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Abstract. The direct numerical simulation, DNS, of a fully developed turbulent plamge@e flow with
heat transfer has been performed. The main goals of the presentswornalyse natural dissimilarity,
and axial momentum and thermal energy turbulent transport mechanism kirtthisf turbulence. It
has been chosen a low Reynolds humber equal to 1,300 as a functidftbiehaalls distance and half
the velocity of the moving wall. This Reynolds gives a Reynolds number asdidn of half walls
distance and friction velocity of about 84. The energy equation was édbrea molecular Prandtl
number equal 1, and with isothermal boundary conditions at both wallsinBtance, the streamwise
velocity and temperature fields were solved with the same kind of boundadjtioms, in order to have
the same direction of momentum and thermal turbulent fluxes. Buoyanatseifere neglected, thus
the temperature was considered as a passive scalar.

The main results of this work show that axial velocity and temperature fluchsatiave the same
kind of natural dissimilarity present in turbulent channel flow. While ndideacorrelation between axial
velocity and temperature fluctuations starts in the very near-wall regiotodhe most energetic events
there, the contribution of these events to the total natural dissimilarity is lesdiftyapercent in the
whole flow.

Analysis of longitudinal velocity and temperature fluctuations in the frequdooyain, using spec-
tral density functions, shows that the main cause of natural dissimilarity ishtfte@vard higher fre-
guencies of temperature fluctuations in comparison to those belong to abkdaityein the viscous,
buffer, and beginning of the logarithmic region. Based on the spectreesspre fluctuations and wall
normal fluctuations, itis clear that wall normal velocity plays an importantindiee natural dissimilarity
of streamwise velocity and temperature fluctuation fields.

Copyright © 2008 Asociacion Argentina de Mecénica Computacional http://www.amcaonline.org.ar



1620 H.D. PASINATO

1 INTRODUCTION

Turbulent heat transfer is a phenomenon of fundamental fitapce in science and technol-
ogy. In many situations, however, its prediction in appledblems uses the Reynolds analogy
or similarity between momentum and heat transfer, whichoisumiversal. (In this context,
similarity between momentum and heat transfer means mearafid fluctuations similarity,
between axial velocity and temperature). For this reastotitg and temperature similarity and
dissimilarity in turbulent flows has been extensively stadexperimentally, and numerically,
for different situations. The correlation between thesetflations in wall bounded turbulent
flow has been intensively investigated in the last three diesafirst experimentally and then
numerically. And as it has been shown in the literature withegimental works (Bremhorst
and Bullock 1970; Orlando, Moffat, and Kays, 1974; Zaric 198lachier and Dumas, 1976;
Hishida and Nagano 1979; Iritani, Kasagi, and Hirata 198%&pAia, Krishnamoorthy, and Fu-
lachier 1988), and numerical works (Kim and Min, 1989; Kasagmita, and Kuroda, 1992;
Kawamura, Abe, and Matsuo 1999; Na, Papavassiliou, andattgrit999; Na, and Hanratty
2000; Kong, Choi, and Lee 2000, and Kong, Choi, and Lee 200&)sithilarity between the
axial velocity and temperature fields, is very strong in tlseous and buffer region of a turbu-
lent boundary layer. In those cases, for instance, withlaimhoundary conditions for the axial
momentum and thermal fields, the normal fluxes of axial moaorarand heat have the same
direction, and the similarity is stronger.

A special and interesting study case is without doubt dg@ezlogplane turbulent Couette
flow. Plane Couette turbulent flow is one of the canonical flosesa In comparison with zero
pressure gradient boundary layers and pressure drivemeh@mw, plane Couette flow has the
unique feature of combining the parallel flow property wittr@ pressure gradient. For this
reason this kind of turbulent flow is an excellent flow casedxial velocity and temperature
similarity and dissimilarity study. For instance heat sfem in plane Couette flow with isother-
mal walls has the same kind of axial velocity and temperabowendary conditions, while the
axial momentum and thermal turbulent fluxes have also thes shraction. All these features
make turbulent plane Couette flow with isothermal walls a \&ggcial experiment for velocity
and temperature similarity-dissimilarity study.

