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Abstract. Wavelet multiresolution analysis provides a powerful framework for analyzing functions at
various scales. Due to the fact that wavelets have several good properties, such as compact support
and vanishing moments, it has gained great interest in solving partial differential equations using the
finite element method. In this paper a two-dimensional wavelet finite element is developed in which the
scaling functions are adopted as trial functions. Based on the one-dimensional Daubechies wavelet finite
element, that we have constructed recently [Mecanica Computacional Vol XXVI, pp.654-666], tensor
product is used to calculate the connection coefficients for stiffness matrices and load vectors. Some test
problems are studied and the numerical results are in good agreement with the closed-form or traditional
finite elements solutions.
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1 INTRODUCTION

An important property of wavelet multiresolution analysis is the capability to represent func-
tions at different scales. By means of “two-scale relation”, the scale adopted can be changed
freely according to requirements to improve analysis accuracy.

In structural analysis, classical and standard numerical methods as the finite element method
(FEM), boundary element method (BEM), and Meshless methods have been applied during the
last decades. Recently, due to its desirable advantages, researchers are also paying attention to
wavelet analysis in FEM. For a wide class of elliptic differential operators, wavelet method was
proved to convergefei (2000; Chen et al(2004); Han et al.(2005 2006)]. In particular, in
Ma et al.(2003 andVampa et al(2007), Daubechies compactly supported orthogonal wavelets
were used to construct one-dimensional beam elements.

In Xiang et al.(2006) , C° plate elements are constructed to solve plane elastomechanics and
moderately thick plate problems. These finite elements are based on two-dimensional tensor
product B-spline wavelet on the interval (BSWI).

In this work, a new class of Daubechies Scaling Wavelet functions finite elements DSCW for
Mindlin-Reisner plate model is presented. The wavelet-finite element scheme is constructed in a
similar manner to the conventional displacement-based FEM: the Daubechies wavelet functions
are used as interpolation functions and the shape functions are expressed by wavelets.

The rest of the paper is organized as follows: Sectiortroduces basic concepts of wavelet
analysis including background and a technique for computing connection coefficients; Section
presents a Mindlin-Reisner plate finite element formulation and shows a comparison of various
numerical test solutions. In Sectidrconclusions are presented.

2 MULTIRESOLUTION ANALYSIS AND DAUBECHIES WAVELETS

Wavelets are functions generated by simple operations of dilation and translation, from one
single function called mother wavelet. A mother wavelajives rise to a decomposition of the
Hilbert space.?(R), into a direct sum of closed subspadgs, j € Z.

Lety; x(z) = 20/%)(272 — k) and

W; = clos:[; ), : k € Z] . (1)
Then,
LR =Y Wy=-aW eWoWa-- (2)
j
and using this decomposition &f (R), a nested sequence of closed subspigese Z can be

obtained, where

J—1
\/jzzmz---@wj_Q@M/j—1- (3)

l=—o00

These closed subspacgs;, j € Z} of L*(R), form a “multiresolution analysis"Ghui, 1992
with the following properties:

1. .-.cVi,cVycCcVy---
2. clos:(UV;) =L*R)
3. M, V; =10}
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4. Vin =V, oW

ol

CfleyeVve fle—k) eV, kelZ
 fle)eV,e f(2x) e Vi ,j€Z
7. There exist® € V; that the se{¢(x — k) : k € Z} is a Riesz basis dfj.

(o2}

The functiong € Vj is called “scaling function” and generates the multiresolution analysis
{V;};ez of L*(R) and by setting

bjx(w) == 22¢(Px — k) (4)
it follows that, for eachy € Z, the family

{¢jn : k € Z} (5)

is also a Riesz basis 0f.

Consequently, a unique sequenge } € I%(Z) exists, (*(Z) denotes the integer space
of all square-summable bi-infinite sequences), such that the scaling furctigrsatisfies a
refinement equation

sx)= Y moRe—k), keZ 6)
k=—0c0
which is also called “two-scale relation”.
On the other hand, the wavelete V] is defined from the scaling function by means of a
second conjugate sequenieg } € I*(2)

V()= Y go(2e—k), keZ. 7)
k=—o00
Multiresolution property means thaf is a subset of/;.;. So each element df;,, can be
uniquely written as the orthogonal sum of an elemenvtiand an element ii¥/; that contains
the complementing details, i.e.

Vin=V,eW;. (8)

As an example of multiresolution analysis, a family of orthogonal wavelets with compactly
supported property has been constructe®bybechie$1992).

