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ABSTRACT

This work deals with the application of a developed compressible Navier-Stokes finite element code to flow
around helicopter’s configurations. This is one of the first trials to apply this kind of numerical technique in
this area where it is very common to find finite differences and finite volumes results. This study is part of
a project that includes several stages of development covering from single rotor simulation in vertical and
forward flight, interaction with fuselage, aeroelasticity, to the final goal which is the prediction of the aeroa-
coustic behaviour of the system and to diminish the noise generated by the coupling between fluid dynamic
patterns. So, this problem contains a lot of interesting and challenging parts mostly under research. Here
our concern is centered on the simulation of helicopter in hover condition including a preliminar study of
the fluid dynamic phenomenon specially that concerned with blade vortex interaction in vertical flight. A
video with the simulation results is presented.

INTRODUCTION

The need to accurately calculate the flowfield of an helicopter rotor in both hover and forward flight is of
great practical importance. Unlike the flowfield of a fixed wing, the flowfield of an helicopter rotor is generally
more complex to analyse because it provides some of the most complex challenges to be found in the field of
applied aerodynamics. The complexity stem from several peculiar problems that are unique to the helicopter
rotor. These include a radially increasing blade speed that is responsible for a high concentration of bound
circulation over the outer portion of the blade, resulting in a strong trailed tip vortex and a spiraling wake
vortex sheet. The vortical wake initially remains close to the rotor, causing strong blade-vortex interactions.
Other factors are the high centrifugal force field in which the blades operate, the relatively large steady-state
out-of-plane displacement of the rotor blades and aeroelastic response of the rotor itself and finally, mutual
interaction of flowfields of main rotor, tail rotor and the fuselage. These flowfield are often characterized
by transonic conditions and associated shock waves, which make the flow susceptible of threedimensionality
and unsteadiness.! The operating characteristics of such rotary-wing vehicles are strongly influenced by
the vortex wake. The interaction of this wake with the following blades is a potential source of noise and
vibration at low and moderate flight speeds. Discrete frequency noise is usually divided into deterministic
components of thickness and loading noise, blade-vortex interaction noise and high speed impulsive noise.
On the other hand we have the broadband noise consisting of the non-deterministic loading noise sources
of turbulence noise, blade-wake interaction noise and blade self noise.? Accurate prediction of the vortical
wake
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is probably the most important, most studied and the most difficult aspect of helicopter flowfield. Current
methods of analysis of the wake range in complexity from relatively simple momentum theory applications
to free wake lifting surface methods. The inadequacies of these methods have led to recent efforts to use
state of the art computational fluid dynamics (CFD) codes to shed more light on the understanding of this
problem. Finite difference codes for nonlinear compressible potential equations®* and Euler equations®6789
have been used to calculate the rotor flowfield. Initially developed methods using the potential flow and
the Euler formulations were primarily limited to calculating nonlifting rotor flow because of the inherent
limitation of being unable to model the vortex wake with these equations, altough the Euler formulation
has in it the neccesary physics to model vorticity transport correctly. These equations basically lack the
physical mechanism needed to generate the vortex wake. However, in conjunction with wake models supplied
by other specific codes both potential and Euler codes have been extensively used to calculate the lifting
rotor flowfields. The standard experimental data that is used in validating most of these codes has been
the two bladed rotor data of Caradonna and Tung.!® An excellent review of some of the currently available
inviscid finite difference numerical methods have also been presented by Caradonna and Tung'! One of
the most important part of the helicopter rotor flowfield is that represented by tip vortices. This vortices
located at the tips of the rotating blades along with helical wake vortex sheet have tremendous influence
on the operating characteristics of the rotor. Some of the common practical problems caused by such
concentrated trailing vortices are the rotor vibration due to unsteady lift fluctuations, increased induced
drag and the annoying ”blade-slap” (an impulsive noise characteristic). Most of the studies carried out are
basically inviscid in nature and therefore preclude the physical mechanisms neccesary to model correctly the
formation of the tip vortex which involves the complex three dimensional viscous flowfield in the tip region.
Just after the supercomputers were available it was possible to apply Navier-Stokes simulations to this kind
of flows. Understanding the mechanism of the tip vortex formation and its subsequent rollup would provide
a proper insight to control these tip flows and alleviate some of the problems caused by them. The ability
to preserve the concentrated vortices in the finite-difference grid without numerical diffusion has been the
biggest setback until now for progress in this area. Even the most advanced computational techniques,
which use spatial central differencing, lack then proper mechanism to preserve concentrated tip vortices and
convect them in the flowfield without numerical diffusion. However the recently developed upwind schemes in
conjunction with a proper grid choice appear very promising to preserve and convect concentrated vortices.
Alternatively if the properly captured tip vortex is analytically represented then prescribed vortex methods
could be applied to calculate the vortex wake development for several rotations of the blade. These methods
have demonstrated the ability to preserve and convect concentrated vortices even in very coarse grid regions
without significant numerical diffusion.’ The first part of this project consists of the application of a
developed finite element compressible Navier-Stokes code for hovering helicopter rotor and general vertical
flight using different geometries, starting only with the rotor and then including different fuselage selections.
In the author knowledge there is not a previous paper dealing with the use of finite element in helicopter
rotor simulation. The simple geometry involved in the first simulations allow to take periodical boundary
conditions around the rotation axis and therefore the computational domain only cover %7 where N is the
number of blades. In order to validate our code we will begin with flow around an helicopter rotor without
fuselage. For this example there are several results using potential, inviscid and viscous finite volumes
codes and we can use them as a pattern of comparison. In the next sections we present the compressible
Navier-Stokes equations, the finite element formulation used as spatial discretization, some topics related
with GMRES implicit solver and some important remarks about the boundary condition treatment. Finally
we show a video with the results of two numerical simulations, the first for subsonic tip Mach number and
the last for a critical value.

