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Abstract. This paper presents a thermomechanical-micrdstraicformulation for the analysis of the
solidification process of nodular cast irons ofestic composition. This formulation is defined in a
finite strain thermoplasticity framework consideyimicrostructure-based liquid-solid phase-change
effects. The performance of this model is evaluatethe analysis of a solidification test, for whic
laboratory measurements are compared with thesmoreling numerical results.
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1 INTRODUCTION

The numerical simulation of the nodular (or sph#abigraphite, S.G.) cast iron
solidification and the subsequent cooling processesill nowadays an active research area,
mainly due to the different and complex phenomenalved in the analysis. Among the
several factors that directly affect the final soness of the castings, it is possible to identify
the microstructure evolution, the presence of redidtresses, and the geometrical changes
caused by thermal contraction and metallurgicaldi@mations.

Several thermomechanical models, aimed at predi¢tiermal residual stresses and final
shapes in castings in order to prevent macroscogiects and/or to optimize operational
conditions, have been developed during the lastdaaades; see e @elentano et al. (1999)
and references therein. On the other hand, releféorts have been done to couple heat flow
calculations performed at the macroscopic levelelated microscopic phenomena such as
phase appearance, morphology and grain size wahs#ke of determining the ultimate
mechanical properties of the solidified product seg.Rappaz (1989and references therein.
More recently, some of these microstructural cotxepave been considered in
thermomechanical simulations of solidification aodoling processes of different alloys
where microscopic models of microstructure formatiare coupled to macroscopic
thermomechanical computations to assess the irféuen the evolution of both micro and
macro features on the full response of the mateiafolved in the casting syste@glentano,
2001, Celentano, 2002 In this last context, in sharp contrast to pyrdlermomechanical
models, phase-change effects are assumed to depérmhly on temperature but also on
temperature rate by means of other appropriateostgopic variables to simulate in a more
realistic form the complex phenomena associatel thi¢ phase transformation. However, it
should be noted that this phenomenological approatudes the definition of evolution laws
for the phase-change variables assumed to goverrmavlrage microstructure formation
occurring in a certain (preferably small) volume tae macroscopic level and, hence,
precludes a microscopic scale modelling of the ammchanisms developed during the
process which, with the present computer powen, iBost cases an impossible task.

This work presents a thermomechanical-microstrattiormulation for the analysis of the
solidification process of nodular cast irons withtextic composition. This formulation,
defined within the thermoplasticity contextdlentano, 2002 includes large strains effects,
phase-change volumetric deformations, temperatepemtent material properties and
microstructure evolution governed by a multinodtddased eutectic solidification model
(Dardati et al., 2006

The thermomechanical formulation is presented tiGe 2. Section 3 includes the elasto-
plastic constitutive model assumed to describebtteaviour of all the materials involved in
the casting system and, in particular, the ligmdshy and solid phases that take place during
the solidification and cooling of the alloy. Therphasticity theory has been chosen for the
constitutive description of the whole casting syst&nce little rate-sensitiveness is expected
in the material response due to the rapid evolutifote solidification and cooling processes.
Moreover, this assumption is additionally supportbg the fact that very similar
thermomechanical behaviours have been obtainedsiog plastic and viscoplastic (with a
relatively large range of viscosity values) modeisthe numerical simulation of casting
problems Celentano, 2002 Furthermore, the microstructure model of thesetit nodular
cast iron is described in Section 4. The microstmecmechanisms encompass kinetic-based
nucleation and growth laws for both the dendritistanite and graphite nodules.

This thermomechanical-microstructural model is @iszed and solved in the context of
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the finite element method; s€&elentano (2002for further details. Finally, the analysis of a
solidification test is performed in Section 5 withe aim of comparing some available
experimental measurements with the numerical mesoltained using this proposed
formulation.

