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RESUMEN

Se describe un método para simular el comportamiento aeroeldstico inestacionario, no lineal, y subsénico de
un ala de avién. El flujo del aire y la estructura del ala son considerados elementos de un tnico sistema
dinamico. Las ecuaciones governantes son integradas numéricamente, simultaneamente e interactivamente, en
el dominio del tiempo. Para predecir las cargas aerodinamicas se utiliza nuestra version del método general de
red de vértices discretos (Vortex-Lattice Method). Para modelar la estructura se utiliza un modelo de elementos
finitos lineal; el mismo fue generado mediante MSC/NASTRAN. Los dos modelos antes citados son combinados
de forma tal que las mallas estructurales y aerodinémicas pueden ser elegidas arbitrariamente. El campo de
deformaciones del ala se expresa como una combinacién lineal de sus modos de vibrar libremente, los que son
obtenidos del modelo de elementos finitos, y los coeficientes de esta combinacion lineal son considerados como
las coordenadas generalizadas del sistema dinamico. Un método predictor-corrector es adaptado para obtener
la historia en el tiempo de las coordenadas generalizadas y del flujo de aire. Los resulatos numéricos muestran
claramente que, cuando la velocidad es baja, la respuesta a condiciones iniciales no triviales decae y contiene
mas de una frecuencia. Sin embargo al aumentar la velocidad y/o el dngulo de ataque, el movimiento comienza
a organizarse (la energia se concentra alrededor de muy pocas frecuencias). Finalmente, cuando se llega a la
velocidad de “Flutter” (la velocidad critica), todos los modos, después de un transitorio, responden a la misma
frecuencia. Las simulaciones indican que el factor causante de “Flutter” es un bifurcacién de Hopf supercritica.
A velocidades mayores que la critica, la amplitud de las respuestas parece, inicialmente, crecer linealmente con
el tiempo, luego se transforman en ciclos limites. La amplidud de estos ciclos limites aumenta a medida que la
velocidad aumenta, y eventualmente sufren una segunda bifurcacion de Hopf supercritica y se vuelven inestables;
sus amplitudes y fases son moduladas. En este punto la respuesta puede ser descripta como el movimiento en
un toro.

ABSTRACT

A method for simulating unsteady, nonlinear, subsonic aeroelastic behavior of an aircraft wing is described.
The flowing air and deforming structure are treated as the elements of a single dynamic system, and all of
the governing equations are integrated numerically, simultaneously, and interactively in the time domain. Our
version of the general nonlinear, unsteady, vortex-lattice method is used to predict the aerodynamic forces,
a linear finite-element model of the wing, which is derived from MSC/NASTRAN, is used to predict the
deformations of the wing, and the models are coupled in such a way that the structural and aerodynamic grids
can be chosen arbitrarily. The deformation of the wing is expressed as an expansion in terms of the linear free-
vibration modes obtained from the finite-element model, and the time-dependent coeflicients in the expansion
serve as the generalized coordinates for the entire dynamic system. A predictor-corrector method is adapted to
solve for the generalized coordinates and the flowfield. The results clearly show that, when the speed is low,
the responses to initial disturbances contain many frequencies and decay, but that the responses become more
organized (energy concentrates around a few frequencies) as the speed and/or the angle of attack increases.
Finally, at the onset of flutter, all of the modes, after an initial transient period, respond at the same frequency.
It appears that the flutter-causing instability is a supercritical Hopf bifurcation. At and above the critical speed,
the amplitudes of the responses appear to grow linearly with time initially, but then become limit
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cycles. The amplitudes of the limit cycles grow as the speed increases, and eventually it appears that the limit
cycles experience a secondary supercritical Hopf bifurcation and become unstable; their amplitudes and phases
modulate. At this point the response can be described as motion on a torus.

INTRODUCTION

In this article, we present a method to simulate unsteady, nonlinear, subsonic (more precisely, incompress-
ible), aeroelastic behavior, and to demonstrate the method we focus on wing flutter. Our approach is to
treat the flowing air and the wing structure as elements of a single dynamic system and to numerically
integrate all of the governing equations simultaneously and interactively in the time domain. In so doing,
we calculate the flowfield and the motion of the wing simultaneously. We did not want to restrict the present
simulation to linear equations of motion or periodic responses; hence, the classical approaches to resolving
this dilemma were not applicable here. The present simulation is not restricted to periodic motions or linear
governing equations; as a result, it can predict sub- and super-critical behavior and is a very effective tool
for designing control systems to suppress flutter and reduce gust response.

