
 

A NEW SHELL ELEMENT FOR ELASTO-PLASTIC FINITE STRAIN 
ANALYZES  

Rita G. Toscano a and Eduardo N. Dvorkin a, b  

aSIM&TEC, Av. Pueyrredón 2130 5ªA, C1119ACR, Buenos Aires, Argentina. rtoscano@simytec.com; 
edvorkin@simytec.com, http://www.simytec.com  

bIMATEC, Engng School, University of Buenos Aires, Av. Las Heras 2214, C1127AAR, Buenos Aires, 
Argentina 

Keywords: shell, finite strain, MITC4. 

Abstract. The MITC4 shell element (Dvorkin E.N. and Bathe K.J., Engng. Computations, Vol. 1, pp. 
77-88, 1984) is very successful and it provides excellent solutions for infinitesimal strain analyzes 
using either elastic or elasto-plastic material models in linear or nonlinear geometrical formulations. 
In (Dvorkin et al., Comput. Meth. Appl. Mechs. Engng., vol. 125, pp.17-40, 1995) the element 
formulation was extended for finite strain elasto-plastic analyzes and even tough the new element 
provides very good solutions it presents some room for improvements. 
In previous publications we presented a new shell element formulation, the MITC4-3D that we 
developed for finite strain analysis using the MITC4 strains interpolation and 3D constitutive relations 
(hyperelastic and elasto-plastic materials). 
Some of the basic features of our new element are: 
• The shell geometry is interpolated using mid-surface nodes and director vectors. 
• The node displacements and transverse shear strains are interpolated using the original MITC4 

formulation. 
• For interpolating the director vectors special care is taken to avoid spurious director vector stretches. 
• Additional degrees of freedom are considered to include a linear thickness stretching. These 

thickness-stretching degrees of freedom are condensed at the element level.  
•  The elasto – plastic formulation is developed following the work of Simo and co-workers: 

multiplicative decomposition of the deformation gradient tensor and maximum plastic dissipation 
(associate plasticity). 

• Special consideration is given to the formulation efficiency. 
In this paper we are going to discuss the basic features of the MITC4-3D element and present further 
verification / validation examples. 
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1 INTRODUCTION 

The shell element formulation presented in (Ahmad, Irons and Zienkiewicz, 1970), after 
many years, still constitutes the basis for modern finite element analysis of shell structures. 
Even tough the A-I-Z shell element was a breakthrough in the field of finite element analysis 
of shell structures, under the constraint of the infinitesimal strains, it suffers from the locking 
phenomenon and much research effort has been devoted to the development of A-I-Z type 
elements that do not present this problem (Bathe, 1996, Chapelle and Bathe, 2003, 
Zienkiewicz and Taylor, 2000). 

The MITC4 shell element (Dvorkin and Bathe, 1984), which was developed to overcome 
the locking problem of the A-I-Z shell elements, has become, since its development in the 
early eighties, the standard shell element for many finite element codes. However, the 
limitation of infinitesimal strains is still present in the MITC4 formulation. 

In 1995 Dvorkin, Pantuso and Repetto (Dvorkin et al, 1995) developed the MITC4-TLH 
element, that based on the original MITC4 formulation can model finite strain elasto-plastic 
deformations. This element imposes the condition of zero transversal stresses and its 
computational cost is rather high. 

In previous publications we presented a new shell element formulation, the MITC4-3D 
that we developed for finite strain analysis (Toscano and Dvorkin, 2007) using the MITC4 
strains interpolation and 3D constitutive relations (hyperelastic and elasto-plastic materials). 

The most relevant differences with the original MITC4 formulation are: 
• For each quadrilateral element we have 22 d.o.f.: 5 generalized displacements per 

node plus 2 extra d.o.f. to incorporate the through-the-thickness stretching. 
• We use a general 3D constitutive relation instead of the original laminae plane stress 

constitutive relation. 