Developed plane turbulent Couette flow, however, has pravbd more difficult to simulate
numerically than other canonical flows like as, for examgkyeloped channel turbulent flow.
The difficulty is mainly due the existence of very large stn@ase structures in the center
region of the flow. In the last decade, however, there have keeugh research that gives
some confidence using this kind of turbulence in numericpkerent for heat transfer study
(Komminaho, Lundbladh, and Johansson, 1996; Tillmark alicedsson, 1992; Debusschere
and Rutland, 2000; Bech et al, 1995).

Developed turbulent Couette flow has some similar charatiesito fully developed turbu-
lent channel flow. But these flows present also some imporifiatehces. For example, both
flows have similar near-wall structure (Aydin and Leuthens4991), however the Reynolds
stresses distribution is different. In turbulent channedfthe Reynolds stresses are maximum
near the wall and then approach zero at the center line. Int@ofl@w, in contrast, Reynolds
stresses increase from the wall to a maximum at the center Tihe turbulent kinetic energy
production, on the other hand, in a Couette flow has a finiteaitough the whole flow, while
in turbulent channel flow the production of turbulence goessro at the centerline of the chan-
nel. For these reasons it seems appropriate to perform imahexperiments with heat transfer
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in this kind of turbulence, with the objective to see if naludtissimilarity of axial velocity and
temperature fluctuations present the same behavior asdulémt channel flows.

In a previous work (Pasinato, 2007) the natural dissiniyan a fully developed turbulent
channel flow was studied using DNS. The main results of thikwas that natural dissimilarity
occurs basically due to the background turbulence. Or ierotfords, that the most energetic
events in the wall layer, as a consequence of sweeping aatibgjenotions, do not contribute
significantly in a direct way to the de-correlation betwegrakbvelocity and temperature afar
from the wall. For a developed turbulent channel flow the ratdissimilarity in the wall layer
increases afar from the wall, mainly owing to the shift tosvaigher frequencies of temperature
fluctuations, in comparison with axial velocity fluctuatooThus in this works the main goal is
to look at the same phenomena, and with the same techniqaéy@ddulent plane Couette flow.

Thus the main goal of the present work has been to perform ncahexperiments in a de-
veloped turbulent plane Couette flow and look at naturalwhigsiity, and transport mechanisms
in this kind of turbulence. It has been chosen a low Reynoldsbar equal to 1,300, as func-
tion of half the walls distancé,, and half the velocity of the moving wally, Re, = Voph/p,
which gives a Reynolds number approximately of about 84 as@ifun of the friction velocity.
The energy equation, on the other hand, is solved with isotheboundary conditions. As in
previous work for the fully developed turbulent channel flowoyancy effects were neglected,
thus the temperature was considered as a passive scalar.

2 NUMERICAL METHOD

In this section a short description of the numerical aspecitd simulation parameters is given.
A validation of the numerical code for a fully developed widnt flow with heat transfer has
been presented in a previous work (Pasinato, and Squirés).20

In this paperyu, v, andw are the instantaneous velocities in the streamyu$ewall-normal
(y), and spanwiséz) directions, respectively. All instantaneous variables @gcomposed in
a mean value and a fluctuation; e.g.= U + u’. A plus symbol is used in order to denote
nondimensionalization with the wall parametersandv; e.g.y* = y u. /v.

The DNS of the turbulent plane Couette flow with heat transéex reen performed with
periodic boundary condition im andz directions. The size of the computational box, figure 2,
which has a moving upper wall with velocity equal®y, is 20mh x 2h x 47h in z, y, and
z directions, respectively. This box means 5270, and 105Gaiihwmits inz, andz directions,
respectively. This computational domain is discretizethwi256 x 72 x 256 grid, which in
wall units meansAzt = 20.6, Ayt = 0.57 — 4.04, andAz* = 4.12, in the three directions
respectively. This computational box and discretizati@s whosen based on previous works in
the literature, and some performed numerical tests, asdrmamented in the next section.