The development of the current simulation required the development of four essential components: (1) an
aerodynamic model to predict the loads on the wing, (2) a structural model to predict the response of the
wing to these loads and to provide the boundary conditions for the flowfield, (3) a method to combine the
two models, and (4) a method to integrate all of the governing equations simultaneously and interactively.
These are briefly discussed in the following: then some results are presented, and finally there are some brief
concluding remarks.

It would be impossible to review all the literature related to flutter. But, suffice it to say that the present
work is part of a new approach that is currently receiving considerable attention in a number of different
places. It extends the work of Strganac and Mook! and Luton and Mook.?2 It is not the first to use the
concepts underlying the general unsteady vortex-lattice method, but it does add some innovations to the
procedure. It is not the first to use a finite-element model of the wing, but, as far as we know, it is the first
to combine the general, nonlinear, unsteady vortex-lattice method with an industry-standard, finite-element
method. The result is a simulation in the time domain that clearly reveals the physics of flutter among
other phenomena.

In the work that, perhaps, is most closely related to the present work, Tang et al.® recently found limit-
cycle oscillations by using nonlinear plate equations to model a low-aspect, rectangular wing.(Preidikman
and Mook,* in an earlier study of flutter of long-span suspension bridges, found limit-cycle responses when
the structure was nonlinear.) Tang et al. used a crude version of the vortex-lattice method to predict the
aerodynamic loads, calculating the loads on the undeformed flat plate even when there was deformation. We
calculate the aerodynamic loads on the wing in its deformed position using a version of the vortex-lattice
method that is inherently nonlinear and somewhat more refined than what Tang ef al. used. Moreover, we
include initial camber in the description of the wing. There are other significant differences between their
approach and ours.

This article describes part of the work that was included in the first author’s doctoral dissertation. More
details, simulations of wind-excited oscillations of long-span bridges and the use of actively and passively
controlled vanes attached to the bridges to suppress the wind-excited motions, and a rather extensive
literature review can be found there.’

THE AERODYNAMIC MODEL

The boundary layers on the surfaces of the airplane are very thin regions of highly concentrated vorticity.
The basic notion underlying the general unsteady vortex-lattice model is to imitate these boundary layers
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as well as the wakes trailing from the aircraft as vortex sheets. We refer to these two types of vortex sheets
as bound and free (wake) vortex sheets. Here we merge the upper and lower surfaces and place one bound
vortex sheet on the camber surface of the wing. In Figure 1, we represent the free and bound vortex sheets
used to model the wing of a modern business jet. In the figure, the wakes, which were calculated as part of
the solution, are shown at various times steps following an impulsive start.

The circulations enclosing the elements of vortex lattice representing the wing, G, are determined by
imposing the no-penetration condition. Using the Biot-Savart law, we express the velocity associated with
the bound vortex sheet in terms of the circulations, obtain a set of linear algebraic equations, and solve for
the circulations.

To generate the wake, we impose the Kutta condition by shedding vorticity from the trailing edge and
wingtips. Then we convect the shed vorticity at the local particle velocity, using a system of first-order
ordinary differential equations, keeping the circulations around the vortex segments in the wake constant, in
order to render the wake force-free. Thus, vorticity in the wake now was generated on, and shed from, the
wing earlier. As a result, the flow around, and the loads acting on the wing, now depend on what happened
earlier; they are history-dependent and the ”historian” is the wake.

The loads are calculated by multiplying the pressure difference across an element by the area of the element
and the unit vector normal to the surface. Then the moments of these elemental forces are calculated. The
time-varying pressure is calculated from the unsteady Bernoulli equation that has been modified to allow
the evaluation of the time derivative of the potential at fixed point in the moving aerodynamic grid instead
of at a fixed point in space.

