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Abstract. This paper deals with the crack detection in structural elements by means of a generic al-

gorithm optimization method. Both beam-like structures and arbitrary shaped structural elements may

be handled through bi- and three dimensional models. The crack model takes into account the existance

of contact. Many of the methods to detect a crack in beam-like structures are based on linear one-

dimensional models and are not straightforwardly applicable to structures such as beams or arcs with

an open crack or a breathing crack without or with contact. The present study deals with bi- and three-

dimensional models to handle the dynamics of a structural element with a transverse breathing crack.

The methodology is not restricted to beam-like structures since it may be applied to any arbitrary shaped

3D element. The crack is simulated as a notch or a wedge with a unilateral Signorini’s contact model.

The contact may be partial or total. All the simulations are carried out using the partial differential solver

of the general purpose, finite element code FlexPDE. A genetic algorithm (GA) optimization method is

successfully employed for the crack detection. The dynamic response at some points of the damaged

structures are compared with the solution of the computational (FE) model using least squares for each

proposed crack depth and location. An objective function arises which is then optimized to obtain an

estimate of both parameters. Physical experiments were performed with a cantilever damaged beam and

the resulting data used as input in the detection algorithm.
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1 INTRODUCTION

The first research on the damage detection through vibration measurements were published

before the experimental modal analysis. The computational power and the experimental capac-

ity to data acquisition were very limited at that time, which may explain that the first detection

methods reported in literature are only based on natural frequency changes. In the review by

Doebling et al. (1998), Lifshitz is mentioned as the authors of the first published article using

the vibration data to diagnosis the damage. From the data obtained parameters related with

the value of the stress tensor were found as indicators of the damage. Back to the eighties fi-

nite elements started to be used as a computational tool to model damaged structural elements.

Changes in the natural frequencies was the first and more studied criterium. Salawu (1997),

Dimarogonas (1996), Owolabi and Seshadri (2003), Kim and Stubbs (2003) may be a reference

on this research line. Khiema and Lienb (2004) employ these technique to detect many cracks.

Some tries to detect the damage from the inverse problem were studies by Law and Lu (2005)

and Rao and Rahman (2006). Anyway, the bad conditioning makes it difficult the detection as

a pure inverse problem. Many works dealing with straigth beams has been reported. Wang and

He (2007) use artificial neural networks (ANN) to detect crack in arc structural elements. The

authors of the present work have employed ANN in beam-like structures and rotating beams

(Rosales et al., 2006),(Rosales et al., 2008). The genetic algorithms appear as a good idea

(Houck et al., 1995) to optimize an objective function that depends on the crack position and

magnitude when a nonlinear dynamic is present, either due to large rotations or contact at the

crack closing. Extensive work in this direction may be found in (Carneiro and Inman, 2000;

Carlin and Garcia, 1996; Friswell et al., 1998). Contact at the crack can be modeled in many

ways. Carneiro (2000) proposed a breathing crack model for a Timoshenko beam. These mod-

els have been employed in other areas of the Mechanica by Raous (1999); Kikuchi and Oden

(1998). A thorough and detailed study of the mechanics of contact can be found in Johnson

(1987). The structural models implemented in the present work are referred to the undeformed

configuration or Lagrangian using the first and second Piola-Kirchoff tensor (Lai et al., 1993;

Eringen, 1980; Truesdell and Noll, 2003).

The present study deals with bi- and three-dimensional models to handle the dynamics of

a structural element with a transverse breathing crack. The methodology is not restricted to

beam-like structures since it may be applied to any arbitrary shaped 3D element. The crack is

simulated as a notch or a wedge with a unilateral Signorini’s contact model. The contact may

be partial or total. All the simulations are carried out using the partial differential solver of the

general purpose, finite element code FlexPDE.

A genetic algorithm (GA) optimization method is successfully employed for the crack de-

tection. The dynamic response at some points of the damaged structures are compared with

the solution of the computational (FE) model using least squares for each proposed crack depth

and location. An objective function arises which is then optimized to obtain an estimate of

both parameters. The optimization algorithm is developed within the MatLab environment and

interacts with the FEM model. It was found that the functions present a large number of local

minima. Given such a complexity, the standard optimization techniques (e.g. gradient methods)

are not successful when used directly. Here the GA shows very acceptable behavior. Extensive

studies were carried out to analyze the influence of the various parameters involved in the GA.