The governing equations in dimensionless form are the woityi the unsteady Navier-
Stokes and energy equations for incompressible flow andctteeesfer,

aui .

ot Ox; 7 R. 0z ;0x; ox;

(2)
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wherei andj are for1, 2,3, and the non-dimensionalization used in the posprocessitige
results was done using the wall friction velocity,, half the distance between wallsand the
friction temperaturd’; = ¢,,/p ¢, u.. Wheref is the dimensionless temperatugg,is the heat
flux at the wall, and:, andp are the constant pressure specific heat coefficient and tisityle
respectively. In these equatios, and i, are the molecular Prandtl, the turbulent Reynolds
numbers based on the wall friction velocity and half chamligtiance between wallgé, which
values ard and approximatelg4, repectively, as it is previously commented.
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Figure 1:Computational domain for fully developed turbulent plane Couette flow withthaasfer.

The unsteady Navier-Stokes equations were solved nurtigiata Reynolds numbeke;, =
hVy /v equal to 1300, which results in /&, of about84, wherel} is half the velocity of the
moving wall. The numerical code used in the present workifenelocity fields was originally
developed by Prof. Kyle Squires’ group at ASU. In this code ithcompressible momentum
equation are discretized by the second-order accurateateiifference scheme. The Poisson
equation for the pressure field is Fourier-transformed wa#pect to the streamwise and span-
wise periodic directions and the resulting three-diageuolations are solved directly for each
time step. The flow field is advanced in time using a fractiestap method (Kim and Moin,
1985), with the Crank-Nicolson second-order scheme for theous terms and the Adams-
Bashforth scheme for the non-linear terms. Periodic boyndanditions are used for the ho-
mogeneous X (streamwise), and z (spanwise) directiongecégely. And non-slip boundary
conditions at both walls.

After the velocity field is calculated at each time step, theperature field is obtained
integrating the energy equation. Any buoyancy effect wagewted, thus temperature was
considered as a passive scalar. The thermal field is solviadte same space, and time dis-
cretization, and same numerical scheme used for the weleitd. As boundary conditions,
constant wall temperature was used with a hot upper wallaacald lower wall.

The time step was.014,/V}, or 0.05v /42, and the time integration was taken approximately
equal to400h/Vy = 2,200v/u2, in order to define mean values.
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3 RESULTSAND DISCUSSION

3.1 Mean values

Study Re;, N, xNyxN, L,/h L,/h Azt Azt Ay?
Lee and

Kim (1991) 170 192 x 129 x 288 4r 8/3r 11.1 4.9
Kristoffersen

at al. (1993) 83.2 96 x 64 x 64 47 2r 109 8.2 0.2-04

Papavassiliou

and Hanratty (1994) 150 128 x 65 x 128 4« 2r 148 7.4

Bech et al. (1995) 82.2 256 x 70 x 256 10w 47 101 4.0 0.7-3.9
Komminaho

at al (1996) 52.2 256 x 70 x 256 287 8¢ 135 7.7 19-1.9
Debusschere and

Rutland(2004) 186 231 x 200 x 64 12 2 83 51 16-1.6
Present 83.2 256 x 73 x 256 207 47 204 4.08 05-41

Table 1:Comparison of domain size and discretization with previous studies.

As it was commented in the introduction, plane Couette flowgnaged to be more difficult
to simulate, due to the existence of very large streamwisetstres in the center region of
the flow in numerical simulations. Several simulations heaxgealed these long streamwise
vortical structures at the centerline of the plane turbul@ouette flow. However there are
doubts yet that these structures can be physical or only aosigunumerical problem. For
example Andersson, Lygren, and Kristoffersen (1998) hatehserved experimentally these
structures, and suggested that such kind of secondary flovbea numerical spurious flow
phenomenon, owing to the self-amplification that can predagriodic boundary conditions.

