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Abstract. Natural dissimilarity or de-correlation of axial velocity and temperature fatains, in a tur-
bulent channel flow, is studied using direct numerical simulation, DNSy&ury effects were neglected,
thus the temperature was considered as a passive scalar. A uniforgy snarce case for the thermal
field has been used. Results for molecular Pr or Sc numbers equal todlQ07dnare presented. More
evidences of the strong correlation of axial velocity and temperature indlidayer are shown, like as
the similar patter of the skin-friction and streamwise vorticity correlation, with bleatveen wall heat
flux and streamwise vorticity correlation. The importance of the most enemgeits on the dissimi-
larity between the axial velocity and temperature fluctuations is examined usidiitional probability.

It is shown that although the most energetic events are responsible dfdhgest instantaneous dis-
similarities, their contribution to the mean dissimilarity is less than a half in the wholenehaAs a
complement to many previous results in the literature analyzing fluctuationsgifudimal velocity and
temperature in frequency domain, spectral density functions is useden tordtudy dissimilarity. The
results presented here include new variables, as the spectra of thatftueswof axial velocity and tem-
perature difference, and the spectra of the fluctuations of the pecfisial. Spectral density functions at
different distances from the wall show, that the main cause of dissimilarityeas axial velocity and
temperature fluctuations is the shift toward higher frequencies of tempeiataomparison to any ve-
locity components, and specially to axial velocity, in the viscous, bufferpaginning of the logarithmic
region. However, in contrast with this situation next to the wall, there is argetendency to spectral
convergence at the center of the channel. Based on the spectra afdfvations of the pressure field,
it appears that one can conclude that such actions next to the wall Hrel@nter region are driven by
the pressure field. It is speculated, however, that the commented geneerat the center region can be
greater for higher Reynolds numbers than that used in the present work
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1 INTRODUCTION

Turbulent heat transfer is a phenomenon of fundamentakstand technological relevance to
a range of mechanical, aerospace, and chemical engingaoegsses in addition to a range
of applications encountered in physics, biological andrernvnental sciences. Nevertheless,
heat transfer predictions for most applications in practitilize simplistic approaches based
on Reynolds analogy, which implies similarity between motaenand heat transfer. This
approach is computationally efficient since heat transfedigtions are essentially obtained
from the turbulent velocity field at relatively little adaihal computational cost. However, most
flows encountered in practice are far from equilibrium, tireat analogy between momentum
and heat transfer fails, and use of the Reynolds analogy éaligting turbulent heat transfer can
be very inaccurate (Spalart and Strelets, 2000; Kong, ChdiLae, 2001; Inaoka, Yamamoto,
and Suzuki, 1999). Previous works show that there is a clead no examine in detail the
dissimilarities between heat and momentum transfer inewpnlibrium turbulent flows.

But in order to understand heat and momentum dissimilarityon-equilibrium turbulent
flows, however, it seems appropriate first, starting fronvipres results in the literature, look at
this phenomenon in fully developed turbulent flow, tryingutmderstand the way axial velocity
and temperature correlates in this kind of turbulence. Ard &tying to see more deeply how
this correlation degrades from high to lower values, fromwrall toward the center region of
the flow.

Similarity or dissimilarity between momentum and heat $fean means, similarity or dis-
similarity between axial velocity and temperature fluciuas. The correlation between these
fluctuations in wall bounded turbulent flow has been integlgiinvestigated in the last three
decades, first experimentally and then numerically. And bas been shown in the literature
with experimental works (Bremhorst and Bullock 1970; Orlandoffat, and Kays, 1974; Zaric
1975; Fulachier and Dumas, 1976; Hishida and Nagano 197&nilrKasagi, and Hirata 1985;
Antonia, Krishnamoorthy, and Fulachier 1988), and nuna¢neorks (Kim and Min, 1989;
Kasagi, Tomita, and Kuroda, 1992; Kawamura, Abe, and Mai999; Na, Papavassiliou, and
Hanratty 1999; Na, and Hanratty 2000; Kong, Choi, and Lee 2808 Kong, Choi, and Lee
2001), the similarity between the axial velocity and tenapere fields, is very strong in the vis-
cous and buffer region of a turbulent boundary layer. Inéheesses, for instance, with similar
boundary conditions for the axial momentum and thermaldiglte normal fluxes of axial mo-
mentum and heat have the same direction, and the similarstiyonger. Although some minor
differences in the first experimental works, nowadays iniewn that the correlation coefficient
is almost 1 next to the wall, decreasing as the the distaooe fine wall increases.

