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Abstract. Fluid structure interaction (FSI) involving rigid bodies contains three main problems 
to  be solved,  the computational fluid dynamics (CFD), the computational mesh dynamics 
(CMD) and the multi-body dynamics (MBD). Python is used as a glue language capable of 
connecting this three main problems in a high-level, interactive and productive environment. 
This  interaction  is  implemented  in  PETSc-FEM  code  (http://www.cimec.org.ar/petscfem) 
which is a parallel multi-physics finite element based on PETSc.  PETSc is a suite of data 
structures and routines for the scalable solution of scientific applications modeled by partial 
differential equations. It employs the MPI standard for all message-passing communication. 
PETSc for Python (petsc4py) are Python bindings for PETSc used in this work.
A  stabilized  ALE  (Arbitrary  Lagrangian-Eulerian)  formulation  is  used  to  solve  the 
incompressible laminar Navier Stokes equations in a moving grid. The mesh dynamics may 
be solved in general  by a global optimization strategy,  however,  in some special  cases,  a 
simple ad-hoc procedure may be adopted. For each subproblems a second order accurate in 
time scheme is adopted. Results for vortex-induced vibrations (VIV), galloping and flutter of 
some numerical examples at low Reynolds number are presented.
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1. INTRODUCTION

Multiphysics relates to the interaction between systems with different physical behaviors, 
the interaction between fluid and structure is an example of this. Both systems interact in the 
contours of their domains they share. In our particular case study the contour of the structure 
is  not  deformable,  since we are  interested in  studying multibody systems with their  own 
dynamics given by their inertia and structural characteristics, immersed in a fluid flow.

Basically  there  are  two  ways  of  modeling  multiphysics  problems,  Monolithic 
(Simultaneous Treatment) and Partitioned Treatment. In the first case, the whole problem is 
treated as a monolithic entity, and all components advanced simultaneously in time. In the 
Partitioned Treatment, the field models are computationally treated as isolated entities that are 
separately  stepped  in  time.  Interaction  effects  are  viewed  as  forcing  terms  that  are 
communicated  among  individual  components  using  prediction,  substitution  and 
synchronization  techniques.  We  favour  the  partitioned  treatment  since  it  allows 
customization,  independent  modeling,  software  reuse and  modularity.  However  the 
partitioned approach requires careful formulation and implementation to avoid degradation in 
stability and accuracy (Storti et al., 2006).

 Fluid  flow is  naturally  modeled  by  FEM,  depending on  their  physical  characteristics 
(flow, turbulence, moving boundaries, etc.). Multibody systems are modeled through a series 
of ODE's.

To solve the flow of fluid we use the program PETSc-FEM, which is a parallel multi-
physics finite element based on PETSc.  PETSc is a suite of data structures and routines for 
the scalable  solution of scientific applications modeled by partial  differential equations. It 
employs the MPI standard for all message-passing communication. 

Of the many methods in the bibliography for modeling multibody dynamics, we used a 
method  called  Bond  Graphs  (BG).  BG's  represent  elementary  energy-related  phenomena 
(generation, storage, dissipation, power exchange) using a small set of ideal elements that can 
be coupled together through external ports representing power flow (Karnopp et al., 2000). 

Besides the computational fluid dynamics (CFD) and the multi-body dynamics (MBD), in 
this type of interaction it is necessary to resolve the computational mesh dynamics (CMD).

 Python is used as a glue language capable of connecting these three main problems in a 
high-level, interactive and productive environment.

2. GENERAL SPECIFICATIONS

2.1 Fluid Dynamics

 Because the fluid and the solid domains move arbitrarily it may be necessary to define a 
moving reference  frame  in  which  the  conservation  laws  are  formulated.  This  strategy  is 
established through the Arbitrary Lagrangian Eulerian (ALE) formulation.

 Viscous flow is well represented by Navier-Stokes equations. The incompressible version 
of this model includes the mass and momentum balances that can be written in the following 
form. Let Ω є RNsp and (0, t+) be the spatial and temporal fluid domains respectively, where 
Nsp is the number of space dimensions, and let Γ be the boundary of Ω, both of them to be 
defined  later.  The  operator ∇ x  . denotes  the  derivative  with  respect  to  the  current 
referential  coordinates x and  u̇ corresponds  to  the  change  of  the  material  particle 
velocity noted by an observer traveling with the referential coordinate. Therefore,

∇ x .u=0 in×0, t x  (1)
u̇u−v . ∇ xu−f −∇ x .=0 in×0, t x  (2)
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 with ρ and u the density and velocity of the fluid, f the volume force vector, the velocity 
difference u−v  is commonly called the convective velocity and σ the stress tensor, given 
by

=−p I2⁕ u (3)

u =1
2
∇ xu∇ x u

t (4)

where  p is the pressure and  µ* is the effective dynamic viscosity defined as sum of the 
dynamic (molecular) viscosity and the algebraic eddy viscosity coming from the turbulence 
model. I represents the identity tensor and є the strain rate tensor.