As a consequence of this situation, in this work, specia eas taken in order to define the
box size. In table 1 a list of different DNSs of turbulent @aBouette flow is given, together
with details of the computational parameters. Also in thabl€ is the box size and discretiza-
tion finally used in the present work, which has almost thees&a), and discretization of the
numerical simulation performed by Bech et al. (1995). The alifference between both sim-
ulations is the axial size of the computational domain, dredefore the axial discretization.
However in the present work an axial length2ofr, based on the streamwise two-point corre-
lation coefficients, was defined as the minimum axial sizéefdomputational domain in order
to have a decorrelation of axial structures, as it is expldinelow.

Figures 2(a)-2(b)-2(c), and 2(d) present the streamwidespanwise two-point correlation
coefficients, at two positions from the wall one close to the wall af* = 5, and the second
in the center region a§* = 72 —. In these figures, the two-point correlationszir and
z— directions at twoy—locations show that they fall off to zero values for largeasegions,
indicating that the computational domain is suffriciedélyge. From figures 2(a)-2(b) it is clear
the streamwise decorrelation of axial velocity at the nmeduflthe computational domain, where
there are the expected elongated streamwise structures.
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Figure 2: Two-point streamwise, and spanwise, correlation coefficigdts; R..; Ruw; Rgo, in the
near-wall region ay™ = 5, (a-c), and in the center regionzat = 72, (b-d). Solid line,R,,; o -o

e
Rgg; — — — , Ry; — — .— , Ry Dotted line denotes half the computational domain.
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Figure 3:Distribution of mean velocity and temperature for fully developed turbulemigpGouette flow
with Rej, = 1,300 andPr = 1. (a) Solid line, mean velocity; - - o - - o , mean temperature;. + -+,
Ut =yt and2.55 In(y™) + 4.3; - - - - x , Exp. values, Bech et al. (1995). (b) Solid line,
mean velocityp - - o - - o , mean temperature.
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Figure 4: Distribution of Reynolds, thermal stresses, and rms for turbulent Couetienfith Re;, =
1,300 andPr = 1. (a) Solid line, Total stresses; - +--+ , —(u'v'); —. —.— , dUt /dy™; - —-—-— -,
Total thermal stress; - - o - - o, —(v'#'); 0..0..0,d0" /dy*. (b)Solid line,u., ;o o-- o,
Uppss ©— " —* —* ywh o ———,0. i +.-+..+,DNS, Bech et al(1995% - - - - x , exp., Bech

et al(1995)p..0..0,Aydin and Leutheusser (1991).
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Figures 3(a)-3(b), on the other hand, show the distribubfodimensionless mean velocity
and temperature. The mean velocity in the center of the elasminderpredicted by 3% in
comparison with the experimental data of Bech et al. (199%)d Agures 4(a)-4(b) show the
Reynolds, thermal stresses, and root mean square, rmspoftyeind temperature fluctuations.
Figure 4(b) shows the comparison of the rms of the axial vglo@ith DNS and experimental
data with relatively good agreement. Figure 4(a) revealswlall normal turbulent transport of
axial momentum and heat are almost the same for the whole flow.

Therefore, previous results reveal that the developeceplaibulent Couette flow faRe;, =
1,300, with computational domain af0xh x 2h x 47h and discretization o256 x 73 x 256,
is well resolved in the mean and turbulent values.
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Figure 5: Wall normal distribution of correlation coefficients, for developed plawoedite turbulent
flow with Re;, = 1, 300. Solid |ine,p(u/9/); 0--0--0, d(ulgl); - — -, p(v/gl);; ~~~~~ , p(u"u’);-

3.2 Dissimilarity from most energetic events

One of the reason the plane turbulent Couette flow is a unigie&se in order to study axial
velocity and temperature similarity, is the analogy betweynolds-averaged axial momentum
and energy equations. These equations are,

1 U d,
— — = 4
0=z ~ o (4)
1 #e  d

0 = — ——(0") ()

PrR, dy*  dy
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where the mean values are defined alongithez plane and time.