The parametric studies allowed to set the optimal values for this problem like population, re-

production (heuristic crossover), number of generations, etc.

Large number of cases regarding crack detection in beam-like structures have been analyzed
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Figure 1: Real crack and the detection model.

within the present study. Physical experiments were performed with a cantilever damaged beam

and the resulting data used as input in the detection algorithm. Both lineal and non-linear models

were considered for the material. Here the first one is employed since the initial conditions

given to the structural element in order to start the motion yield small deformations. The results

were confirmed with the non-linear model. A general isotropic linear constitutive relationship

between the second Piola-Kirchoff stress tensor and the Green-St. Venant strain tensor was

proposed for the non-linear case. Additionally and when dealing with numerical experiments,

a white noise was introduced and it was found that the errors remains in the same range. As

the procedure is not restricted to beam-like elements other geometries were tackled, e.g. an

arc (curved beam) and a blade-like structural element. Crack detection results on the latter are

also reported. The methodology allows up to a third level detection, i.e. detection of damage

existence, location and depth. The errors are reasonable given the nonlinearities introduced by

the contact problem and the inherent complexity of the inverse problem.

2 STATEMENT OF THE PROBLEM

The crack detection will be performed on structural elements that will be tackled with two

and three dimensional finite element models. In what follows a brief introduction on the gov-

erning equations within the Solid Mechanics field will be stated. Also the contact issue at

the crack interface will be described. The beam problem (Figure 1) is the structural element

more extensively studied since it allows for adjustments and validation but any arbitrary shaped

structure(2D or 3D) could be handled. To show this fact, the crack detection in a blade-shaped

element is included as an illustration.

2.1 Equations of Motion

The statement of the governing equations is made withing the frame of the Mechanics of

Continuum with a lagrangian or material reference showing some advantages with respect to

the spatial or eulerian reference for Solid Mechanics problems. For instance, if the continuum

problem is given in the eulerian reference, besides the equations of motion (Cauchy equations)
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(using direct notation)

∇ · σ + ρb = ρa (1)

the mass continuity should be guaranteed,

dρ

dt
+ ρ∇ · v = 0 (2)

where σ is the Cauchy stress tensor, ρ is the mass density, b are the body forces and a and v are

the acceleration and velocity fields respectively. It should be noted that both a and v and dρ

dt
are

found as material derivatives, which impose a strong nonlinearity to the differential equations.

For instance, dρ

dt
= ∂ρ

∂t
+v ·∇ρ. This is not the main drawback since if the body undergoes spatial

finite displacements, the statement of the boundary equations is a mathematically inconsistent

problem given that the position itself is one of the unknowns. However quasi-static update tech-

niques applied to the boundary position regularize the problem. Now, if a lagrangian reference

is used, only the motion problem should be solved,

∇ · P + ρ0b = ρ0A (3)

where P is the Piola - Kirchoff stress tensor, ρ0 = ρ(X, t0) is the initial density (which is

known) and A = ∂V

∂t
= ∂2

R

∂t2
(R is the position vector) is the acceleration field, that is simply

the partial derivative of the velocity field.

The boundary conditions are imposed to the initial boundary (its position is known), leaving

the statement of the boundary problem, the initial conditions and the equations of motion con-

sistently closed. The position of any point of the body, including the boundary, will be known

once the differential problem is solved. The nonlinear part is transferred to the tensor P. This

tensor is non-symmetric and its physical interpretation is not straightforward. The second Piola

- Kirchoff tensor is symmetric and given by P = FS where [F]ij = ∂ui/∂Xj is the deformation

gradient tensor, ui is the i − th component of the displacement vector u(X,t) = x(X,t)− X ,

Xj is the j − th component of the material field X and x is the position vector (spatial field).