2.2 Multibody Dynamics

 Each rigid body has a set of three equations associated with the 3 dof’s for 2D, two for 
each components of the linear momentum conservation and the  reminder account for the 
conservation  of  angular  momentum.  Linear  and  angular  inertia,  damping  and  stiffness 
characterize the rigid body motion assuming for simplicity that  the behavior is linear and 
uncoupled.
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   where i means the coordinate direction x, y and k is an index along the whole set of rigid 
bodies.  The  displacements  di

k are  the  components  of  the  k rigid  body  translation 
d k={d x

k , d y
k }  whereas θk describes the k rigid body rotation with respect to its gravity center 

G. The scalar quantities mi, ci, ki, Iθ, cθ and kθ denote the mass, the damping and the stiffness 
constant for the translational and rotational degrees of freedom, respectively. The scalars  Fi 

represent the components of the force vector, while M is the moment.

A typical description of the rigid body dynamics problem may be viewed in figure 1. The 
initial position of a typical rigid body is defined through the gravity center G0, locate relative 
to an inertial reference frame (X,Y) by position vector r0, and the body fixed reference frame 
(X0,Y0). A typical point at its surface is named P0. By the fluid forces and moments the rigid 
body moves to the current position defined by G, with the new position vector r=r0r  
and its new orientation given by (X',Y') rotated from the original orientation an angle θ. The 
point P0 moves to its current location P with the new normal n.
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Figure 1: Rigid body dynamics problem

The BG technique is specially interesting for more complex cases. They are well-suited 
for  a  modular  modeling  approach  based  on  physical  principles  (Filippini  et  al.,  2007). 
Hierarchical  modeling  becomes  possible  through  coupling  of  component  or  subsystems 
models  through  their  connecting  ports.  Besides  these  physical  features  capturing  energy 
exchange phenomena, it is also possible to code on the graph the mathematical structure of 
the physical  system, in the sense of showing the causal  relationships (in  a computational 
sense) among its signals. This allows connecting BG-models to signal flow graphs or block 
diagrams. Moreover, it turns the algorithmic derivation of mathematical and computational 
models from BG's into a highly formalized task. The conjunction of all these features make of 
BG's  a  physically  based,  object-oriented  graphical  language  most  suitable  for  dynamic 
modeling, analysis and simulation of complex engineering systems involving mixed physical 
and technical domains in their constitution. 

 

2.3 Mesh Dynamics

The computational mesh dynamics (CMD) in the cases studied in this work was resolved 
by calculating an elasticity problem in PETSc-FEM. However, the movement of the rigid 
bodies  can  be  large  and  the  CMD problem could  generate  pour  quality  or  even  invalid 
meshes. In the future we will use a strategy based on global optimization of mesh quality to 
solve  the  computational  mesh  dynamics  problem.  Such  approach  leads  to  significantly 
enhanced robustness when solving a CMD problem with large mesh deformations. (Lopez et 
al., 2006).

    The fluid mesh that may be arbitrary (triangles or quadrangles) and the rigid body mesh 
that  is  generated by each panel  at  the  surface joined to  the  gravity  center.  This mesh is 
ficticious because it is only used to define relative positions among each surface node and the 
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gravity center G. A detail of the two meshes and the interface is shown in figure 2

Figure 2: Meshes and discrete interfaces

3. LINKING BGS MODELS WITH PETSC-FEM THROUGH PYTHON

 Bond Graphs have  a  concept  of  causality  defining the  order  in  which the  mathematical 
equations of the mechanical model should be computationally solved.  

 Some end-user applications for BG modeling provide facilities for generating C or C++ 
codes implementing the required computations for simulating the BG models.  Such codes 
can be easily accessed within a Python programming environment by employing appropriate 
tools like SWIG. SWIG is a software development tool that connects programs written in C 
and C++ with a variety of high-level programming languages. Then, as PETSc-FEM and BG 
models  are  driven  by  Python,  it  is  possible  to  link  them and solve  this  fluid-rigid  body 
interaction.

4. STRONGLY COUPLED PARTITIONED STAGED ALGORITHM

For each subproblems a second order accurate in time scheme is adopted but different 
methods of coupling were implemented in this Python interface. The first and simplest  is 
called Weak Coupling without  Predictor.  Then we implemented a  predictor  for the  solid 
(Weak Coupling with Predictor) and the possibility of new loops within the loop of time step 
(Stage Strong Coupling with Predictor).