As it is seen from dimensionless equations (4 - 5), for theigpease ofPr = 1, these
equations, as its boundary conditions for heat transfer ime@e flow with wall constant tem-
perature, are analogous. Thus subtracting equation (%) éguation (4), it results in,

1 0?9 0

0 = PrR. 9ydy a—y<¢v> (6)

where® = U — 0, and¢’ = u' — ¢'.

Therefore, as it was proposed in a previous work (Pasin@@7)n which the natural dis-
similarity in a fully developed turbulent channel flow waadited for Pr = 1, for convenience
the difference of instantaneous dimensionless axial Wgland instantaneous dimensionless
temperature> = u — 0 is used as a measure of dissimilarity in the analysis of teslr other
words, the new variable is, as all instantaneous variabilessum of a mean and a fluctuating
value,p = ¢+¢' = (U—0)+ (v —0'). And the variance ap, normalized by the product of the
rms of axial velocity and temperature’, 67, is used as a normalized measure of dissimilarity
of fluctuating values, as the correlation coefficient is amadized measure of the correlation of
fluctuating values,

12 UI’LL/ _ ’LL/Q/ 6)/9/ _ ’LL/Q/
by = g = g g
whered ¢/ is zero when correlation coefficiept, oy = 1.

Figure 5 shows the distribution af ¢, according to equation (7), and also shows the
distribution of the correlation coefficientg.. ¢y, p(u,y, @ndp(r 1. Itis clear from this figure
that dissimilarity is minimum at the top of the viscous lgyapproximatleyyt = 5, as the
correlation coefficient is maximum at this point. On the otmend, dissimilarity is maximum at
the center region of the flow, in contrast with the correlatioefficient that is minimum there.
But, why it used this new measure of axial velocity and temipeeafluctuations difference?
Why it is not used the instantaneous second momé&htas a measure of similarity? And the
answer is that it seems more conveniente, for analysisme&stook at a function which is the
difference of other two functions, rather than at one th#tésproduct of them.

According to the mean values definition in the present worlafdeveloped turbulent Cou-
ette flow, the Reynolds averaged form of the mean dissimjlaithe results of the balance
between diffusion and the wall normal gradient of Reynolds #twermal stress,

0= =22 - Ly - we) ®)

Reynolds and thermal stress, however, have almost the satnidution across the flow
according to figure 4(a), thug should have an almost linear ditribution 4a-direction for
developed turbulent Couette flow.

Then in the following of this section the contribution toslimilarity between axial velocity
and temperature fluctuations, due to natural phenomenaroggin the wall layer, is studied
with the same approach used in Pasinato (2007), which useseth variable) in the analysis.
For completeness reasons the basic of the approach is edpeate. Note that all values of
velocity and temperature fluctuations, and moments, aremsionless values, and thdt = 1
for the data used in the numerical experiment here.

Thus the idea in this subsection is to detect an event clesizetl asmportant dissimilarity
eventwith some algorithm and evaluate their mean contributiothéomean dissimilarity, as it
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Figure 6: Probability of the most energetic events in the wall layer for a plane turb@ent
ette flow with heat transfer, withRe;, = 1300, and Pr = 1.0, that satisfy the following
conditions.  (a) Solid line,P(¢/'2 — ¢ > két2): — — — | P(g’\?—éz > ko2, wv/ < 0);
o-ro-o, P(Y2—@ > ket 00 <0); - - , P(¢2— @2 > k™2, W) < 0,0 <
0; o. 0.0 P@2-¢>ke? 00<00 <  0).(b) Solid line,

—

P(¢'2 — & > k¢, w <0, 00 < 0); — — —, P(/% — ¢* > ko*2, Op/ [0z < 0).

was defined in equation (7). As detection algorithms fomaportant dissimilarity eventone
analogous to those used in the literature to detect burgeoti@n events, was used. The most
common of these algorithms are the quadrant 2, the variable interval time average (VITA),
and theu—label techniques. And they have been used in order to imadstburst period and
high pressure peaks frequency in wall turbulence (Lu andnvsitth, 1973; Blackwelder and
Haritonidis, 1983; Luchik and Tiederman, 1987; Shah andAiat 1988; Johansson, Her, and
Haritonidis 1987).