Thus the equations of motion are written as

∇ · (FS) + ρ0b = ρ0A. (4)

We need to relate S with the motion to round the differential problem that has vector u

as unknown. Both tensor P and S are related to the Cauchy tensor σ. Here a very simple

constitutive equation is proposed,

S = λ tr(E)I + 2γE (5)

where λ and γ are constants and E is the Green’s strain tensor. Equation (5) is known as

St. Venant–Kirchhoff material model (Truesdell and Noll, 2003) that, as is obvious, tends to

Hooke’s law for infinitesimal displacements, elastic homogenous and isotropic bodies (if E → ε
then S → σ = λ tr(ε)I + 2γε) and λ and µ Lamé constants λ = νE/(1 + ν)(1 − 2ν) , γ =

E/2(1 + ν), ν is the Poisson’s coefficient and E the modulus of elasticity. εij = 1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

is the infinitesimal deformation tensor.
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Figure 2: Scheme of contact between a deformable body and a rigid obstacle.

3 CONTACT MODELS

In this section a unilateral contact model between bodies undergoing arbitrary deformations.

This type of problems presents large difficulties on the one hand due to the nonlinearities and

on the other due to the difficulty of stating and solving a no holonomic restrictions problem,

as is the present one. The regularization to a holonomic problem overcomes the obstacle and

makes the way to more complex models that include friction, adhesion, etc.

3.1 Real contact surface

The real contact surface between two bodies is of the partial type between the roughness of

both bodies. As the interpressure increases, the borders irregularities deform thus increasing the

contact area. Not only the mechanical issue is present in the contact but also chemical reactions,

electrical and thermal effects are present though not enough understood yet. In the present study

the authors do not go deeper in the physical and chemical tribology issues.

3.2 Unilateral contact

As a first approach to the contact model let us supose that a deformable body interacts with

a rigid and fixed obstacle. The contact condition is the no penetration of the body in the rigid

obstacle.

3.2.1 Signorini problem

Let a body B with domain Ω in the space (or in a plane). B has a sufficiently smooth

boundary Γ = ΓF ∪ ΓD ∪ ΓC which is sufficiently smooth which is in contact with other body

R that is rigid and fixed in the plane, (if it is plane). The part ΓF of the boundary Γ corresponds

to the boundary where the stresses are prescribed (natural conditions of the problem) (Eq. 3).

ΓD corresponds to the part of the boundary where the displacements are prescribes (geometric

conditions) and ΓC is the part in contact with the rigid body R (see Figure 2)

At the contact region Γc the displacements u and stresses tc may be decomposed in normal
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Figure 3: Signorini’s law. tcN is a multi-valued function of uN at zero.

and tangential components in the following way

u = uN en + uT et (6)

tc = tcN en + tcT et (7)

The Signorini problem (unilateral contact) is (see Figure 3)

uN ≤ 0
tcN ≤ 0

uN tcN = 0







(8)

It is easy observed that the Signorini conditions 8 are satisfied only with one of the following

possibilites

1. No contact ⇒ uN ≤ 0 y tcN = 0

2. Contact ⇒ uN = 0 y tcN ≤ 0

The conditions (Eq. 8) form a non-continuous or non-smooth problem since tcN is a multi-

valued application of the field uN (or simply tcN is not function of uN). From the Analytical

Mechanics viewpoint the Signorini conditions form a non-holonomic constraints given by in-

equalities. This is apparent in the fact that neither the stresses nor the contact surface itself are

known before solving the problem. If this were solved, the deformation could be calculated but

they are necessary to the statement of the classical boundary problem. In other words, within

the Continuum Mechanics the knowledge of the boundary conditions is mandatory to solve

the problem, but on other hand the Signorini problem deals with the boundary conditions as

unknown.

3.2.2 Extensions

Regarding the contact between two deformable bodies of two part of the same body, the

Signorini problem allows to easily solve the contact problem if the deformations and displace-

ments are infinitesimal, by making a change of variable. Now the problem is double (one for
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each body surface and in the present study, one for each crack interfase).

d(x1, x2) ≤ 0
tcN1 ≤ 0

x1 tcN1 = 0







(9)

d(x2, x1) ≤ 0
tcN2 ≤ 0

x2 tcN2 = 0







(10)

where d(x1, x2) is the distance between the spacial points x1 that corresponds to body 1 and

x2 that corresponds to body 2. The advantage in using infinitesimal displacements is that unit

vectors N2 = −N1 and the pair of points x1 and x2 are known before solving the problem and

are on the surface normal.