In order to justify this strong correlation between fluctoas of axial velocity and temper-
ature, in previous works some explanations have been giasadoon the kind of turbulence
structures that exists in the wall layer. Nowadays it is kndhat turbulence, and moreover
bounded turbulence, has a high degree of organization€Kkh al. 1967; Kim, Kline, and
Reynolds 1971; Nychas, Hershey, and Brodkey, 1978; Sweariagd Blackwelder 1987;
Corino and Brokey 1969; Hamilton, Kim, and Waleffe, 1995), é@rhs been some attempts to
explain this close behavior of axial velocity and tempemtn the wall layer based on coher-
ent structures and intermitency. For example Bremhorst atidd&u(1970) has noted that the
structures of velocity and temperature have a high degreeroélation next to the wall. And
Orlando et al. (1974) suggested that the strong axial viglacid temperature correlation can be
explained based on the long time identity of the near wallcstires. Also Zaric (1975) trying to
explain this similarity, computed the probability dendiiyction of axial velocity and temper-
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ature, splitting the flow in a background turbulence and &rmittent phase in the wall layer.
And Antonia, Krishnamoorthy, and Fulachier (1987), havecspated that the joint probability
function of axial velocity and temperature fluctuationgnfrdata in the viscous layer, reflect
the presence of longitudinal vortices which lie on eithelesof the low-speed streaks next to
the wall. These last authors, as also Fulachier and Dumag)1® a previous work, have used
spectral analysis of axial velocity and temperature flugbng. In Antonia et al's paper the
spectral analysis is limited to the buffer and beginninghef logarithmic region. In this region
they found that as the distance from the wall increases igselsecame less and less similar, but
in contrast next to the wall these differences disappearad last work was a kind of exten-
sion of Fulachier and Dumas’s paper, who used also specia§fsis to study temperature and
velocity fluctuations similarity in a boundary layer. Futéer and Dumas’ main conclusions
were that afar from the wall there was a better correlatiaween temperature and the velocity
vector, rather than axial velocity. Also they have sugges#tat temperature spectra has afar
from the wall a closer behavior to normal velocity spectasher than to axial velocity.

The main focus of the present paper is to analyze the natissihdlarity of fluctuations
of axial velocity and temperature in the wall layer. The data generated with a DNS of
a fully developed turbulent channel flow with heat transféhe scalar field is solved using
a uniform energy source case. As regarding the Pr numberPdydays an important role
in the limit of heat and momentum similarity (Na and Hariaigi2000), most results in this
paper are forPr = 1, avoiding Prandtl number effects on dissimilarity. In thestfipart of
the paper a short detail of the numerical procedure is giaen, then results that show the
strong correlation betweeri andd’ commented above are presented. In the second part of the
paper the importance of the most energetic events in thelayadt, in«’ andé’ dissimilarity
is presented. Then the spectral density functions of theuitions of velocity components,
pressure and temperature fields are used in order to explaipdssibles causes of and ¢’
correlation degradation afar from the wall. Then at the éedmain conclusions are given.

2 NUMERICAL PROCEDURE

In this section a short description of the numerical aspegigesented. In Pasinato, and Squires
(2006) a validation of the DNS of developed channel flow wigatitransfer is presented. In this
paper,.u, v, andw are the instantaneous velocities in the streamyigewall-normal(y), and
spanwise(z) directions, respectively. All instantaneous variables @ecomposed in a mean
value and a fluctuation; e.gu = U + «’. And the root mean square of any fluctuation is
denoted with a plus symbol; e.g:* for «/. Also it is used the plus symbol in order to denote
nondimensionalization with the wall parametersandv; e.g.y* = y u. /v.

A DNS of a turbulent channel flow with periodic boundary cdiudi in = and z was per-
formed. The computational domain is shown in Figure 1. Theegung equations in di-
mensionless form are the continuity, the unsteady Nauiekes and the energy equations for
incompressible flow and heat transfer,

aui
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where the non-dimensionalization was done using the drictielocity v, and half channel
distance between walls and the friction temperaturé. = q,,/p ¢, u.. Whered is the di-
mensionless temperatuig, is the heat flux at the wall, angl andp are the constant pressure
specific heat coefficient and the density, respectively.hbs¢ equation®r, and R, are the
molecular Prandtl and turbulent Reynolds numbers basedeon, tivall friction velocity and
half channel distance between wallsrespectively, and. is a dimensionless energy source
term.
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Figure 1:Computational domain for fully developed turbulent channel flow.

The computational domain is equal4e and4r /3 (1885, and 628 in wall units) im andz
directions, respectively. This computational domain scdetized with d28 x 128 x 128 grid,
which in wall units meangd\z™ = 14.72, Ay™ = 0.09 — 6.72, andAz" = 4.90, in the three
directions respectively. The time step wBa80085 /., or 0.12v/u?.

The unsteady Navier-Stokes equations were solved nurfigrataa Reynolds numbeR,
equal to 150. The numerical code used in the present workhtorelocity fields was origi-
nally developed by Prof. Kyle Squires’ group at ASU. In thigle the incompressible momen-
tum equation are discretized by the second-order accueateat-difference scheme. For the
DNS with periodic boundary condition, the Poisson equatarthe pressure field is Fourier-
transformed with respect to the streamwise and spanwisediedirections and the resulting
three-diagonal equations are solved directly for each step. The flow field is advanced
in time using a fractional-step method, with the Crank-Nsocol second-order scheme for the
viscous terms and the Adams-Bashforth scheme for the neasliterms. The thermal field is
solved with a numerical code with the same space, and tingeatization, and the same scheme
used for the flow field.