Although there is not doubts that the most important didsirity events in the wall layer
are produced by events like as burst or ejection, and swgepations, in this work, however,
the idea is not to detect these events and then evaluatesiendarity associated to them. On
the contrary, the idea is to detect the most important inateaous oscillations ip, and then
evaluate their importance in the production of mean didanity. Of course that at the same
time that an important event is detected, it is detected atsich kind of events - sweeping
motin, ejection, etc - are associated with it. In other womdshis works two or three important
dissimilarity events are detected and its dissimilaritgtabution is evaluated, not matter they
belong or not to the same burst, ejection or sweeping motients.

Then the algorithms used to detect events that yields anrbapalissimilarity, based on the
VITA and the second quadrant algorithms, detect one eveanilie variance of the fluctuation
of ¢ is,

92— > kot (9)
where the mean values and rmsp™ are evaluated from the whole sample, and the wide-hat
symbol means a mean values in the time filtering intefyal
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0.9r 1

Figure 7:Dissimilarity contribution of the most energetic events in the wall layer for a parilent
Couette flow with heat transfer, witRe;, = 1300, and Pr = 1.0, that satisfy the following condi-

tions. (a) Solid line, Total dissimilarity of the whole sample; - + - - + P(qb’2 P* > kot?);
_ (¢/2 ng > kgb”, 17; < O) (¢/2 ¢2 > kgb” H/U < 0) _____ ,
P(qﬁ’? ¢2>k‘¢+2,uv < 0,0 <0); 0.0 DP(gb’? & > kot?, o' < 0,0 < 0).

- +T/2
T = = / ¢ (r)dr (10)

t—T/2

The algorithms above have two parameters, the filtering pereod T and the threshold
k. k was taken equal t@.5 based on the pdf o (values of¢ out of the intervak=2.5¢"),
using the same criteria used in Pasinato (2007) for a tunbgleannel flow. As regarding the
second parameter, the filtering peridd this period in dimensionless form used in this work
wasTt = 1.2, which is out the rangef < 7T = tu?/v < 13, for dimensionless burst
period found in the literature. On the other hand, becawseian and the rms values@fo™
and¢, used in the algorithms are evaluated for the whole samipéealgorithms can be used
for instantaneous values without any filter. Moreover, nuca tests were done which shown
that results were only slightly sensible to the filteringipéifor values ofl'* < 10.

Therefore, using the algorithms above, once an event ttaifyjas important dissimilarity
event was detected, conditional probability with diffeareonditions were used in order to char-
acterize whether these events with strong dissimilarigxial velocity and temperature, satisfy
a second, or a second and a third condition. Some of the consliised were,

P(¢'2 — & > k¢, 0 < 0) (11)

aiming at to detect how many of the events detected as impodiasimilarity events, also
belong to events in the second quadrant, Q2.
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P(2—¢* > ke, wv' < 0,0 < 0) (12)

aiming at to detect events characterized as importanindiissity events, that belong to Q2, for
which the wall normal velocity is negative (sweeping mojion

P(§2 — @ > k¢, 0y 0w < 0) (13)
P(§? = & > ko™, p/ [0z > 0) (14)

aiming at to detect whether dissimilarity is associatechwvdtcal instantaneous favorable or
adverse axial pressure gradient.