Instead, if the displacements or deformations were finite, there would be no knowledge re-

garding which pair of point would be in contact nor the corresponding unit normal vectors. The

smallest distance between all pair of points (one of each body) should be calculated and also

evaluate the unit normal vectors for such pair of points.

min(d(x1, x2)) ≤ 0
tcN1 ≤ 0

x1 tcN1 = 0







(11)

min(d(x2, x1)) ≤ 0
tcN2 ≤ 0

x2 tcN2 = 0







(12)

3.2.3 Regularization of the non-holonomic Signorini problem

The contact law stated in the previous subsection is of holonomic type, since no regular

equation given by an equality exists. Instead the contact problem poses a restriction given by a

set of inequalities. Furthermore, when contact takes place, the stress value is not defined and,

when there is no contact, the displacement value is not defined. This intermittency between a

natural type condition and other of geometric type is what gives the non-regular character to

the contact problem since the moment when the condition shifts from one to other state is an

unknown of the problem.

The regularization idea consists in replacing the rigid condition by a smooth or regular

one. The holonomic restriction problem is replaced by a non-constraints problem. The bound-

ary condition will always be natural with the imposition of a functional relationship between

stresses and displacements.

tcN =

{

−k (uN)
m

if uN > 0
0 elsewhere

(13)

where k is a number that, if sufficiently large, the problem given by Eq. 13 will approximate to

Eq. 8 (see Figure 4)

4 OPTIMIZATION PROBLEM APPLIED TO THE CRACK DETECTION

First the optimization problem is stated. Then the genetic algorithm is briefly described and

the studies carried out to adjust the procedure are described.
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Figure 4: Regularization of Signorini’s law. tcN is continuous function of uN at zero.

4.1 Optimization

The optimization of the inverse problem is attained through a least square criterium, i.e. the

dynamic responses obtained from the experimental model are compared with the solution of a

computational FEM model at certain points of the structure. The measurements are made at few

points (no more than five). The detection problem consists in reconstructing the dynamic with

this scarse information in order to solve the inverse problem by introducing the motion data and

having the shape of the crack boundary as unknown (in the present study characterized by two

parameters, crack depth —hc— and location —Xc). Figure 5 shows an scheme of the dynamic

experiment in which a perturbation introduced by hitting a hammer originates the transverse

motion (though any type of motion could be studied). In the figure three sensors are shown, e.g.

accelerometers, at three different locations. Finally an acquisitor completes the set up to obtain

the data which yields the time functions u(xi, t) with i = 1, · · · , n (n = 3 in Figure 5).

On the other hand a computational model with a crack of parameters Xc and hc of arbitrary

values and displacements u∗ (xi, t) at the same points in which the accelerometers were located

in the physical experiments. The comparison is then made between the two functions u(xi, t)
and u ∗ (xi, t). The objective function to be optimized in this study is

d(Xc, hc) =
1

t2 − t1

∫ t2

t1

n
∑

i=1

[u ∗ (xi, t) − u(xi, t)]
2
dt (14)

It was found that this objective function exhibits a large number of local minima. For such

a complexity the usual optimization techniques based on gradient methods are not always suc-

cessful. Then an approach based in a genetic algorithm is employed to perform the optimization.

4.2 The genetic algorithm (GA) approach

The GA method to solve optimization problems based upon the natural selection is inspired

by evolutionary biology. A population of possible solutions of an optimization problem is gen-

erated by this technique. Each of these solutions is named individual. The individuals which
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Figure 5: Scheme of experimental setup to detect the crack in a cantilever beam.

are closer to the real solution (i.e. the fitter) will be more capable to pass their (genetic) infor-

mation to the next generation. In each generation the population evolves towards the optimal

solution of the problem and the (genetic) information that passes from generation to generation

will change according to the following rules:

Selection rule : a selection of the individual named parent is made following certain criterium

that contributes to the next generation population.

Crossing rule : two parents are combined to create children for the next generation.

Mutation rule : random changes are introduced on the parents individuals that ensure the

(genetic) diversity.

