + c_{k-1}^{j}) - m(t^{j})\delta t, \qquad (16)$$

para k=1,2,...,(r-2), donde δt es el tamaño del paso del tiempo y c¹_k denota la concentración en el punto k δx en el tiempo j δt .

Concentración en la proximidad de la frontera libre

Se utiliza una fórmula de interpolación de Lagrange aplicada en los puntos $(r-2)\delta x$, $(r-1)\delta x$ y la frontera libre $x_0 = (r-1)\delta x + p\delta x$ para todo tiempo t, y se usa la condición de contorno (10). Se obtiene la siguiente expressión explícita para c_{r-1}^{j+1}

$$c_{r-1}^{j+1} = c_{r-1}^{j} + 2 D \frac{\delta t}{(\delta x)^2} \left(\frac{c_{r-2}^{j}}{1+p^{j}} - \frac{c_{r-1}^{j}}{p^{j}} \right) - m(t^{j}) \delta t$$
 (17)

Posición de la frontera libre

Con el fin de determinar la ubicación de la frontera libre, se utiliza la condición de contorno (10) para deducir las derivadas parciales de mayor orden. La variable t en $x_0(t)$ es omitida en las siguientes discusiones. Así, la serie de Taylor para c_{r-1} , la concentración en el punto de la red $(r-1)\delta x$ próxima a

la frontera libre $x_0 = (r-1)\partial x + p\partial x$ para todo tiempo t, puede ser escrita como

$$c_{r-1} = \frac{1}{2} (p \, \delta x)^2 \frac{m(t)}{D} + \frac{1}{6} (p \, \delta x)^3 \frac{m(t)}{D^2} \frac{dx_0}{dt} + \dots \qquad (18)$$

Siempre que la frontera no se mueva demasiado rápido, el primer término de la serie suministra una aproximación razonable. Por lo tanto, la posición de la frontera libre en el nivel de tiempo (j+1)-ésimo está dada por

$$x_{0}^{j+1} = \left[(r-1) + \sqrt{\frac{2Dc_{r-1}^{j+1}}{m(r^{j+1})}} \frac{1}{\delta x} \right] \delta x \,. \tag{19}$$

Frontera libre que cruza una línea de la red

A medida que c_{r-1} va decreciendo hay que controlar que las siguientes situaciones no ocurran:

(i) $c_{r-1}^{j+1} \leq 0$: ella es fisicamente imposible;

(ii) $c_{r-1}^{j+1} > c_{r-1}^{j}$: el proceso numérico se ha hecho inestable.

Se realiza un análisis de estabilidad del esquema aquí utilizado. Cuando una de las condiciones anteriores aparece, se considera hasta el (r-1)-ésimo punto de la red calculado en el nivel de tiempo (j-1)-ésimo. La fórmula de Lagrange es entonces aplicada para recalcular c_{r-2}^{j} usando un nuevo valor de p en el tiempo (j-1)-ésimo, el cual es tomado del que es el anterior valor de pⁱ⁻¹ más 1. Este proceso es continuado hasta que haya al menos dos puntos de la red incluyendo la superficie sellada.

Método Integral. Descripción

Ahora se utiliza el "Método Integral" introducido por Theodore R. Goodman en 1958 [12], con el fin de obtener una solución analítica aproximada del problema de frontera libre.

Se integra la ecuación (8) con respecto a la variable x, sobre el rango para el cual ella es válida y se insertan las condiciones de contorno (9) y (10), produciendo una ecuación integral. Se obtiene así que

$$\frac{d}{dt} \int_{0}^{x_{0}} c(x,t) \, dx = -m(t) x_{0}(t) \,. \tag{20}$$

Se asume ahora que c(x,t) puede ser representada por un polinomio de cuarto grado en x de la forma $c(x,t) = a_1(t) + a_2(t) x + a_3(t) x^2 + a_4(t) x^3 + a_5(t) x^4$. (21)

Para determinar los cinco parámetros desconocidos se usan las condiciones de contorno (9) y (10), la expresión (14) y la ecuación $D \frac{\partial^2 c}{\partial x^2} = m(t), x = x_0(t).$

Determinación de los coeficientes y de la frontera libre Se obtiene así, el siguiente sistema de ecuaciones lineales

$$\begin{cases} c_{0} + a_{3}x_{0}(t)^{2} + a_{4}x_{0}(t)^{3} + a_{5}x_{0}(t)^{4} = 0 \\ 2a_{3}x_{0}(t) + 3a_{4}x_{0}(t)^{2} + 4a_{5}x_{0}(t)^{3} = 0 \\ 2a_{3} + 6a_{4}x_{0}(t) + 12a_{5}x_{0}(t)^{2} = \frac{m(t)}{D} \end{cases}$$
(22)

Resolviendo este sistema de ecuaciones lineales, la ecuación para el polinomio resulta

$$c(x,t) = \left(1 - \frac{x}{x_0(t)}\right)^2 \left[\frac{m(t)}{2D}x^2 + 4c_0\left(1 - \frac{x}{x_0(t)}\right) - 3c_0\left(1 - \frac{x}{x_0(t)}\right)^2\right]$$
(23)

la cual contiene la posición de la frontera libre $x_0(t)$ que aún tiene que ser determinada.