Then figures 6(a)-6(b)-7 show the results of this sectioguifé 6(a) shows that the prob-
ability of the events characterized as important dissintyl@&vents, is approximately constant
along the whole flow between plates and closé(%. This means that the number of events
with strong dissimilarity in the wall layer for a developedtulent Couette flow are onlyl®%
of the total. This figure shows also th#i% of events that produce dissimilarity belong to Q2
guadrant for velocity, and almost the same percentage dpatothe Q2 quadrant for tempera-
ture. And moreover these values for both velocity and teatpee are aproximately constant
along the whole flow. However, from these events that belon@2 quadrant in both fields,
the probability of those that are sweeping motions, or inessof hot fluid with high momen-
tum toward the walls, decreases toward the centerline ofitke from 70% at the wall to a
30% percent at the centerline. In other words, it is seen thainttushes or movements of high
momentum toward the wall are felt in the whole flow, and thatnlamber of events detected
with this condition is more or less equal 10% in the viscous layer, decreasing slowly afar
from the wall. On the other hand, figure 6(b) shows that noewadints that yields important
dissimilarity are in Q2 quadrant for velocity, and at the saime in Q2 quadrant temperature.
At the centerline only &0% of events in Q2 quadrant for velocity are also in Q2 quadrant f
temperature. As regards the instantaneous local pressagleegt, figure 6(b) shows that it is
not a direct link at all to velocity and temperature fluctaas dissimilarity.

Figure 7 in first place shows that the sample used in the aralf/svent detection, have the
same distribution of mean dissimilaritl, ¢+ to that from the whole period of time integration
for definition of mean values (figure 5). And shows also thatdbntribution to dissimilarity
d.eey from the most energetic events is nearly constant from tHetw#he centerline, close
to or something less thas%. Other interisting result from figure 7 is that the major pafrt
the contribution tal(,.¢) by the most energetic events are from events of the Q2 quiadvad
from this last contribution, the sweeping motions towaklall account for &0% in the center
region of the flow, and for the total at the wall. In other wqrdsthe very near-wall sweeping
motions are responsable for almost all dissimilarity asged with most energetic events.

These are basically the most important results from theyarsain this section. And it can
be concluded that for developed turbulent Couette flow, asfdrideveloped turbulent channel
flow, it is the background turbulence the main source of maiissimilarity between velocity
and temperature fluctuations. In the next section a shotysiean the frequency domain is
done in order to see how the energy of the fluctuations,adr oscillations of velocity and
temperature differences, change from the wall to the clemesnf the flow.
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3.3 Dissimilarity analysisin the frequency domain

Figures 8, 9(a), and 9(b) show the spectra for the fluctuatidrvelocity components, temper-
ature, the difference between axial velocity and tempegaty and pressure, normalized by
their rms, at four positions from the wall. These positioa aty™ = 5, or final of the viscous
layer,y* = 16, or buffer regiony™ = 30, or beginning of the logarithmic region, apd = 72,

or center region of the flow. There were selected these fositipns because they give a more
or less complete picture of the spectra modification in thi kager. In these figures is plotted
the decimal logarithmic ofd/u., in the abscissa, and the product(ef§/u.)®, in ordinate,
where®,, is the spectral density function of the variall@ormalized to unity. The area un-
der any section of figures 8, 9(a), and 9(b) is proportionaheofraction of totaka’ ) /a™*? in
that particular frequency range. In other words, the spesfiow the energy distribution of the
normalized fluctuations.

Figure 8 shows the spectra@f and#’, and its difference, at the four positions. From this
figure it is clear a shift toward higher frequencies of all&pe, but mainly ofy’, and thus'.
And this difference increases quickly in the first three poss from the wall. Then this ten-
dency decreases slightly toward the center region. In quebtsa for velocity and temperature,
as positiony™ increases for the first three positions, the peaks decreasésposition change
toward higher frequencies. This results agree with wasddaynAntonia et al. (1987), who did
observations in a heated turbulent boundary layegfox 40. Then at the center of the flow
in figure 8 the peaks af’ andf’ spectra increases in comparison to those in the beginning of
logarithmic layery™ = 30.

On the other hand, figure 9(a) shows the spectra’fow’, and¢’. And figure 9(b) shows
a comparison of previous spectrawfandd’ with p’ spectrum. From these figures it is clear
the energy distribution generated by instantaneous preggadient. And it seems that the
wall normal velocity component produces the major part adlaselocity and temperature fluc-
tuations dissimilarities, taking energy from the streasawelocity through the instantaneous
pressure gradient.