In particular, in the crack detection problem a set of values J = (XcJ , hcJ ) is given. Each

pair is an individual and the population is the whole set. The GA starts generation a random

initial population of individuals. At this stage it is relevant to guarantee the largest diversity

of solutions. Then new populations are generated. The steps followed in the GA optimization

approach are briefly described below. For more detailed information, related bibliography may

be consulted e.g. Houck et al. (1995), Carneiro (2000),Matlab (2006).

1. Evaluates each individual of the initial population (XcJ , hcJ)

2. Orders the individuals giving them larger scores to the ones that yield a smaller d(XcJ , hcJ ),
i.e. better fitted.

3. Selects the individuals with larger scores (parents).

4. New individual are generated (children) through various ways: by means of random

changes of a single parent (mutation) by combining the vector elements of a pair of indi-

viduals (crossing) or by identically repeating a child from a parent.

5. The parents population is replaced by the children (new generation).
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Case 1 2 3 4 5 6 7 8 9 10

Crack location Xc 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 2

Crack depth hc 0.1 0.1 0.2 0.2 0.1 0.2 0.1 0.2 0.1 0.2

Table 1: Simulated scenarios.

6. The genetic iteration ends when d(XcJ , hcJ ) verifies some convergence criterium. Usu-

ally two criteria are employed (run the GA until a maximum number of times is reached

or stop it no more changes are evident.

4.3 Adjustment of GA parameters

Different variables where tested to implement the GA algorithm in the crack detection prob-

lem by varying one parameter at a time and studying its optimum value. The parameters can be

the simulation time, the number of sensors, the crack depth and location, and more specifically

within the GA, the number of individuals, mutation parameters, maximm number of genera-

tions, crossing types. In the cracked beam problem an adjustment study was performed with the

following example. A 2D elasticity finite element model is employed to study a clamped-free

beam. The length is L = 2.5 m, the cross sectional area is A = 0.25 m2, the elastic material

has a modulus of elasticity E = 7.31010 Pa, ν = 0.3, mass density ρ = 2766 kg/m3. In this

case the beam is assumed undamped. The dynamics is simulated and the response u(Xn, t) is

obtained with n = 4 simulating four sensors located at Xn = nL/5 that measure the transverse

motion of the beam of Figure 5.

Regarding the parameters of the GA, the following are considered: uniform initial distribu-

tion, rank scaling, stochastic selection, elite count for the reproduction equal to 2 (this means

that the two best individuals pass unaltered to the following generation), crossover fraction=0.8

(this corresponds to the 80% other than elite children) and scattered (the objective function is

only dependent of two variables d(Xc, hc)). The mutation is of the gaussian type and the stop

criteria is a maximum number of ten generations and five repetitions for which the objective

function does not improve. Graphics of the fitness function give clue of the necessary number

of generations that are useful in the calculations. Among the parameters the crossing type was

one of the studied. After various runs, it was concluded that the heuristic crossover with r = 0.6
was the optimum selection. In order to abstract statistical information of the parameter adjust-

ments, ten scenarios are simulated (Table 1), using the heuristic crossover with r = 0.6 and

now the number of individuals (population) is varied. A maximum number of five generations

is adopted. The initial condition is a transverse velocity vy = −2x and the simulation time is

0.15 s.

The following non-dimensionalized error is computed

eX =
Xc − X∗

c

L
; eh =

hc − h∗

c

A
(15)

where Xc and hc are the crack location and depth ; X∗

c y h∗

c are the crack location and depth that

GA finds. The values ex and eh are the relative errors of the crack location and depth. The sum

er = |ex| + |ex| is the total error of each simulated scenario, which is a very strong measure.

In order to establish the number of individuals necessary to attain acceptable results, the GA is

run with different values of populations. The average errors are shown in percentage in Figure

6. The GA detects better the damage as the number of individual increases. An average total

error less than 10 % is satisfactory.
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Figure 6: Influence of the population value.

Relative noise 0.1 0.2 0.3

Average error % 6.28 7.71 5.39

Table 2: Noise influence. Average errors.

In order to asses how long should be the experiment, the GA is run for a population of

50 individuals changing the simulation times. The percentage errors averaged are depicted in

Figure 7.

The GA is not as efficient to detect the damage as the simulation time increases. The reason

is that the objetive function d(xc, hc) exhibits a larger number of local minima as the simulation

time increases. Consequently, if a detection is desired in the case of a response of large duration,

larger populations should be employed. An empirical rule adopted in the present study is to take

50 individuals por each one and a half fundamental period of the undamaged specimen.