THE STRUCTURAL MODEL

An airframe manufacturer generated the structural model of the wing using MSC/NASTRAN. They modeled
the wing as a non-prismatic, linearly elastic, undamped, cantilevered beam with the root rigidly constrained.
The bending and torsional stiffness distributions in the numerical model were adjusted so that the predicted
free vibrations are in good agreement with the observations obtained in the ground vibration test. Simple
two-node Euler-Bernoulli-beam (also known as cubic Hermitian) finite elements are used to model bending,
and linear elements are used to model extension and torsion. In MSC/NASTRAN, torsion, bending around
two axes, and extension are combined into a single element called "CBAR”. The finite-element mesh used
here has 28 nodes; they are on the elastic axis and each one has six degrees of freedom. Connected to the
various structural nodes are rigid cross sections that have both rotary and translational inertia. The mass
centers of these sections do not always fall on the elastic axes and they have rotary inertia; thus, there is
dynamic coupling among torsion, extension, and bending.

The structural and aerodynamic grids are represented together in Figure 2. The structural nodes have
six degrees of freedom and the aerodynamic nodes have three. We emphasize that the two grids can be
arbitrarily selected. To describe the motion of the wing, we use an expansion in terms of the free-vibration
modes of the beam. The time-dependent coefficients in this expansion are the generalized coordinates for
the complete dynamic system.

In the next section we describe how the generalized structural forces are obtained from the aerodynamic
loads, and how the generalized coordinates are used to obtain the motion of the aerodynamic grid.

COMBINING THE MODELS

We begin the description of how the structural and aerodynamic models are combined by relating the
displacements of an arbitrary point, B, in the aerodynamic grid to the generalized structural nodal dis-
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placements. After selecting point B, we find point A on the elastic axis such that points A and B lie in
the same plane perpendicular to the elastic axis. In the elastic reference frame F, the coordinates of these
points are (£4,m4,(4) and (£g,15,(B). Both points have the same 5-coordinate. We assume that sections
perpendicular to the elastic axis are rigid and move and turn with the point on the axis where they are
attached.

After the procedure is repeated for every selected point in the aerodynamic grid, we assemble a global matrix
G 45 that maps the generalized displacements of all of the structural nodes into the displacements of all of
the selected points in the aerodynamic grid. We use the same procedure to find the velocities of the control
points in the aerodynamic grid where the boundary conditions are imposed on the flowfield.

To relate the structural forces Fg to the aerodynamic forces F 4, we require the two force systems to do the
same work for any virtual displacement.

INTEGRATING THE GOVERNING EQUATIONS

The numerical procedure is based on Hamming’s fourth-order predictor-corrector method (see, e.g., Carna-
han et al.?). This scheme was chosen for two reasons: (1) the aerodynamic model provides better results
when the loads are evaluated at only integral time steps, and (2) the aerodynamic loads contain contributions
that are proportional to the acceleration. For both reasons Runge-Kutta type methods are not suitable, but
predictor-corrector methods do not require the loads at fractions of the time step and, because they iterate,
can treat acceleration on both sides of the equation. It turns out that the present numerical scheme, with
some additional modifications, is also ideally suited for ship-dynamic problems (see, Preidikman et al.”).

There are two motions occurring simultaneously: both the wing and the wake are moving to the positions
that they will occupy at the end of the next time step. And, as these movements are taking place, the
distribution of vorticity on the wing is changing. We calculate the new positions of both the wing and the
wake as well as the new distribution of vorticity on the wing simultaneously and interactively.

RESULTS

In this section we compute the unsteady aeroelastic response for a wing of the type that can be found on a
modern business jet.

In Figure 3, the computed response to an initial disturbance is represented for two angles of attack; the
seven modal(generalized) coordinates are plotted as functions of time. The speed is below the critical flutter
speed, and all of the amplitudes decay to the steady-state values that correspond to the static deflection
of the wing. The difference in the two responses is very noticeable; however, in both cases the third mode
decays very slowly. This mode is the fore-and-aft, in-plane motion. There is no damping in the structural
model, and the aerodynamic forces provide very little damping for this motion.

The response of the wing, which is a combination of all seven modes, clearly consists of components at
many frequencies. At the lower angle of attack, there is considerable cross contamination of one mode by
the others. At the higher angle of attack, the motion is a little more organized, with each mode having
its energy somewhat concentrated around one frequency. Later we will see that as the flutter boundary is
approached, the motion begins to organize, concentrating energy first around a few frequencies and finally
around one. This result suggests that at a fixed speed it may be possible to induce flutter by increasing the
angle of attack. In the next set of figures, we see how this organization evolves as the speed increases. The
strengthening organization is a good indicator that the aircraft is nearing the flutter speed.