4.1 Weak Coupling without Predictor

1- Initialization: Solve Fluid
2- Time Step Loop:

(a) Compute Fluid Forces
(b) Solve Solid
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       (c) Compute Solid Displacements
       (d) Solve Mesh
       (e) Solve Fluid

 Staggered procedures are  very effective for coupled first-order parabolic  systems.  For 
more general problems, particularly those modeled by oscillatory second order ODE's, the 
stability restriction can become serious. Weak coupling degrades the time-stepping stability; 
the new rigid body state is determined for the forces exerted by the fluid in the previous step.

4.2 Weak/Strong Stage Coupling with Predictor

In this coupling method a predictor is used. The general form of the predictor for the rigid 
body state was taken from reference (Piperno and Farhat, 2001) and can be written as

dn1 p=dn0 t ḋn1 t  ḋn− ˙dn−1 (7)

It is at least first order accurate when no predictor is employed and it may be improved to 
second order using the above predictor with some values for α0 and α1. To understand the in-
fluences of these parameters a simple two dofs second order in time coupled ordinary differ-
ential equations model has been analyzed.

The algorithm is as follows:

1- Initialization
2- Time Step Loop:
   (a) Solve Solid Predictor
  (b) Compute Solid Displacements
   (c) Solve Mesh
   (d) Stage Loop 
       (i) Solve Fluid
       (ii) Compute Fluid Forces
       (iii) Solve Solid
       (iv) Compute Solid Displacements
       (v) Solve Mesh

Once satisfactory stability is achieved, the next concern is accuracy. This is usually de-
graded with respect to that attainable by the monolithic scheme. In principle this can be recov-
ered by iterating the state between the fields. Iteration is done by cycling substitutions at the 
same time step. 

5. NUMERICAL EXAMPLES

5.1 Vortex Induced Vibration

This example has been studied in a previous paper (Filippini et al., 2006) but now with the 
aim to validate this new interface PETSc-FEM driven by Python. The figure 3 shows the sys-
tem under study, which consists of a cylinder immersed in a flow of fluid with a degree of 
freedom in the transverse direction to the flow.
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Figure 3: VIV Example

 The domain is discretized in a mesh of triangles with 13048 elements and 7204 nodes. The 
mesh is refined near the skin of the body and in the wake as shown in figure 4. It is assumed 
that  the  cylinder  has  a  mass  m=481.7877kg,  the  spring  is  linear  with  the  stiffness 
k=1.4823x10-4N/m and a damping factor c=6.4974x10-4Ns/m. Then the mechanical system has 
a  natural  frequency  fn=5.5467x10-4s-1.  The  fluid  properties  are  set  to  µ=2x10-5Ns/m and 
ρ=1kg/m3.

Figure 4: Mesh

The figure 5 shows the BG's model of the mechanical system. The symbol I in BG's repre-
sent the mass of the cylinder, the symbol C is a spring, R is a damper and MSe is a modulated 
source representing the force applied by the fluid on the mechanical system.
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Figure 5: BGs Model

  
Simulations were performed for different Reynolds numbers in an interval between 90 and 

140; the time step used was dt=200s. The characteristic behavior of this system is the lock-in 
phenomenon: there is an interval of free stream velocities for which the vortex shedding fv 
agree  with the  natural  frequency  fn of  the  cylinder-spring system. If  U∞ lies  within this 
interval then the cylinder performs stable oscillations, with amplitudes as large as the cylinder 
diameter. Otherwise the oscillations are negligible. The existence of this lock-in region is an 
evidence for the two-way coupling between the fluid and the mechanical system. The fluid 
flow excites the oscillations of the cylinder, whereas the motion of the cylinder causes the 
lock-in effect altering the vortex shedding frequency fv to be equal to the natural frequency fn. 
This effect may be observed in figures 6 and 7. Figures 8, 10, 12 and 14 shows vertical fluid 
force for  different  Reynolds  numbers.  Figures  9,  11,  13  and 15  shows how the  cylinder 
oscillation develops in time for different Reynolds numbers. Figure 16 shows the magnitude 
of the velocity at Reynolds 105 for a sequence of states where the lock-in is observed.