In her work, Daubechie®aubechies1 988 found and exploited the link between vanishing
moments of the wavelet and regularity of wavelet and scaling functiogsgnd¢. The wavelet
functiont) hasM vanishing moments if

/ka(at)dm =0 for 0<kE<M (9)

and a necessary and sufficient condition for this to hold is that integer translates of the scaling
function ¢ exactly interpolate polynomials of degree up\to That is, for eactk, 0 < k < M
there exist constant$ such that

o= dlx—1) (10)

l
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Daubechies introduced scaling functions that satisfying this property have the shortest possible
support. Letyy be the wavelet Daubechies function witfy2 null moments (wheréV is an

even integer), and, the corresponding scaling function, has support in0, N — 1], while

Y has support in the intervél — N/2, N/2] (Daubechies1988. Thus, according to equation

(10) Daubechies scaling functions of ord€rcan exactly represent any polynomial of order up

to, but not greater thav/2 — 1.

2.1 Computation of scaling functions and its derivatives

In using scaling functions of Daubechies wavelets as test functions of finite element method,
derivatives of Daubechies scaling functions have to be calculated. As there is no explicit expres-
sion for the Daubechies scaling functions, the derivatives can only be obtained on some special
points. To evaluate the function or its derivatives;” (z) = d™¢y(z)/dz™, the two-scale
relation is differentiatedn times:

oN () =2 Z o\ (22 — k) . (11)

Evaluating Eq. 11) for all integer values of the interval, N — 1], gives an homogeneous
system ofN linear equations which is singular. Thus, a normalizing condition is required in
order to determine a unique solution and the following proposed by Beylkin can be considered,

> kN (x— k) =m! | (12)

k

This condition is obtained differentiating times ¢n is a positive integer number), the impor-
tant additional property of Daubechies scaling functign, (Beylkin, 1992):

Sk on(r — k) =" +Z e ot @)

k
Then, solving this new system of mhomogeneous equations, derivatives can be evaluated at
integer values of and used to get the values at the dyadic points.
Using the two-scale relation once again the value$§$f(a:) atr = 5, withn € Z, for
i=1,3,5,...,{2"(N — 1) — 1} can be determined. Therefore, the functions are first evaluated
at the integer point§0, 1, ..., N — 1}, then at half integers and so on, increasing the value of
from 0 to the desired resolution.

2.2 Computation of Connection Coefficients

When the wavelet-finite element method is applied to solve one-dimensional differential
equations, different types of connection coefficients are required to form stiffness matrices and
load vectorsl(atto et al, 1995, such as:

= [ e 6(e - 5 de, (14

1
R = /0 € o€ — i) de (15)
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Figure 1:Daubechies scaling functions. Leftx). Right: ¢/ (z). Top: N = 6. Bottom: N = 12.

wherei,j € Z, ¢ denotes the basis function and the superscidptand d, refer to di-
fferentiation orders.

The typical problem that arises using Daubechies wavelets is how to calculate these connec-
tion coefficients whem is a Daubechies-wavelet scaling function. In first place, the difficulty
is due to the lack of an explicit Daubechies scaling function expression. Moreover, the highly
oscillatory nature of the Daubechies basis functions makes standard numerical quadrature im-
practical for computing connection coefficients. To show this, we present the scaling functions
and their second derivative for N=6 and N=12, in Fig. The numerical calculations are in
general unstable and it is necessary to provide an alternative method.

To calculate the integral in Et4, Latto proposed to substitute the two-scale relation given
by Eq6 into Eq.14, which yields

Ll =2 3 / (26 2 — k) 626 — 2 —1)dS.  (16)

Doing the adequate transformatlons the following expression in terms of the original connection
coefficients is obtained

F%@ =27 Z[prfzipszj + Pr72i+1p572j+1]rgfsd2 (17)
whered = d; + dy and—(N —2) <4,j <0.
The last equation can also be written in matrix form, as

(2¢-1P — )z — (18)

where['“1¢z js a column vector] is the identity matrix andP is the matrix composed of wavelet
coefficients combinations, obtained from Bg)

In order to uniquely determine the connection coefﬂueﬁj@é2 sufficient number of inho-
mogeneous equations can be obtained by using different valuesaoidn in the following
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expressionl(atto et al, 1995.

mn...(m—(dy—1))(n—(dy — 1)) did
T 1
m+n—d+1 ZC kil (19)

Adding them to equationl®) connection coefficients can be determined uniquely.
Connection coefficients for load vectors, Eg.can be calculated in a similar way (¥8ken
et al.(2000). Firstly, for s = 0, the system to solve is,

R(O Z[Pk 2 + Pr— 21+1]R( ) (20)

where—(N — 2) < < 0, and the additional inhomogeneous equation

Q+1 chR” Q<N/2-1 (21)

is required for a unique solution.
On the other hand, connection coefficientsfor 0 are obtained recursively by solving

(25+1I — B)Rz(s) — Zpk722-+1 Z ( i ) RI(CS*T) (22)

k r=1
where

By = pi—ok + Pi—2k+1 (23)