2 THE MITC4-3D FORMULATION 

Some of the basic features of our MITC4-3D element are: 
• The shell geometry is interpolated using mid-surface nodes and director vectors. 
• The nodal displacements and transverse shear strains are interpolated using the 

original MITC4 formulation (Dvorkin and Bathe, 1984). 
• For interpolating the director vectors special care is taken to avoid spurious director 

vector stretches (Gebhardt and Schweizerhof, 1993, Simo et al., 1989). 
• Two additional degrees of freedom are considered to include a linear thickness 

stretching. These thickness-stretching degrees of freedom are condensed at the 
element level (Dvorkin et al, 1995; Bischoff and Ramm, 1997). 

• The elasto - plastic formulation is developed following (Simo and Hughes, 1998): 
multiplicative decomposition of the deformation gradient tensor and maximum plastic 
dissipation (associate plasticity). 

• Special consideration is given to the formulation efficiency. 
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2.1 Shell element geometry 

Following the MITC4 formulation we define, in the reference configuration, nodes on the 
shell mid-surface and at each node we define a director vector which represents, at that node, 
an approximation to the shell mid-surface normal (Dvorkin and Bathe, 1986, Simo et al., 
1989, 1990, 1992). 
Therefore, defining inside the element the natural coordinate system (r, s, t) (Bathe, 1996), for 
an element with constant thickness, we can write, 
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Where, 

 ),( srhk : isoparametric 2D interpolation functions corresponding to the k-th mid-surface 
node (Bathe, 1996), 
 kxτ        : position vector of the k-th mid-surface node at time τ, 
    a          : constant element thickness, 
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     : director vector corresponding to the k-th mid-surface node at time τ, with   
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In Eqn. (1) 0λτ

is a constant thickness stretching and 1λτ
is the through-the-thickness stretching 

gradient. In our formulation the element 0λτ

 and 1λτ
 are discontinuous across element 

boundaries and they will be condensed at the element level. 

2.2 Incremental displacement 

The incremental displacements to evolve from the τ-configuration to the τ+Δτ-
configuration are, 
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 For the director vector rotations we can write, 

k
n

k
n VRV τττ

τ
ττ ⋅= Δ+Δ+                                         

where Rττ

τ

Δ+  is a rotation tensor (Dvorkin et al., 1988). 

To simplify the linearization, we made the approximation k
nk

k
nk VsrhVsrh τττ ⋅=⋅ Δ+ ),(),( . 

2.3 Constitutive relation 

The shell element formulation developed in this paper is a fully 3D formulation since the 
in-layer plane stress hypothesis used in the original MITC4 formulation was not invoked in 
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this case. This full 3D constitutive relation is based on: 
• Lee´s multiplicative decomposition of the deformation gradient tensor Xτ

0
(Figure 1) 

• Maximum plastic dissipation 
• For the elastic part an hyperelastic relation using Hooke with Hencky strains: 

EHC ττ
00

:=Γ . 

IJΓτ
0  components are calculated as the rotational pull-back of the contravariant components of 

the Kirchhoff stress tensor. For an isotropic material, the second order tensor Γτ
0 is the stress 

measure energy-conjugate to the Hencky strain tensor (Dvorkin and Goldschmit, 2005). 
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Figure 1: Lee’s multiplicative decomposition of the deformation gradient 

3 THE INCREMENTAL FORMULATION 

Using a total Lagrangian formulation we can write the Principle of Virtual Work for the 
equilibrium configuration at τ+Δτ (Bathe, 1996), 

ℜ=⋅Γ Δ+Δ+∫ ττ δ tE

V

t dVH 0:
0

            (3) 

 where ℜΔ+ τt  is the virtual work of the external loads acting on the solid body in the τ+Δτ-
configuration and EH  is an elastic Hencky strain tensor. 
But the incremental step is given considering constant the intermediate configuration, which 
is updated later (see Figure 2). This last t iteration is the iteration (k-1) of step ττ Δ+ . 
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Figure 2: Incremental step 

Therefore, replacing in (3), 
ℜ=⋅Γ Δ+Δ+∫ ττ δ tE

V

t dVH 0:
0

)
 .       (4) 

Where, 
Γ+Γ=ΓΔ+ dt ττ     .                           (5) 

Since we are interpolating the total components of Hτ

0
, not only the elastic part, we must 

calculate, 
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The fourth order tensor E
EP H

C )
∂

Γ∂
=  is the tangent constitutive elasto-plastic tensor 

(Dvorkin et al., 1995). 