Figure 6: Frequency ratio vs Reynolds
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Figure 7: Amplitud ratio vs Reynolds

 Figure 8: Vertical Force [N] - Re 90  Figure 9: Vertical Displacement [m] – Re 90

 Figure 10: Vertical Force [N] - Re 105  Figure 11: Vertical Displacement [m] – Re 105
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 Figure 12: Vertical Force [N] - Re 120  Figure 13: Vertical Displacement [m] – Re 120

 Figure 14: Vertical Force [N] – Re 140  Figure 15: Vertical Displacement [m] – Re 140
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Figure 16: Magnitude of Velocity – Re 105

5.2 Galloping

Many flow induced vibrations happen at frequencies which are much smaller than the 
vortex shedding frequencies.  In  the  case  of  mechanical  systems with only one degree  of 
freedom, this phenomenon is commonly denoted as  galloping  (Dettmet et  al.,  2006).  The 
associated  flow  velocities  are  usually  large.  The  mechanical  explanation  of  galloping is 
presented, for instance, in Blevins (1977). Figure 17 shows the example study of galloping, 
which has a rotational degree of freedom. 

Figure 17: Galloping Example

A triangular mesh of 3600 elements and 1904 nodes is used. The mesh is refined near the 
skin of the body and in the wake as shown in figure 18. It is assumed that the body has an 
inertia  Iθ=400kgm2,  a  linear  torsion  spring  with  a  stiffness  constant  kθ=61.685Nm and  a 
damping factor cθ=78.54Ns. Then the mechanical system has a natural frequency fn=0.0625. 
They were chosen according to Dettmet et al.  (2006). The BG's model of the mechanical 
system is equal to the previous example (figure 6) but for the case of rotation.
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Figure 18: Mesh

The fluid properties are  set  to  µ=0.01Ns/m and  ρ=1kg/m3 and the  inflow velocity  is 
u∞=2.5m/s, leading to a Reynolds numbers of 250. Figure 19 shows the angular momentum 
exerted by the fluid on the body. Figure 20 shows the angle of rotation. The vortex shedding 
frequency is fv=0.25(4fn), while the frequency of oscillation fo=0.0588(0.94fn). This range of 
frequency ratios  (fv<fn and  f0≈fn)  is  typical  of  a  state  of  galloping.  Figure  21  shows the 
magnitude of the velocity at Reynolds 250 for a sequence of states where the  galloping is 
observed.

Figure 19: Angular Momentum [Nm]

 
Figure 20: Angle of rotation [rad]

G. FILIPPINI, L.D. DALCIN, N.M. NIGRO, M.A. STORTI500

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Figure 21: Magnitude of Velocity

5.3 Flutter

This  is  an  example  of  a  rigid  H-profile  supported  with  a  rotational  and  a  vertical 
translational  lineal  elastic  spring.  It’s  is  exposed  to  uniform fluid  flow in  the  horizontal 
direction. This model problem, shows in figure 22, may be used to evaluate the aerodynamic 
stability of a suspension bridge. Coupled galloping of two or more degrees of freedom is 
commonly known as flutter (Dettmet et al., 2006).

Figure 22: Flutter Example

Figure 23 shows the mesh used for this example.  It has 3720 triangular elements and 
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1983 nodes.  The body has a mass  m=3000kg, the spring is linear with a stiffness constant 
k=2000N/m and a damping factor  c=100Ns/m.  The body has a inertia  Iθ=25300kgm2,  the 
torsion  spring  is  linear  with  a  stiffness  constant  kθ=40000Nm and  a  damping  factor 
cθ=2200Ns. The mechanical system has a natural frequency fyn=0.130s-1 and fθn=0.2s-1.

Figure 23: Mesh

The fluid properties are set to  µ=0.1Ns/m and  ρ=1.25kg/m3 and the inflow velocity is 
u∞=10m/s. Figure 24 shows the vertical fluid force and figure 25 shows the vertical position 
of the body. Figure 26 shows the angular momentum exerted by the fluid on the body and 
figure 27 shows the angle of rotation. After a while the oscillations take a stable pattern. The 
amplitude of the rotation is 0.271 and the maxima of vertical displacements wy  are bounded 
between 0.39<max(wy)<0.42. For this case the rotation is the dominant motion. Figure 28 
shows the magnitude of the velocity for a sequence of states where flutter is observed.

Figure 24: Vertical Force [N]
 

Figure 25: Vertical Displacement [m]
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Figure 26: Angular Momentum [Nm]

 
Figure 27: Angle of rotation [rad]

Figure 28: Magnitude of Velocity
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6. CONCLUSIONS

This work explore the interconnection of BGs models with CFD codes with the goal of 
resolving  problems  of  interaction  between  fluid  and  dynamic  systems.  A  high-level, 
interactive  and productive  Python  interface  have  been  used.  Strongly  coupled  partitioned 
staged  algorithm  was  implemented  in  this  interface.  Some  examples,  with  complex 
phenomena  as  lock-in,  galloping and  flutter have  been  presented.   Future  work  will  be 
directed towards to problems of vehicle aerodynamic attached to vehicle dynamics models.
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