3 THE CONSTRUCTION OF DAUBECHIES MINDLIN-REISSNER PLATE FINITE
ELEMENT

The plate element formulation is based on the theory of plates with the effect of transverse
shear deformations included (like Timoshenko beam theory). This theory, due to E.Reissner
and R.D.Mindlin, needs onlg® continuity and uses the assumption that particles of the plate,
originally on a straight line that is normal to the undeformed middle surface remain on a straight
line during deformation, but this line is not necessarily normal to the deformed middle surface.
With this assumption, (in small displacement bending theory) the displacement components of
a point of coordinates, y andz are

u=—20,(z,y) v=—20,(x,y) w=w(z,y) (24)

whereu andv are inplain displacements, is the transverse displacement (or called deflection)
andd, andd, are the rotations of the midplane abguindx axes, respectively (see Fig).

According to Mindlin-Reissner theory, the elemental generalized function of potential energy
for Mindlin-Reissner plate bending problem in linear static analysis is,

1 1
= 5/ kT Cyk dady +§/ Y Cyy dady  — / quw drdy (25)
Qe e €
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where
R O /0 7 GNP VPR U
oz’ oy 9y Ox T ox oy Y
1 v 0
Et? Etk 10
- = 1 _ ot
G 12(1 — 1?) g 0 & ’ 2(1+V){0 1] &0
2

Q. is the elemental solving domain,is the distributed load; is the thickness of the plate
(assumed constant}, is Young modulusy is Poisson’s ratio and is the shear correction
factor equal tc;.

One thing to be noted here is that the first term inZ5gcorresponds to bending energy,
while the other is the transverse shear energy and this last term becomes dominant compared to
the bending energy as the plate thickness becomes very small compared to its side length.

3.1 Daubechies Mindlin-Reissner plate finite element
Supposing that one-dimensional Daubechies scaling functié(® and ¢*(n) generate
multiresolution analyse§V;'} and{V}*} respectively, the tensor product spacé/gfandV?,
jeZ,is
Vi=Vi @V} (28)
{V;} generates a multi-resolution analysisi{RR?). If we call

> = {6, *(n+1),...,¢*(n+ (N —2))}

the scaling functions ofV;} can be expressed using the tensor product of the wavelets expan-
sions at each coordinate, i.e.:

p=p ¢ (30)
The unknown field functiom (¢, ) can be expressed as follows

w(én) =pa (31)
where« is the vector of corresponding wavelet coefficients. The elemental transformation
matrix 7' is

T=T'®T? (32)

whereT! andT? are the transformation matrices corresponding to one-dimensional problem
(Ma et al.(2003; Xiang et al.(2009; Vampa et al(2007)).

For the plate problem, E®9), independent interpolation is considered and the same shape
functions are used for the displacements and slope interpolations. In this way, the elemental
displacement functions, EQ4), can be replaced by

0, =0T "0, O,=pT'0, w=eT'd (33)
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Where?)\x, gy andw, are the physical DOFs of elemental nodes, seeBig.(

Then, substituting Eg3Q) into Eq.@5) and according to the stationarity conditionofor =
0), we can obtain the elemental stiffness matrix.

Finally, the elemental FEM solving equations can be expressed by:

K! K? K3 0, 0
K* K° K°® 9, | =10 |, (34)
K" K8 K? 0 P
where
P = / / a(&, )" dedn
Kl — DO{A11®AOO )/2 A00®A11}+C«0 A00®A00
Ko 2 DA AP L (/2 A AP) e A
K = —Cy AY' @ AY
K4 — (KQ)T
K° = Dy{AY @ A 4+ (1 — pu)/2 Al @ AP} + Cp A @ A (35)
K = —Cy AP ® AY
K7 — (K3)T
KS — <K6>T
K = CyAl' ® AL + AV Al
3
andD, = ﬁ and Cy = iljr’“)
APE = I (@) TR T s=1,2 (36)

wherel, , is the finite element side lengthd*® is the connection coefficients matrix defined
in Section2.2, (Eq14) and subscript denotes the Daubechies scaling functigh(Eq. 29)
considered.

Adopting two dimensional Daubechies scaling functions withcoefficients to construct
elements{) can be divided into uniform meshes. One Daubechies Scaling Wavelet element
with N coefficients (DSCWN) hag N — 1)? total nodes. As, in this model, each node has
three DOFs, one DSCWN Mindlin-Reissner elementhas(N — 1)? DOFs.

In the following section the finite element implementation is validated using Daubechies
scaling functions of order 6. Numerical solutions obtained with DSCW6 elements are firstly
compared with the approximations presentediang et al.(2006, which use B-spline wavelets
on the interval (BSWI) for the Mindlin-Reissner plate model. Also, a comparison is made with
other wavelet based finite element method and with standard finite elements.