The term 
H

H
E

∂

∂
)

 is deduced using Serrin formula (Dvorkin and Goldschmit, 2005). 

In order to be able to put the strain variations in terms of the displacement variations,  

Cd
C

H
Hd K :| )1( −

∂

∂
= .           (8) 

Where C  is the Green second order tensor. 
The Green-Lagrange strain tensor is defined in the reference configuration as, 
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Therefore,  
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Taking into account the expressions 3 to 10, we deduce the linear and non-linear matrices 
and the equivalent nodal forces vector and formulate the equilibrium equation for the 
linearized incremental step, from time τ to ττ Δ+ , as, 

( ) FUKK NLL
τττττ −ℜ=⋅+ Δ+

00 .     (11) 

4 NUMERICAL RESULTS 

We have validated the new MITC4-3D element comparing its results and iterative 
behavior with an implementation of the MITC4 element in which the thickness is updated a 
posteriori of each iteration. 

4.1 Infinitely long cylinder under internal pressure 

In this example we analyze an infinite long elasto-plastic cylinder under internal pressure 
(Fig. 3). 

Figure 3 also shows the equilibrium paths calculated with both elements, MITC4-3D and 
MITC4 with a posteriori thickness update, and the thickness stretching vs. radial displacement 
curve. Regarding the equilibrium path, the coincidence is perfect. 
The d.o.f. (Δλ0, Δλ1) are condensed at the element level and (20x20) element stiffness 
matrices are obtained and assembled into the global stiffness matrices. 
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Figure 3: Inflation of an infinitely long elasto-plastic cylinder 
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4.2 Pipe: external collapse pressure 

In this case we study the behavior of a pipe under external pressure. The material 
properties are: E=21000 kg/mm2, Et=86.0 kg/mm2, ν=0.3 and y=54,75 kg/mm2. Regarding 
the geometry of the pipe, the external diameter is 341,5mm, the thickness a=17,65mm and the 

ovality %.47,0[%] minmax =
−

=
AverageD

DD
ov  Figure 4 shows the pipe after collapse propagation; the 

red area corresponds to diameter diminish while the green lateral area corresponds to diameter 
increase. The variable represented in the graph is the absolute value of the total displacement 
of each mesh point.  
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35.0

0.0

70.0

35.0

0.0
 

Figure 4: External collapse pressure of a pipe with ovality; total displacement of each mesh point 

Figure 5 shows the External pressure vs. Diameter variation for both elements: MITC4-3D 
and MITC4 with a posteriori thickness update. It can be observed that the results are very 
similar. 

 
Figure 5: External  pressure vs. Diameter variation 

The curves Thickness stretching vs. Axial coordinates for element lines corresponding to 
diameters that increase and diameters that decrease are also presented (Fig. 6). 
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Figure 6: Thickness stretching vs. Axial coordinates 

In Figure 7 we can see the comparison of the Iteration number vs. Diameter variation for 
MITC4-3D vs. MITC4 with a posteriori thickness update. It becomes evident that the new 
element shows a better efficiency. 
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Figure 7: Iteration vs. Diameter variation (increase) 

5 CONCLUSIONS 

On the basis of the MITC4 shell element formulation, we developed the MITC4-3D shell 
element formulation for finite strain analyses of shell structures using general 3D constitutive 
models. In this paper the new element was implemented for the analyses of elasto-plastic shell 
structures and the results indicate that it is a very effective element. 
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