PROBLEM STATEMENT

In this section we include several aspects related with the numerical simulation of fluid flow around
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helicopter configuration in hover.

12 and

for this first stage of the project we focus on the steady state solution. The physics involved in our fluid
dynamic problems is mathematically governed by Navier-Stokes equations. 3D Compressible Navier-Stokes

The problem is established in a non-inertial frame to treat the centrifugal and Coriolis forces

equations are classically written in terms of conservative variables in the following form:

Fé,i - Fél,i +F, (1)

Implicitly we assume ( ); = 9( )/dz;.

U € IR® is the fluid local state vector, where U = [p, pu”, pe]T, with p,u, e as the density, velocity and
total energy of the fluid. F,, Fg € IR>*® are the advective and diffusive fluxes, respectively, that depend on
the state vector and its gradient as:

pu’ 0
F,(U) = | puu” + plays Fq(U,VU) = o
(pe + pyu” (0-u+taq)

(2)

where p,o,q are the thermodynamic pressure, the stress deviatoric tensor and the heat flux vector,
respectively, with

ok = pMujp + ug ;) + Mgk
q; = K0, )

where 1 is the effective dynamic viscosity (considering the turbulence viscosity coming from Baldwin-
Lomax model'®), \ is the second viscosity coefficient, s the thermal conductivity and @ the temperature.

We finish the description of the mathematical model, introducing the state equation of the fluid and the
relation between the energy and two of the thermodynamic variables of the fluid. Specifically we use the
ideal gas law

p/p=RO=Cy(y=1)0 = (v = 1)e
p=(y—1)pi (4)

where R and C,, represent the gas universal constant and the specific heat at constant volume respectively
and 7 is the internal energy

1
i e Sl (5)
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The body force F is:

0
F=r|fcor +fCent (6)
fCent -0
being frr,, = —22 X u and fr, 1 = —2 x £ x x the Coriolis and centrifugal force, respectively. This kind

of advective-diffusive system is incompletely parabolic and not completely parabolic because the continuity
equation has not diffusive term. In the Euler equations case we can use the above system dropping the

diffusive flux terms Fé“ resulting in a pure advective hyperbolic system.