3.2 Applications

The formulation of two-dimensional tensor product Daubechies Mindlin-Reissner element
developed in SectioB.1, is applied to a typical numerical example: a square isoparametric plate
simply supported on all four edges. Two cases were considered: uniform and concentrated load.
Let Poisson’s rate be fixed as 0.3, denote thickness and denote side length.
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Figure 2:Mindlin-Reissner Plate element

t/L (Ix1)DSCW6 _ (2x2)DSCW6 BSWI23 Exact
0.001 0.3121 0.3441 1.810~* 0.4063
0.01 0.3125 0.3452 0.0173 0.4063
0.05 0.3203 0.3647 0.2174 0.4107
0.1 0.3411 0.4006 0.3510 0.4273
0.15 0.3713 0.4397 0.4152 0.4536
0.2 0.4104 0.4842 0.4678 0.4906
0.3 0.5166 0.5979 0.5861 0.5956
0.35 0.5843 0.6691 0.6579 0.6641

Table 1: Central displacements for simply supported square plate subjected to uniform féad* /100D,)

Table1 and2 show the comparison of central displacements obtained with DSCW6 (with 6
coefficients) Mindlin-Reissner elements with those presentetiang et al.(2006, obtained
with one BSWI23 element (B-splines of order, withim = 2 and scalg = 3) for the thickness-
span ratio fron?.001 to 0.35. Also, exact solutions are presented.

As it can be observed the method we proposed shows a non-locking behavior: even using
scalej = 0 and only one element{ DOFs), our results are better than BSWI123 (243 DOFs) for
t/L < 0.05. With a 2x2 mesh excellent results are obtained for all the thicknesses considered.

We also made a comparison with the multivariable wavelet base finite element method pre-
sented in Han et al.(2009] to solve bending problems of thick plates. TaBlehows that the
6 x 6 mesh DSCW6 elements, yields a more accurate solution.

Regarding thin plates, it is well known that shear locking problems can appear using standard
finite elements and a lot of methods have been suggested to alleviate this phenomenon.There
are several mixed finite elements methods which present good approximations to the solutions
and are free from locking. A successful approach is that of the MI&gEments developed by
Bathe and Dvorkir(1985 (MITC stands for mixed interpolation tensorial components and
refers to the number of element nodes). This family of plate bending elements uses mixed inter-
polation of transverse displacement section rotation and transverse shear strains. In particular,
the MITC4 is a reliable and efficient low order plate element.

Table4 shows the comparison between the results obtained with MITC4 and those obtained
with DSCW6 and DSCW10 elements, fof. = 0.01. Also computational time required is
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we/(qL*/100Dyg)

i/L (IxX)DSCW6  (2x2)DSCW6  BSWI23  Exact
0.001 0.7990 0.7991  0.0504 1072 -

0.01 0.8009 0.8059 0.0485 1.127
0.05 0.8429 0.9296 0.6325 1.209
0.1 0.9589 1.157 1.0973 1.353
0.15 1.134 1.418 1.416 -
0.2 1.368 1.727 1.752 1.851
0.3 2.016 2.540 2.614 -
0.35 2.432 3.054 3.159 -

Table 2: Central displacements for simply supported square plate subjected to concentrated(pati/ 100D,)

we/(qL*/100Dy)
Mesh Hanetal(2005 DSCW6 Exact
6X6 0.3218 0.3224 0.3227

Table 3: Central displacements for clamped square plate subjected to unifortyi foad0.3

presented. It can be observed that with MITC4, the required CPU time is about four times
larger than with DSCW6 element to achieve similar accuracy. On the other hand, with one
individual DSCW10 element a very good approximation is obtained and the computational
effort is comparable with MITC4. This results confirm that the Daubechies wavelet element
proposed performs well.

4 CONCLUSIONS

In this work, we have demonstrated the feasibility and capability of using wavelet bases in
the FEM. In particular, for Mindlin-Reissner plate model, Daubechies Scaling Wavelet elements
(DSCWN) presented in this paper are efficient to solve plate bending problems. These elements
can be easily constructed due to independent interpolation of each displacement function. Due
to the orthonormal, compactly supported and nesting properties of the Daubechies wavelets,

Mesh MITC4 CPU(n s) DSCW6 CPU(ins) DSCWI10 CPU(ns)
1x1 - 0.3125 0.375 0.3570 1.65
2x2 0.3189 1.91 0.3454 0.453

Thin plate sol. 0.40625

Table 4: Central displacements and computational time required, for simply supported square plate subjected to
uniform load¢/L = 0.01
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results are in good agreement with exact solutions for thick and thin plates, even with coarse
meshes.

We are convinced that the wavelet-based methods are a powerful tool to deal with several
problems in structural analysis and that more advantages could be obtained incjessate
level.
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