2 THERMOMECHANICAL FORMULATION

In a general thermomechanical context, the localegung equations describing the
evolution of a process can be expressed by théncytequation, the equation of motion, the
energy balance and the dissipation inequalityafalhem valid in2x Y; whereQ is the spatial
configuration of a body and”denotes the time interval of interest with W respectively
written in a Lagrangian description as:

pI=p, 1)

OB+ pb, = pii (2)

-pcT -0 +pr-TR:d+pr,, =0 (3)
-qT+D,, =20 4)

together with appropriate boundary and initial adods and adequate constitutive relations
for the Cauchy stress tensor(which is symmetric for the non polar case adoptethis
work), the tangent specific heat capacityhe heat flux vectaq, the tangent conjugate of the
thermal dilatation tensd8, the specific internal heat sourcg and the internal dissipation
Dint. In these equationg] is the spatial gradient operator, the superpostdndicates time
derivative and the subscriptapplied to a variable denotes its value at thgintonfiguration
Q. Moreover, p is the densityu is the displacement vectald,is the determinant of the
deformation gradient tensér(F™ =1-0xu, with 1 being the unity tensory is the specific
body force vector is the temperature, is the specific heat source addis the rate-of-
deformation tensord=1/2(0xv+vx0), where v=u is the velocity vector). In this
framework, a specific Helmholtz free energy functigg, assumed to describe the material
behaviour during the thermomechanical process, bandefined in terms of some
thermodynamic state variables chosen in this wosk tiae Almansi strain tensoe
(e=1/2(1-F T [F'), where" is the transpose symbol), the temperature andt @fsei
phenomenological internal variableg (usually governed by rate equations Witkr 1,...,n,., )
accounting for the non-reversible effedtsilfliner, 1990. This free energy definition is only
valid for small elastic strains and isotropic metleresponse, both assumptions being
normally accepted for metals and other materiatsoking the Coleman’s method, the

following relationships are obtained:= pa‘%e, n= _a%T Is the specific entropy function,

Cz'TazwaTZ’ Bz'paz%eaTz‘a%T' rim:_%o(Taq%T_qkj*Da%t and

D, =0q,* Da%)t whereq, = —pa%ak are the conjugate variables af and, according

to the nature of each internal variable, the symbéhnd D()/Dt appearing in the previous
expressions respectively indicate an appropriatéiphication and a time derivative satisfying
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the principle of material frame-indifferenceLupliner, 1990 Simo, 199%. Furthermore, the
heat flux vector at the spatial configuration iswased to be given by the Fourier's law
written asq =-kOT wherek is the conductivity coefficient. Additionally, a merestrictive

dissipative assumption than that stated in equgddrreads:-q[OT = Oand D,, = O The

first condition is automatically fulfilled fok=0 while the second imposes restrictions over the
constitutive model definition.

It is seen that the definitions af= (e a,T) and Dai/Dt are crucial features of the
formulation in order to derive the constitutive atjans presented above. To this end, the

following split is proposedGelentano et al., 1999n., =nf +nk*, wheren” andn’ refer

int int ? int int
to the number of internal variables related to pta@on-reversible that may occur in every
material of the casting system) and phase-changly @xisting in the solidifying alloy)

effects, respectively. Accordingly, this assumptioeads to r, =rh+rh and

int int

D,, =D} +D/\". Details of the elasto-plastic and microstruciels are given below.

3 ELASTO-PLASTIC CONSTITUTIVE MODEL

In this work, the material behaviour in the muslone is assumed to be governed by a
mixed rule that weights the responses of the liql)idnd solid §) phases according to their
respective volumetric fractioisThus, any mixed variable can be defined as:

X‘mx: Z prX‘cp =f|/wl + fSX‘s (5)

cp=l,s

such that' f_ =f +f =1.

cp=l,s

S

The internal variables and their corresponding @wmh equations are defined in this work
within the associate rate-independent thermopl@sticeory context l(ubliner, 1990 Simo,
1995. A possible choice is given by the plastic Almasisain tensor” and the effective
plastic deformatiore® related to the isotropic strain hardening effeet,(n”. =2 with ;=

int

e’ anda,=€P"). The evolution equations for such plastic vaeatdre written as:

L,(eP)=A40F/ e =-A0F/ (6)

wherelL, is the well-known Lie (frame-indifferent) derivedi, A is the plastic consistency
parameter computed according to classical conaptise plasticity theoryC is the plastic
isotropic hardening function ané=F(o,e”,T) is the yield function governing the plastic
behaviour of the solid such that no plastic evohsi occur wherr<0. A Von Mises yield

function is adopted:
F = 1/3\]2 _Cy‘mx (7)

where J; is the second invariant of the deviatoric partoo{o,, =4/3J, is the so-called
equivalent or Von Mises stress) and the yield gfifefunction Cy‘cp is adopted in this work
as:

C

y

=C

cp Yo

ot C (8)
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with Cyo‘cp = Cyo‘cp(T) being the yield strength defining the initial nraakelastic bound. In

generaI,Cyo‘cp decreases with temperature and, hence, it accéomnthe thermal softening

phenomenon, which is an important effect to be icmmed in casting processes where
materials undergoing large temperature variatiores iavolved. For the liquid phase, in
particular,Cyo‘| =0 is assumed.

Assuming a stress-free initial statg,€0), the following specific free energy function
w=y|_ is proposed such tha,I/|Cp =¢/|Cp(e—ep,ép,T) is expressed asC€lentano, 2001
Celentano, 2002

np\

Yl =i(e—ep—eth| -e”):CY :(e-eP-e"| -e™ 1 e e
cp 2,0 cp cp cp (np| +1),0 cp
® 9)
+¢_[(T=To) =TIn(T1T,)] = L fy =70 (T = To) + 44,
where C®| is the secant isotropic elastic constitutive tens@p‘ and np‘ are the
cp cp cp

IS
cp
the secant specific heat and is the secant specific latent heat. It should bid that the
deviatoric response of the liquid phase is negtebie assuming a purely volumetric elastic

constitutive tensor in this phase. Furthermcai‘é*,cp and e are the thermal and phase-change

parameters aimed at characterising the isotropideméng behaviour of the materiat®

Almansi strain tensors, respectively given by:

“l, =%[1_(1_a‘“|°p)2/3]1 (10)

Y 213|(1— 4 )?/3
e =f-t-a,0"0-a,)" 1 1)

—_ S
wherea,| = ay,

cp (TO _Tref ) Wlth ati

cp (T - Tref ) - atio

dilatation coefficient anda . =J,, f,, with J;  being the secant phase-change volumetric

being the secant volumetric thermal
cp

deformation.

As mentioned above, the proposed definition ¢ofallows the derivation, including
coupled thermoelastic, thermoplastic and phasegehagffects, of all the constitutive
equations and internal dissipation by means of ékpressions given in Section 2; see
Celentano (2001andCelentano (2002)

4 MICROSTRUCTURAL MODEL

The eutectic nodular cast iron microstructure matipted in this work corresponds to
that proposed bipardati et al., (2006)Iin this model, the phase-change internal vargahle
the austenite and graphite volumetric fractionsetogr with their respective grain/nodule

density and radius (i.en’’ =6). Only a brief description of this model is presehbelow.

int
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4.1 Solid fraction

Figure 1l.a shows a schematic representation ofgaiadal dendrite grain and spherical
graphite nodules. The total grain radiRs is computed at the instant of instantaneous
nucleation. The radiuBy corresponds to a spherical surface at the tign@frbain dendrites
and grows during the solidification until it reashihe valueRr. Three spherical symmetric
zones are identified in Figure 1.b in order to el a simplified description of the solute
concentrationRappaz and Thévoz, 198Zone 1, defined as a sphere with radR4sshows
the evolution of the solute contents in the solithge and covers the volumetric fraction
corresponding to the total solid volume of the graione 2 shows a uniform distribution of
solute in the interdendritic liquid while Zone 3hébits a variation of solute concentration in
the intergranular region. In this context, theddlaction is written as:

fo=1,+f, (12)
where f, and f . are the austenite and graphite volumetric fraatespectively given by:
3
f = (& -fa
y gr
R (13)
2 Z
foo =) fo
? le ? (14)
such that the graphite volumetric fraction of giigégphssociated to zorg is:
4 & 3
f& =—m» N2 R>
3 ,Z:;‘ o R (15)

where Ngz;j is the number of graphite nodules per unit volwhéotal grain of zon&; with
radius Rj;j , the subscript denotes the nodule group related to a specifiteation time andk
stands for the total number of nodule groups.
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Figure 1: a) Schematic representation of an ecaliaéendrite grain and spherical graphite noduled,l@
spherical solute concentration (spherical symmistassumed).