It is useful to rewrite the equation 1 in a quasi-linear form

AU, = (KyUj)+F (7)

where A; = 9FJ/9U is the jth advective jacobian matrix and K;; is one of the components of the
whole tensor K that represent the diffusive jacobian matrix, with F;; = K;;U ;. Expressions for the above
jacobian matrices may be found in several references,*, 16 A7

SPATIAL DISCRETIZATION BY FEM

In order to get a numerical solution of the continuum problem presented in the first section we have
to discretize the problem using a particular numerical method. In this work we use an supG technique
that is very popular in the context of Finite Element Method and is one of the most referenced in the
CFD area,® 18 19 20 21 22 23 24 15 16 25 26 17 Tt ig based on Petrov-Galerkin weighted residual method which
allows to use test functions that can be different from the interpolation ones and not necessarily continuous.
This method introduces the numerical dissipation needed to stabilize the system in advection-dominated
problems, keeping the consistency with the continuum problem. For each node a there is an interpolation
function N, (hat type in 1D, bilinear in 2D, and multilinear in general) and a test function W, = N, + P,
where P, is called the perturbation function. The standard Galerkin method is recovered when we impose
P, =0. The W, (and, of course, P,) are not necessarily continuous through the inter-element boundaries.

The variational formulation of the problem is written in the following form: Given a finite element partition

of the original domain € into elements €2, , e =1,..., Ny with N,; the number of elements in the mesh.

Then the problem is finding U” € S such that V N € V

/Q (NTAUT 4 NI KUY dot
el
+Z/ Pl (AU — (KUY — F) d— /NT]-"+ NTh dr (8)

is satisfied, where h is the diffusive flux imposed on the boundary I'y, and U” is the finite element
approximation of U. & and V are the trial and weighting function spaces respectively, commonly used in

this context.146

The Euler-Lagrange form is obtained through classical integration by parts:
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Ne
Zf/ WI (AU} KU — F) dor
e=1 e

/Fint NI {sz]Uﬂ dl + . NI (an”U’; — h) dl — 0

(9)

where: {an”UZ} (x) = n;i(x) {(KijUZ-)(X+) - (Kz‘jUZ‘)(Xi)} (10)

is the jump in the diffusive flux throughout the inter-element boundary, x is a point which lies there, x*

are points belonging to each side of the boundary and 1, is the inter-element contour. Consistency is
warranted because the continuum solution is also solution of this variational formulation. As we mentioned

earlier the goal in suPG scheme relies on the modification of the standard basis functions in order to stabilize
the discretized problem. Since the publication of the original work in 1982 by Brooks and Hughes? a lot
of work was developed around this subject and a complete list of contributions is out of the scope of this
work. It is important to mention that several different perturbation function approaches have arisen since
the original paper. Here we adopt that most commonly used for Euler and Navier-Stokes equations,?2152617
ie.

P¢ =T AN, (11)
In this expression appears a matrix 7 that varies from different authors and represents the critical point of the
design of the stabilization method. Sometimes called ”intrinsic time scale matrix”, it can be deduced through
its application to simple situations where an exact analytical solution is possible to find. Its generalization

is so difficult and relays on heuristic arguments. In this code we have used the following definition for this

matrix:

7= |BI["" = (IBi| + Bz + [Bs|) " (12)
with |B;| =S, Y1A4|S; , S and A are the corresponding eigenvector and eigenvalue matrices.?”