4.4 Noise influence

Up to this stage crack detection problems on a beam with a simulated dynamic were dealt

with. No uncertainties are included in the model neither the unavoidable experimental errors.

With the aim of studying the robustness of the proposed methodology to more realistic signals,

a white noise is incorporated to the signal of the simulated dynamic, keeping the population

(50) and simulation time (0.05s, one and a half period of the healthy beam approximately)

Each of the noise signals have a relative magnitud of 0.1, 0.2 and 0.3 relative to the original

signal and 1, 2 and 3 with respect to the first sensor. Table 4.4 depicts the average errors

calculated by the sum of 15 for the same ten scenarios. The robustness of the detection method

to this levels is noise may be observed.

4.5 Diffuse crack

The encouraging result from the previous subsection gives the way to the treatment of sys-

tems with inclusion of model uncertainties. A very exact computational model that simulates

realistically the dynamics of a cracked body is available. But notwithstanding the detailed mod-
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Figure 7: Influence of the simulation time. Population of 50 individuals.

Case to detect Detected by GA

caso (Error %) xc hc x∗

c h∗

c

1 7.161 0.3 0.1 0.32 0.115

2 8.124 0.7 0.1 0.55 0.105

3 4.647 1.3 0.2 1.25 0.206

4 6,724 1.5 0.2 1.36 0.197

5 41.32 1.9 0.1 2.37 0.044

6 6.508 1 0.12 0.98 0.134

Table 3: Diffuse crack. Six studied cases.

eling, it still has simplifications. A real problem presents uncertainties in the physical model that

are approximated with theoretical or computational models which will be more or less closer to

the physical model. The question that arises is, what is happening when a detection is desired

in a real specimen with a real crack using this scheme? Let us suppose that the real crack be

arbitrary shaped as shown in the left lower part of Figure 1. Will it be possible to detect such

crack if its model is given by the scheme shown in the right lower part of Figure 1?

To answer this question, the simulation of the cracked beam dynamics different from the

single crack model. In particular a diffuse type (five cracks in a small region, Figure 8) is

simulated as it were a real experiment of a real body and the model of a single crack used to

make the detection. The parameters are the individual numbers (50) and the simulation time

(0.05 s).

Table 3 contains the six studied cases. The errors are calculated as defined above (i.e. the

sum of the relative errors of each crack parameter). Only the 5th. case can be considered a

failure.
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Figure 8: Diffuse crack models and detection model.

4.6 Experiment

Once the GA parameters and the simulation time have been chosen and accepting certain

robustness in the crack shape and the experimental noise, the detection is performed in a real

specimen. Two PASCO accelerometers are employed, each with mass m = 34.7g. The rod

is made of aluminum, of length L = 41.5 cm (free length), square cross-section of side a =
0.788 cm. The beam is clamped at a table and the accelerometers are located at x1 = 23.25 cm

and x2 = 34 cm from the clamping. Since the model uncertainties are unavoidable, either in the

boundary conditions, damping coefficients, elastic modulus or inhomogeneity of the material,

a zero setting is carried out to homogenize the parameters in such way that the differences

between the computational and physical models be a minimum. Using the GA algorithm the

function

d(E, µd) =
1

t2 − t1

∫ t2

t1

2
∑

i=1

[u∗(xi, t)− u(xi, t)]
2
dt (16)

is minimized to find the following parameters: elastic modulus E y and the external damping

coefficient µd (air friction), for a period t2 − t1 = 0.1 seg. The GA algorithm were set with

a population of 50 individuals, heuristic crossover up to 5 generations giving the following

optimum parameters: E = 36.567 109Pa, µd = 840.57.

In order to reproduce in the physical test the same initial condition a weight of mass m =
266.12 g is hung from the free end of the beam. Then, to initiate the motion, the thread is cut

with fire. Thus a minimum perturbation in the initial condition is ensures. The two motion

sensors register the vibration motion of the undamaged beam in the acquisitor. Figure 9 shows

the accelerations at points x1 and x2 for the experiment and 10, the ones corresponding to

the simulation with the optimal parameters taking into account the masses and location of the

accelerometers.