4.2 Nucleation and growth of austenite

Nucleation of the austenite is assumed to occlgoas as the eutectic temperatiigeis
reached. The following instantaneous nucleationitamdopted:

N, =AT (16)
where N, is the density of austenite grains adg is a parameter that depends on the

characteristics of liquid such as composition, sa@ating and holding time.
Based on the number of austenite grains that niécpesa unit volume, the total radiBs is
simply computed as:
3
47N, (17)

R =;

The growth of the dendrite tips is assumed to #robled by the diffusion of solute while
the influence of the thermal undercooling is negleédecause the temperature is considered
as constant for the whole grain. The evolutiofRpis given by:

| 1 2
R _ DC mCO C Y _c:00
* rk, -yl G

(18)

where D, is the coefficient of carbon diffusion in liquidy is the slope of the austenite
liquidus curve, C, is the initial concentration of carbor, is the Gibbs-Thompson

coefficient, k, is the partition coefficientC'’” is the carbon concentration of the liquid in
contact with austenite (at temperatufe and at equilibrium) andC_ is the carbon

Copyright © 2008 Asociacion Argentina de Mecénica Computacional http://www.amcaonline.org.ar



1512 P.M. DARDATI, D.J. CELENTANO, F.D. CARAZO, L.A. GODOY

concentration of the intergranular liquid away frdme dendrite tip.

Moreover, the radius of the spherical Zone 1 iduwatad by equating its volume to the sum
of the eutectic austenite volume plus the volumeaafules that have already been surrounded
by this phase and that do not continue growing raeg to this model. Thus,

_3R(C -c )R, +(RE-RE)C
) 3¢ L=k, R; (19)

4.3 Nucleation and growth of graphite

Graphite nucleation is modeled as a continuousga®dhat occurs in Zones 2 and 3
according to the following law:

. C
NZ =b, ATexg - — [lL- f~
ar; bgr ex;{ ATJ( s ) (20)

where by, and ¢y, are nucleation parameters that depend on the csitigo and liquid
treatment andIT is the undercooling.

Graphite nodules grow in both the interdendritiad antergranular liquids, but with
different rates because Zones 2 and 3 have diffeambon concentrations, namé&’” and

C.,, respectively. The growth of graphite nodules dudiffusion is modeled here using
Zener’s equation for a spherical isolated particla matrix with low saturation:
o7 Dlpl (CI/y_CI/gr)
" R, (0, -0
21
qe - _Dialc. -c') >

ar, Rgri Py (Cgr _Cllgr)

where C'"? is the carbon concentration of the liquid in cehtaith graphite (at temperature
T and at equilibrium) an@y is the carbon concentration of graphite (i.e.,%00

5 SOLIDIFICATION TEST

The analysis of a cylindrical casting specimen db.Scast iron (diameter=70mm and
height=140mm) in a green sand mould surroundeddigeal shell (internal diameter=185mm,
thickness=30mm and height=260mm) is performed. Thsblem has been extensively
studied using simplified infinitesimal strains cohdive models for the materials involved
(Celentano et al., 199%Celentano, 1997and, more recently, involved large strains and
microstructural effectsQelentano, 2001 The experimental apparatus is schematically shown
in Figure 2. Both temperature and radial displaggnegolutions have been measured during
solidification and cooling approximately at the meaght of the specimerCélentano, 2001
Thermocouples were placed on three radial directaar®, 120° and 240°, starting from the
cylinder central axis to the surrounding sand mauldrder to visualize the thermal gradient
evolution. Radial displacements were measuredeasdaime directions on the cylinder external
skin using silica rods.
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Topview
Silica rod

Steel shell
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Side view

Side view

140] 260 140260

105

185

Figure 2: Experimental apparatus.