Introduciendo la expresión (23) en la ecuación (20), se obtiene una ecuación diferencial ordinaria para la posición de la frontera libre $x_0(t)$, con t como variable independiente y que tiene que ser resuelta

$$\dot{x}_{0}(t) = -\frac{\left[\int_{0}^{t} \frac{\partial m}{\partial t}(t-u) erfc\left(\frac{X_{0}}{2\sqrt{D}\sqrt{u}}\right) du - \frac{m_{0}\sqrt{D}X_{0}}{D\sqrt{\pi}\sqrt{t}} + \frac{3}{2}m(t) + m_{0} + \frac{1}{24D}\dot{m}(t)x_{0}(t)^{2}\right]}{c_{0}(t) + \frac{1}{8}m(t)x_{0}(t)^{2}}x_{0}(t).$$
(24)

Para obtener una solución numérica de esta ecuación diferencial ordinaria para $x_0(t)$ se usa un método de Runge-Kutta. Una vez que la solución es obtenida, se la reemplaza en la expresión polinomial para la concentración, ecuación (23), hallándose así, la distribución de la concentración en ese tiempo.

APLICACIÓN DE LOS RESULTADOS

Se asume que $m_0=1$, D=1 y $X_0=1$, lo cual es posible adimensionalizando el problema original. Se obtiene una solución para la concentración de oxígeno c(x,t) y la posición de la frontera libre para todo tiempo (t_m : tiempo mínimo a partir del cual la derivada de $x_0(t)$ es negativa):

Solución por Laplace Truncado	para	$0 \le t \le 0.020$
Solución por Laplace	para	$0.020 \le t \le t_m$
Solución por el método integral	para	$t_m \leq t \leq t_f$
Solución por el método de diferencias finitas	para	$0 \le t \le t_f.$

Tal como se indica en los cuadros anteriores, los tres primeros métodos se utilizan consecutivamente para llegar hasta el final del tiempo y el último, con el que se comparan los resultados obtenidos por este método y por los tres primeros, desde el principio hasta el final.

Ejemplo. Razón de consumo de oxígeno: $m(t) = 1.5 t^2 + 1.5 t + 1$.

Se encuentra en este caso que $t_{=}0.17658$ y $t_{m}=0.0446$. La Tabla I muestra que los valores obtenidos usando el método de diferencias finitas están en muy buena concordancia con aquellos calculados desde la solución por Laplace truncado, para tiempos pequeños. Se debe notar que las soluciones numéricas involucran errores grandes en el comienzo en la superficie, debido a la discontinuidad en el gradiente en el tiempo cero, pero luego se vuelven consistentes con las soluciones por Laplace truncado. En t=0.020, la diferencia entre ambas soluciones no es más que de 0.0006 en todas partes, cuando la frontera x_0 se ha movido apenas una distancia de 0.003 desde su posición original $x_0=1$.

TABLA I. Comparación entre las soluciones por Laplace truncado (entrada superior) y numérica (entrada inferior, $\delta x = 0.05$, $\delta t = 0.001$). Los valores tabulados son 10⁶°c.

×	0.0	0.1	0.2	0.3	0.4	8.5	0.6	0.7	0.8	0.9
	464317	404605	319999	244999	179999	124999	79999	44999	19999	4999
0.001	460000	405000	320000	245000	180000	125000	80000	45000	20000	5000
	449534	401924	319970	244997	179997	124997	79997	44997	19997	4997
0.002	451998	404998	319998	244998	179998	124998	79998	44998	19998	4998
	438189	397804	319753	244991	179993	124993	79993	44993	19993	4994
0.003	437595	398595	319995	244995	179995	124995	79995	44995	19995	4995
	428623-	393144	319199	244969	179988	124988	79988	44988	19988	4989
0.004	429591	394751	319991	244991	179991	124991	79991	44991	19991	4991
	420193	388318	318283	244905	179980	124981	79981	44981	19981	4983
0.005	420305	389113	318961	244985	179985	124985	79985	44985	19985	4986
	399026	374033	313805	244203	179898	124950	79952	44952	19953	4959
0.008	399430	374778	314649	244585	179958	124958	79958	44958	19958	4963
	387087	364996	309874	243200	179729	124910	79924	44925	19927	4939
0.010	387429	365600	310851	243658	179859	124932	79932	44932	19933	4944
	376283	356390	305513	241778	179411	124839	79887	44892	19895	4916
0.012	378594	356907	306225	242289	179611	124887	79900	44901	19903	4921
	361632	344218	298519	238973	178596	124633	79674	44748	19772	4975
0.015	361912	344651	299145	239513	178881	124732	79835	44842	19849	4881
	344189	329161	288819	234277	176849	124088	79614	44715	19747	4811
0.019	344447	329529	289359	234813	177208	124259	79677	44739	19760	4819
	340119	325577	286370	232973	176300	123895	79544	44679	19720	4793
0.020	340372	325933	288891	233504	176672	124081	79818	44707	19734	4802