This expression is valid only for inviscid flows (Euler equations), or it is equivalent to a full upwind
scheme for viscous flows introducing too much diffusion. In this work we have extended the above definition
to Navier-Stokes equations using an scalar factor that is proportional to the Reynolds and Prandtl numbers
and was introduced by Soulaimani et.al .25

IMPLICIT ITERATIVE SOLVER

As we are interested in steady state solutions, the transient term in the right hand side is neglected and
including the time discretization by a finite differences scheme we finally reach the following system:

1

(ZM+C(V)) AU - R(D), (13)
where M, C = R y and R represent the mass matrix associated with the discretization of temporal terms,
the residual jacobian matrix and the residual vector, respectively. The computation of steady solutions using
time marching algorithm allow us to select the time step according to temporal stability and convergence
rate criteria. In the case of explicit solver we know that exists a critical time step that is function of several
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root
boundary

~ Figure 1: Boundary conditions
Far field ~/

numerical and physical paramggr%h%%rdless the right expression for this critical time step'® we know
that one of the principal factor that influence on its determination is the element size. If we adopt a global
time step (the same for all the elements) we penalize those elements which big size. While accuracy in
time were not our concern we can adopt a very popular strategy called time local stepping®® in which each
element of the mesh has its own time step in order to improve the rate of convergence. As it is usual
the criterion is to equalize the Courant number for all the elements. This strategy is specially needed
when there is a strong refinement in the mesh due to the physical properties of the flow involved in the
computation, like shocks, boundary layers among others. Even though this strategy is specially adapted to
explicit computations its implementation within an implicit solver produce some interesting improvement
of the convergence rate.'* The solution of the linear algebraic system 13 may be accomplished by different
strategies. In the explicit case M is usually lumped in order to get a diagonal matrix. Then the solution of
the linear system decouples and it is no neccesary neither to invert nor to store any matrix. These advantages
and its own simplicity make the explicit solver one of the most popular ways to solve linear systems. Its
disadvantage is associated with the strong limitations imposed by stability criteria. In the general implicit
case we need to store and invert the left side matrix and for this task we can choose among direct or iterative
solvers. Direct solvers are frequently used in small and medium size computations like those that appear
in 2D problems but its generalization to 3D problems is restricted for memory and cPU time resources. In
this case we are constrained to use iterative methods. In this work we have used a matrix-free GMRES |,
one of the most referenced iterative solvers in crp applications during the last years??3? To accelerate the
convergence of the GMRES algorithm we have used two different kind of preconditioners. The first one is
introduced into the temporal term like a mass matrix affecting the time evolution of the solution keeping
the same steady solution. This matrix, called I'** improves the convergence rate for all Reynolds and Mach
numbers modifying the characteristic speeds without altering the physical sense of the problem. The details
about this preconditioner are out of the scope of this paper. For further references, see®2.3! The second
preconditioner plays the role of an scaling for the ¢MRES method and in this work we have used a right
preconditioner based on nodal block diagonal matrix®2'*.1® To circumvent memory resources restriction in
large 3D computation we have used a matrix-free version of this algorithm.™

BOUNDARY CONDITIONS

Figure 1 shows the computational domain and the boundary conditions specified for our simulations.
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e Blade root boundary conditions This boundary is generated by a cylinder of radius R; that surround

the rotation axis. It is represented by the surface AA’D’D in figure 1. In this boundary we have applied
symmetry boundary conditions,

Uy =0
Trn =0
symmetry b.c. = (14)
Ton = 0
0,=0
where (7, s,n) are the coordinate axes of a local frame.
e Profile boundary conditions
U=v=w=
{ 0 =06, (15)

with 6, the temperature of the profile.

e Periodic boundary conditions Represented by two planes where exist scalar and vector periodicity

of the variables involved in the computation. In figure 1 the planes AA’B’B and DD’C’C were considered
periodic. In these planes we assume that scalar variables are the same and vectorial variables like velocity

vector are the sames unless the respective rotation between the two planes.
e Far-field boundary conditions The planes ABCD , A’B’C’D’ and BB’C’C are far-field boundaries.