In Figure 4, the FFTs and histories are given for a series of responses at different speeds at the same angle
of attack. Only the first (bending) and fourth (torsion) modes are shown in each plot. The wing has become
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unstable between the last and next to last cases represented. In the last case, the frequencies of the two
modes have clearly merged. In fact, all seven modes are now responding at the same frequency. Higher
harmonics are apparent in the responses of the three highest modes, especially in that of the sixth mode.
The motion of the third mode contains its strongest component at the merged torsion-bending frequency;
that is, the in-plane motion is now also responding at the merged frequency, but there is some energy at
a higher frequency, which also appears to be a harmonic of the merged frequency. The transitions from
the natural frequencies of the modes to the common frequency of flutter are also apparent in these plots,
especially in the one for the second mode.

Unstable (after the onset of flutter) responses are represented in Figure 5. They are limit cycles. The growth
in the steady-state amplitudes of the limit cycles as a function of speed is not explosive, but appears to start
at zero; therefore, the instability is most likely a supercritical Hopf bifurcation. It is questionable whether
the first two responses should be considered unstable. They are near the critical and perhaps would decay
completely if the solution were extended for more time. The amplitudes of the remaining responses grow
linearly with time, at least initially, as one would expect from the classical analysis of flutter. For these
responses to be true limit cycles, the motion must evolve into the same steady-state response for all initial
conditions. We have found that such is the case. The motion is dominated by the first, third, and fourth
modes. As expected, for the reasons mentioned above, the response in the third mode contains more than
one frequency.

Returning to Figure 5, we note that, as the speed continues to increase above the flutter speed, the amplitude
of the limit cycle continues to grow and eventually begins to modulate, slightly at first and then quite
noticeably. This behavior, which is first noticeable in the third-from-last response represented in the figure,
indicates that the motion has passed through a second super-critical Hopf bifurcation, and that the amplitude
and frequency of the response modulate. The response in this case is often described as motion on a
torus. The FFT of the first mode shows side bands and extra frequency associated with motion on a
torus. The nonlinear behavior that appears here is solely the result of having a nonlinear aerodynamic
model; the structural model is linear. Also, computer movies of the modulated responses show rather large
deformations, especially in torsion, and suggest that the structure will break before such behavior develops
in a real aircraft. Finally, we emphasize that all of the instabilities found in the present simulations occurred
well outside the flight envelope of the aircraft used in the numerical example.

CONCLUDING REMARKS

A method for simulating the unsteady aeroelastic behavior of wings has been developed. The flowing
air and the deforming wing structure are treated as elements of the same dynamic system. The present
development is consistent with such industry-standard programs as CATIA and MSC/NASTRAN. The
simulation consists of four parts: an aerodynamic model to predict the load on the wing, a structural model
to predict the response of the wing to this load and to provide the boundary conditions on the flowfield,
a scheme for the two models to communicate with each other, and a method to integrate the governing
equations of the complete system. The deformation of the wing is expressed as an expansion in terms
of its linear free-vibration modes, which are determined from the structural model. The time-dependent
coefficients in this expansion are the generalized coordinates for the entire dynamic system, and the equations
governing them are integrated numerically in the time domain. The simulation is organized in modules so
that the aerodynamic and structural models can be changed without changing the basic organization of the
simulation.

As a numerical example to illustrate the method, we studied the response of a wing which is representative
of that of a modern business jet. The numerical results predict that at low speeds all initial disturbances
decay; that as the speed increases, the organization of the response becomes more organized; and that
eventually the frequencies in the response merge into a single frequency. Coincident with the merger of
frequencies, the response becomes unstable. In the initial portion of an unstable response, the amplitude of
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the motion grows linearly with time; subsequently the response develops into a limit cycle. The amplitudes
of the limit cycles are rather small initially, but grow as the speed increases; this is behavior which suggests
that the bifurcation is supercritical. If the speed increases sufficiently, the response appears to experience a
secondary, supercritical Hopf bifurcation after which the amplitude and the phase of the response modulate.
At this point the response can be described as motion on a torus.

The rich nonlinear behavior of this dynamic system is due entirely to the aerodynamic model, which is
inherently nonlinear. Earlier studies found limit cycles in the response when nonlinear structural models
were used. Here the structural model is linear and the aerodynamic model is nonlinear. When nonlinear
structural models are used in future simulations, we expect to see an even greater range of nonlinear
phenomena.
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