The material thermomechanical properties for the. $&3t iron and green sand can be
respectively found iilCelentano (2001andMidea and Shah (2002)he constants involved in
the microstructural model for the S.G. cast iromthiose reported iDardati et al. (2006)

The axisymmetric numerical computation used 540-fmded isoparametric elements and
a time step of 50 s. The analysis starts with theldoavity completely filled with molten
metal at rest at 1250 °C (i.e., instantaneousidilis assumed) and 22 °C for the sand and steel
moulds. The mould is simply supported at the boteomd convection-radiation conditions
have been considered between the external facéeofmould and the environment. The
boundary conditions and the finite element mesid wse plotted in Figure 3. Mechanical
frictionless contact conditions are adopted fordasting-sand interface.
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convection-radiation
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i

insulated
Figure 3: Boundary conditions and finite elemensme

The experimental temperature evolutions in the wrgstor different radial positions at
height 105 mm are plotted in Figure 4. The numerieallts obtained with the proposed
formulation are also included for comparison. A gamverall agreement can be observed
where, more specifically, the liquid-solid and dediolid phase-changes are reasonably well
described.

Experimental and computed temperature evolutionghimm sand for different radial
positions at height 105 mm are plotted in Figuretere, once again, a good fitting can be
appreciated.

Moreover, the experimental and numerical radighldisement evolutions at height 85 mm
of the casting-mould interface are shown in Fig@reThe different expansion/contraction
behaviours related to the phase-changes occurdriggdthe process can clearly be seen: a)
contraction till the beginning of the solidificatipb) expansion during solidification (graphite
precipitation), ¢) contraction from the end of tb@idification up to the beginning of the
eutectoid transformation, d) contraction arresirduthe eutectoid transformation and e) final
contraction to room temperature. Almost identicehdviours have been experimentally
observed for the three directions mentioned abowk tnerefore, an average curve has been
included in Figure 6. Although the numerical figirs only qualitative, the response provided
by the S.G. model proposed in this work correajyroduces the distinct behaviours observed
at different stages of the process.

Figure 7 depicts the deformed configurations at fones of the analysis. It is seen that the
differential vertical dilatation between the cagtiand sand mould that develops during the
cooling process makes the measurement tasks dlifficice the silica rods can be potentially
broken as a consequence of the action of an un@addeshear force.

The volumetric fractions evolutions in the casting fwo radial distances at height 105
mm of the specimen are plotted in Figures 8 antli9.seen that the final graphite content is
nearly independent of the temperature rate.
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Figure 4: Temperature evolutions in the castingdifierent radial positions at height 105 mm of #pecimen.
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Figure 5: Temperature evolutions in the sand féfedint radial positions at height 105 mm of the@gmen.
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Figure 6: Radial displacement evolutions at hegfhinm of the casting-sand interface.

(a)

(b) (c) (d)

Figure 7: Deformed configurations at times a) 200)$00 s, ¢) 1000 s and d) 3500 s (amplificataator=10).
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Figure 8: Volumetric fractions evolutions in thestiag for radius 0 mm at height 105 mm of the speai.
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Figure 9: Volumetric fractions evolutions in thestiag for radius 30 mm at height 105 mm of the spea.
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6 CONCLUSIONS

A large strain thermoplastic formulation for theabysis of the solidification process of
nodular cast irons of eutectic composition has h@esented. This formulation accounts for
thermomechanical as well as microstructural behasicof these materials in a unified
framework allowing, therefore, to analyze the di#f@ coupled phenomena occurring in
complex casting problems.

This formulation has been used in the analysissdfiidification test of nodular cast iron in
a green sand mould. The model has been partialigatal with some available experimental
measurements where reasonable agreement betweeaticalnand experimental results can
be observed. However, the difficulties associatethé full material characterization lead to a
further research in the thermomechanical/microtimat simulation of solidification
processes with the sake of constituting a robwdtfts casting design.
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