(see figure 1) For this boundary we may apply several strategies. The first one could be standard Dirichlet

boundary conditions with special care about which variable should be fixed. A general rule for compressible
flow takes account of the Mach number and the normal vector of the boundary in order to determine the
variables to be fixed. The second strategy that is very popular for far field boundaries is known as absorbent

boundary conditions. To apply them we transform the differential operator at the boundary and we recover
the characteristics variables. Then we fix those characteristics variable which enter to the domain to a
reference set of variables and we extrapolate the interior variables for those characteristics which leave the
domain. Finally, the third strategy is specially designed for hover helicopter rotors. This kind of treatment

arose because the inadecuacies of the standard boundary conditions for this application. Briefly, we can
explain the difficulties through the recirculating box created by the computational domain when the rotor
is spinning. The quiescent flow conditions at far-field boundary enforce this situation in order not to violate
the conservation laws. The real situation is that the rotor enforce a mass flow that depends on the rotation of
the blade and is entering to the domain in some parts and exiting in another ones. For a more realistic model
a three-dimensional point sink in conjunction with a 1D momentum theory®® was presented by Srinivasan
et-al.3* To describe this model we need to compute two velocities,

My; Cr s Ry\2
Wi — — p Tt
I (7) (16)

that generated by the point sink model and it is evident that is proportional to the radial distance to the
center of rotation (d), regardless the particular coordinate of the point. In this expression R is the radial
distance relative to the coordinate origin and Mtip is the Mach number at the tip of the blade.

The second one is called the exit velocity and appears from a simple momentum theory as:

Cr
W, = =M \/ 5 (17)
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In both expressions appears the rotor thrust coefficient C'p that depends on the rotational dynamic
pressure g, being T’ the thrust.

Cr— ol —
T 2TR qtlp

dip = 3P(QR) (18)
NUMERICAL RESULTS

The test cases were extracted from some numerical simulations and the popular experimental data set
of Caradonna and Tung!?.!! Tt consists of a two-bladed rigid rotor with rectangular planform blades with
no twist or taper. The blades are made of NACA 0012 airfoil sections with an aspect ratio of 6. Two
experimental situations were tested, one for a subsonic tip speed an the last for a transonic case, both with
the same collective pitch angle of 8. = 8°. Reynolds number, based on the blade tip speed and the chord
of the blade was Re = 1.92 x 10% and Re = 3.93 x 106 respectively. Both numerical experiments demanded
approximately four ¢pPu hours to reach a reasonable convergence level.

Mesh generation. The ad-hoc grid generator consists of an structured mesh generator that builds a 3D
mesh by extrusion of a 2D grid. We divide the whole domain in several zones in a similar fashion like a
multiblock grid generator. The first zone is basically composed by the blade and its vicinity. This region

contains the blades itself and is generated by taking a radial projection of the mesh and shifting in the radial
direction from the inner radius to the outer one. For each radial station we have used an O mesh around a
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given NACA 12 profile. It is possible to specify any type of profiles in this stage. In the present work we
adopt an untappered blade tip. It is remarkable that this part of the mesh is refined due to the presence of
the vortex tip. We fill the far field domain around the blade with an structured mesh. The mesh contains
around 50,000 hexahedral elements.

Mtip = 0.44 Figure 2 shows the pressure coefficient for six radial stations covering from r/R = 0.55 to

r/R = 0.95. The tip Mach number is subsonic, around 0.44. These results are in good agreement with those

reported in several references,'0 1 134

Mtip = 0.88 In this case a shock wave pattern with a high suction region over the blade is obtained by
the algorithm. Figure 3 shows the pressure coefficient for several radial stations for the transonic tip case

giving again a good agreement with other numerical and experimental results,'?,11 1 34

A video with several frames showing streamlines from diferent point of view is included where it is
possible to visualize not only the helical vortex sheet shape also the presence of a separation region close to
the tip and the corresponding reattachment.

CONCLUSIONS

The flowfield of a hovering rotor was computed by a finite element code with an efficient implicit solver
for the solution of compressible Navier-Stokes equations. To simplify the mesh generation procedure we
have adopted a multiblock grid strategy with structured blocks inside each block. A very effective set of
boundary conditions was applied in order to capture some important effects related with the formation of
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vortices and wakes. Two different examples were performed and the preliminar numerical predictions are
relatively good considering that the mesh used was relatively coarse ( approximately 50,000 elements).
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