Certain similarity is observed in the acceleration amplitudes as well as the dissipation of the

signals.
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Figure 9: Acceleration at points x1 (blue) and x2 (green) for the undamaged beam. Physical model.

Figure 10: Acceleration at points x1 (blue) and x2 (green) for the undamaged beam. Computational model.
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Figure 11: Scheme of the cracked aluminum beam.

Case xc/L hc/a xc/L detected hc/a detected

1 0.337 0.329 0.378 0.257
2 0.337 0.507 0.282 0.366
3 0.337 0.634 0.357 0.548

Table 4: Crack parameters detected with GA using a physical experiment.

To asses the damage in the beam and once the model is calibrated, notches are made with

different depths: 2.6 mm, 4 mm y 5 mm and of 1 mm width, at 14 cm from the clamping (see

Figura 11).

Again, the optimization of d(xc, hc) is made for the time t2 − t1 = 0.1 seg using E =
36.567 109 Pa,µd = 840.57 with parameters: a population of 75 individuals, heuristic crossover

with up to 5 generations.

This shows that the methodology may be employed to detect crack depth and position consid-

ering the opening and closure of the crack in a dynamic experiment of a damaged specimen. At

this stage of the study, the experiment was performed which rather low precision instrumental,

in order to design the methodology. Nevertheless, the results may be considered encouraging.

4.7 Crack detection in a blade-like element

Since the developed mechanical model is general regarding the type of motion (large defor-

mations, rotations and displacements) and the geometry, 3D models of arbitrary shaped struc-

tural elements can be studied. Figure 12 depicts an scheme of a blade-like element that could

resemble the blade of a wind turbine. The blade is made of steel and the geometry is gener-

ated by a plane that models the plane shape with a length L = 8 m and a maximum width

of a = 1.55 m. The blade is very thin (0.08 m) and the warping along its length is given by

0.04 + 0.04· and ·(x− 1)− 0.1 ·x. The blade rotates 10 rad/seg around axis z and a simulation

of almost a complete rotation is simulated with 0.5 s without including noise. The material

model corresponding to steel is given by Eq. 5 where the Lamé constant correspond to steel

and are found with E = 2.05 × 1011 Pa and ν = 0.3. The GA parameters are: population 75,
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Case xc/L hc/a xc/L detected hc/a detected Error %

1 0.375 0.645 16 0.351 39 0.678 06 5.6 51
2 0.287 5 0.06 451 6 0.312 70 0.05 805 7 3.023

Table 5: Crack detection in a 3D blade-like element.

Figure 12: Views of the 3D blade-like structural element.

10 generations, heuristic crossover withr = 0.6. Case 1: xc = 3 m; hc = 1 m and Case 2:

xc = 2.3 m; hc = 0.1 m. The results are shown in the following table,

5 FINAL COMMENTS

A methodology based on genetic algorithms to be employed for the crack detection on dam-

aged structural elements was presented. The technique proved to be successful in the studied

cases and allows up to level three detection. The optimization is performed to an objective func-

tion constructed from the dynamics of the studied body. This dynamic is modeled within the

Mechanics of Continuum with a lagrangian reference which offers important advantages when

a contact model at the crack interfaces is desired. The breathing crack was idealized either by

a straight notch or a wedge and following Signorini’s contact theory of two bodies with finite

deformations. Since arbitrary shaped bodies can be handled with the present nonlinear elastic-

ity approach, different shape cracks, realistic contact simulations, arbitrary motions, arbitrary

shaped structural elements can be tackled. First crack detection was perfomed using computa-

tional experiments and afterwards a physical experiment on a beam was employed to validate

the methodology. Extensive computational studies were performed to calibrate and find the

optimum GA parameter values and the damaged body dynamics. A relevant conclusion was

that the number of individuals is directly proportional to the simulation time for long time peri-

ods. Additionally, the crack detection was applied to the a blade-like structural element through

a 3D model. This element could be the representation of the a wind turbine blade, undergo-

ing rotation. The nonlinear elasticity frame allows to extend the methodology to any arbitrary

shaped body. The authors are at present studying the static analysis (with evident computational

economies) and thermo-mechanic detection techniques.
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Figure 13: Cracked blade.
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