Therefore, a picture of axial velocity and temperature flatibns in the frequency domain
is that the whole kind of turbulent events in the wall layezlgls a gradual de-correlation, taken
energy form velocity and injecting it in temperature maitrtgugh wall normal velocity, and in
second place by spanwise velocity. Although it seems thexttsp have a convergence toward
the center of the flow, axial velocity has always its maximumergy at lower frequencies.
Although it seems to be a simple picture explained in mosutience text book (Tennekes, and
Lumly, 1972), the previous analysis gives information twdt be worth in future numerical
experiments, and heat transfer modeling in turbulent flows.

4 CONCLUSION

A direct numerical simulation, DNS, of a fully developediulent plane Couette flow with
heat transfer has been performed. The main goal was to lawktatal dissimilarity, and axial
momentum and thermal energy transport mechanism in thésdditurbulence. The Reynolds
number,Rey, is 1,300 as a function of half the walls distance and half/g#iecity of the moving
wall. This Re;, gives a Reynolds as a function of half walls distance anddrictelocity, Re.,

of about 84. The energy equation was solved for a molecukmd®rnumber, Pr, equal 1, and
with isothermal boundary conditions at both walls. The terapure was considered as a passive
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Figure 8:Frequency analysis of dissimilarity for a developed turbulent Couette fithvheat transfer,
for Re;, = 1300, and Pr = 1.0. Spectral density function af’, ', and¢’, at four positions from the
wall, (top-left)y* = 5; (top-right)y™ = 16; (bottom-left)y ™ = 32; (bottom-right)y ™ = 72. Solid line,
a=v/ut;———,a=60/0%----. ya=¢' [T,
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Figure 9:Frequency analysis of dissimilarity for a developed turbulent Couette fithvheat transfer,

for Re;, = 1300, andPr = 1.0. (a) Spectral density function af, w’, and¢’, at four positions from
the wall, (top-left)y™ = 5; (top-right)y* = 16; (bottom-left)y™ = 32; (bottom-right)y™ = 72. Solid

line,a = v /vt — — — ,a=w/wh; - ,a = ¢'/¢t. (b) Spectral density function af , ¢', ¢/
andyp’, at four positions from the wall, (top-lefy)t = 5; (top-right)y™ = 16; (bottom-left)y* = 32;
(bottom-right)y™ = 72. Solid line,a = v/ /ut;}— — — ,a =6'/0T; - - .. ,a=¢ /pT,0--0--0,
a=p/p".
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scalar.

The main results of this work show that axial velocity and penature fluctuations have
the same kind of natural dissimilarity present in turbulehannel flow. While natural de-
correlation between axial velocity and temperature startise very near-wall region due to the
most energetic events there, the contribution of thesetgterhe total natural dissimilarity is
less than fifty percent in the whole flow.

Analysis of longitudinal velocity and temperature fluctaas in frequency domain, using
spectral density functions, shows that the main cause afaladissimilarity is the shift toward
higher frequencies of temperature in comparison to axilcity, in the viscous, buffer, and
beginning of the logarithmic region. Based on the spectra@gure and wall normal fluctu-
ations, it is clear that wall normal velocity, which recesvenergy from axial velocity through
the pressure field, plays an important role in the naturalmigarity of streamwise velocity and
temperature fluctuations.

Therefore, the contribution to dissimilarity of the moseegetic events in the wall layer is
important, but do not explain the major causes of corratadiegradation between axial velocity
and temperature fluctuations toward the center of the flowithBiethey explain the major
fraction of dissimilarity in the viscous and buffer regiombere these events are the strongest.
This result is the same obtained for turbulent channel flosvit vas verified in a previous work
for developed turbulent channel flow (Pasinato, 2007), faretbped plane turbulent Couette
flow, the wall normal velocity plays a fundamental role in #rdal velocity and temperature
fluctuations dissimilarity. In other words, it is through laormal velocity that thermal field
receives most energy from the longitudinal velocity. Tisigisimple picture that is explained
in most book on fundamental aspects of turbulence, howéeeanalysis presented here gives
information possible to be used in future numerical experitg, or heat transfer modeling in
perturbed turbulent flows.
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