×	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0.020	340119	325577	286370	232873	176300	123895	79544	44679	19720	4793
0.020	340372	325933	286891	233504	176672	124081	79618	44707	19734	4802
	332266	318599	281470	230243	175077	123433	79374	44595	19662	4758
0.022	332510	318934	281958	230761	175467	123650	79488	44632	19680	4766
	321111	308561	274149	225900	172958	122553	79027	44433	19561	4594
0.025	321345	308870	274596	226397	173365	122807	79153	44487	19585	4707
	314032	302124	269305	222876	171378	121841	78729	44295	19481	4649
0.027	314280	302419	269730	223357	171789	122115	78875	44383	19512	4665
	303870	292808	262115	218193	168783	120592	78174	44038	19341	4573
0.030	304091	293084	262510	218852	169199	120890	78349	44125	19382	4594
	287959	278058	250361	210118	163968	118060	76951	43449	19034	4419
0.035	288170	278315	250717	210543	164380	118385	77165	43570	19096	4453
	273092	264133	238912	201836	158670	115025	75353	42636	18815	4222
0.040	273295	264374	239239	202232	159671	115364	75597	42789	18701	4273
	267391	258761	234417	198489	156442	113687	74812	42244	18411	4128
0.042	267592	258998	234735	198875	156838	114030	74885	42408	18508	4187
	261815	253492	229970	195131	154183	112284	73815	41814	18185	4024
0.044	282014	253725	230279	195507	154554	112829	74077	41989	18292	4093

TABLA II. Comparación entre las soluciones por Laplace (entrada superior) y numérica (entrada inferior, $\delta x = 0.05$, $\delta t = 0.001$). Los valores tabulados son 10⁶*c.

La Tabla II muestra que los valores obtenidos usando el método de diferencias finitas están en muy buena concordancia con aquellos calculados desde la solución por Laplace. En t=0.044, la diferencia entre ambas soluciones no es más que de 0.0004 en todas partes, cuando la frontera x_0 se ha movido una distancia de 0.01 desde su posición original $x_0=1$.

Las curvas típicas de la Figura 1 demuestran la forma general y confirman que la concentración no varía, dentro de la exactitud de la representación gráfica, cerca de la frontera en x=1.

Figura 1. Distribución de las concentraciones para t ≤ 0.044 antes que la frontera se mueva dentro de la exactitud de la representación gráfica. (Método de diferencias finitas).

La Tabla III muestra una comparación de las concentraciones en distintos tiempos ($t \ge 0.045$) junto con la posición de la frontera libre. Se ve muy buena concordancia entre los valores obtenidos con el método integral y con el método de diferencias finitas.

TABLA III. Comparación de las concentraciones y las distancias de la frontera libre desde la superficie sellada. La entrada superior muestra los valores obtenidos desde el método integral con la ecuación diferencial ordinaria resuelta por un método de Runge-Kutta y la entrada inferior, los valores obtenidos desde la solución numérica ($\delta x = 0.05$, $\delta t = 0.001$).

ľ	0.0	8.1	0.2	0.3	0.4	0.6	0.6	0.7	0.8	0.9	Frontera
	259070	249857	225933	192442	153942	114414	77257	45290	20750	5294	1.00000
0.045	259288	251124	228069	193820	153394	111908	73662	41764	18175	4092	0.98745
	245749	237236	215029	183764	147599	110211	74798	44072	20274	5158	0.99882
0.050	245943	238460	217192	185370	147439	108077	71388	40493	17504	3751	0.99404
	220797	213479	194210	166784	134687	101092	68884	40556	18413	4369	0.99090
0.000	220987	214571	186235	188501	134950	99533	\$5947	37243	15710	2989	0.97456
	175794	170313	155575	134115	108430	80984	\$4208	30492	12202	1662	0.95528
0.080	175984	171079	158965	135340	108718	80045	52329	28351	10542	1026	0.94263
	135190	131104	119780	102831	82940	59458	37354	18223	4783	0	0.89497
0.100	135397	131633	120380	103191	81873	58768	36416	17415	4365	0	0.88970
	97496	94568	86020	72640	55771	37324	18770	6143	4 2	0	0.80844
0.120	97751	94670	65773	72055	55075	38835	19689	8332	54	0	0.80951
	61822	59957	53802	43384	29884	15844	4180	Ð	٥	٥	0.08849
0.140	62204	59760	52722	41960	28897	15519	4541	٥	0	0	0.69283
	27587	28928	23031	15231	5829	84	0	0	0	0	0.51105
0.160	28302	28448	21159	13427	5153	0	0	0	0	0	0.50389
	10876	10312	5817	1011	0	0	٥	0	0	0	0.37252
0.170	11950	10425	6277	1275	0	0	0	0	0	0	0.34432
	2004	1744	•	•	•	•	A .	•	a	0	0 25888
0.175	1 1070	2794			ő	0			0	٥ ٨	1 0 19344

Nota. Para $t \le 0.044$ ver Tablas I y II.

La Figura 2 muestra la distribución de las concentraciones en distintos tiempos y la Figura 3 permite OBSERVAT EL COMPORTAMIENTO DE la MONTERA LIBRE CON RESPECTO AL TIEMPO

Figura 2. Distribución de las concentraciones para el estado estacionario (t=0) y para t>0.044. (Método integral).

Figura 3. Posición de la frontera libre con respecto al tiempo. (Método de Runge-Kutta).

RESUMEN Y CONCLUSIÓN

- Cuando se ha asumido que la frontera no se mueve de su posición original (tiempos pequeños), los valores obtenidos por el método de diferencias finitas están en muy buena concordancia con aquellos calculados desde la solución por Laplace truncado y por Laplace, respectivamente. Para tiempos grandes, los valores obtenidos por el método integral muestran muy buena concordancia con aquellos calculados por el método de diferencias finitas.
- El método integral es especialmente útil para calcular la concentración y la posición de la frontera libre en un tiempo arbitrario y en el final, en el caso en que el método numérico no trabajase debido a los pocos puntos de la red que quedan. Este método también se puede utilizar desde el inicio del proceso.

REFERENCIAS

[1] LIAPIS A.I.- LIPSCOMB G.G.- CROSSER O.K.- TSIROYIANNI - LIAPIS E., A model of oxygen diffusion inabsorbing tissue, Math. Modelling, 3, 1982, págs. 83-92.

[2] BERGER A. - CIMENT M. - ROGERS J. C. W., Numerical solution of a diffusion consumption problem with a free boundary, SIAM J. Num. Anal., 12, 1975, págs. 646-672.

[3] CRANK J., Free and moving boundary problems, Clarendon Press, Oxford, 1984.

[4] PRIMICERIO M., Problemi di diffusione a frontiera libera, Boll.U.M.I., 18ª, 1981, págs.11-68.

[5] TARZIA D. A., A bibliography on moving - free boundary problems for the heat - diffusion equation. The Stefan problem. Progetto Nazionale M. P. I. Equazioni di Evoluzione e Applicazioni Fisico-Matematiche, Firenze, 1988.

[6] ZERROUKAT M. - CHATWIN C. R., Computational moving boundary problems, J. Wiley & Sons Inc., New York, 1994.

[7] CRANK J. - GUPTA R. S., A moving boundary problem arising from the diffusion of oxygen in absorbing tissue, J. Inst. Math. Appl., 10, 1972, págs. 19-33.

[8] GUPTA R. S. - KUMAR D., Complete numerical solution of the oxygen diffusion problem involving a moving boundary, Comp. Meth. Appl. Mech. Eng., 29, 1981, págs. 233-239.

[9] HANSEN E. - HOUGAARD P., On a moving boundary problem from biomechanics, J. Inst. Math. Appl., 13, 1974, págs. 385-398.

[10] MILLER J. V. - MORTON K. W. - BAINES M. J., A finite element moving boundary computation with an adaptive mesh, J. Inst. Math. Appl., 22, 1978, págs. 467-477.

[11] CRANK J., Two methods for the numerical solution of moving - boundary problems in diffusion and heat flow, Quart. J. Mech. Appl. Math., 10, 1957, págs. 220-231.

[12] GOODMAN T. R., The heat - balance integral and its applications to problems involving a change of phase, Trans. of the ASME, 80, 1958, págs. 335-342.