Periodic boundary conditions are used for the homogeneiogstion x, and z, streamwise
and spanwise, respectively, and non-slip boundary camditat both walls. As initial condition,
an instantaneous velocity field of a developed turbulent fleag supplied from a previous
calculation for a turbulent channel flow with the same DNSecod

After the velocity field is calculated at each time step, gmperature field was obtained
integrating the energy equation. Any buoyancy effect wagewted, thus temperature was
considered as a passive scalar. For temperature a unifabhsberce was used. The uniform
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scalar source case solved in the present work is similar $e ta&olved in Kim and Moin
(1989), who used a source term equa téze, Pr. In the present study, however, the source is
a constant energy source uniformly distributed in the domeqgual tog,, /6. Thus, in this case
the dimensionless temperatuwte= (T,, — T')/T. is zero at the walls, and the dimensionless
sourceS, = 1. As initial conditions for the thermal field a developed thef field from

a previous calculation was giving. The statistics timegra¢ion was taken equal 825 /u.,
40,000 computational time step approximately,600v /u2, in order to define mean values.

3 RESULTSAND DISCUSSION

It is worth to mention that for the special case Bf = 1 the Reynolds averaged form of
equations (2-3) are,

0 1 0%, 0 or
—(U.U)) = — — "ty — 4
81’]’ (UJU1> RT 8xj8xj 8l’j <UZU]> 8@ ( )
B 1 0%0 o
8_1‘](U]@) = R_Taxjaxj - afL‘j <0 Uj> + Se (5)

where in these equations the source terrdd”/0x; and S, are equal tal in dimensionless
form.

Thus in this work for analysis porpoise of the special cash Wir = 1, the difference
between axial velocity and temperature is defined as a nexablar) = v — ¢, and used as
measure of dissimilarity, where = ® + ¢’ = (U — 6) + (v’ — ¢') as all variables. Also it is
used the variance af normalized by the product of the root mean square of the ftictns of
axial velocity and temperature;", 6, as a normalized measure of mean dissimilarity,

(0°) _ {uw) = (ub)  (66) — (ub)

uto+t uto+t uto+t

VARG norm = (6)

which is zero whem,y = 1.
It is used this measure of dissimilarity, because it seerseet look at an instantaneous
measure like ag¢’ = v’ — ¢’, rather than to a produet#’ of these fluctuations.

3.1 Longitudinal velocity and temperature correlation

(a)Mean valuesin this item mean values taken in space and time for the honemesr — 2
plane are presented. Figure 2(a) shows the normal to thedwetdibution of p¢, p_.., and
p—.0, the Reynolds and thermal stresses, the second mortenits (u0), and (60), and the
normalized variance ab. The results in this figure confirm the strong similarity beén the
axial velocity and temperature fields in the wall layer, agas commented in the introduction.
The values presented here agree very well with the DNS eepudtsented by Kasagi, Tomita
and Kuroda(1992), as it is shown in the Figure, and with Kird &oin (1989)’s results for a
channel flow, and Kong, Choi, and Lee (2001)’s results for andauy layer. These results also
agree with the experimental data of Antonia, Krishnamgodhd Fulachier (1988), although in
this last work the correlation coefficient has its maximurmado 1 at the wall. In Figure 2(a),
pus has a values dd.95 at the wall, a local maximum approximatelysat = 5 equal t00.97
and a local minimum at the center of the channel equali®.
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Figure 2: (a) Wall normal distribution of second moments and correlation coefficiémtsleveloped
turbulent channel flow withze, = 150. Solid line,p,9; 0 - - o - - o, p, from Kasagi et al. (1992);
----- VAR norm; ——.—,0.05x (W'0); +-+-+,0.05 x (v'v); 0-0-0,0.05 x (0'8) ;%% - -,
Pvoy —— = —VO), > D> D>, pyys <-<- - <, —(u/v'). (b) Distribution of mean
velocity and temperature for the uniform energy source gagePr = 1 andS, = 1. Solid
line, mean velocity— — — , mean temperature;. +-.+, U = y* andin(y*)/0.41 + 6.0.

The conservation law fap, from equations (2-3), Reynolds averaged for a fully devetbp
turbulent channel flow is,

1 d*® d
0 = Tdr @((Ulw — (V'0')) (7)

Equation (7) shows that the dissimilarity in the mean véjoand temperature is different
from zero if the wall normal gradient of the difference of thermal fluxes is different from
zero. From Figure 2(a) it is seen that these normal fluxesm@yestightly different from zero
through the logarithmic sub-layer. And as it is shown in Fgg@(b), both the mean axial
velocity and temperature have almost the same distribuAisiregarding this slight difference
between normal fluxes, on the other hand, it is worth to mantiat is not possible to be
sure how much of it is physical and how much is numeric. In otherds, the instantaneous
spatial and temporal gradients in the energy equation a@say larger than those in the axial
momentum equation as a consequence of the pressure gradiemtast equation. The same is
to say that the energy equation is less stable in the nunhednae (Akselvoll and Moin, 1995).
Thus the numerical resolution of the energy equation shioade larger numerical errors, if the
same numerical scheme is used in both equations.

Figures 3(a) and 3(b) show the two-point correlations coieffit with streamwise, and span-
wise separation of velocity components and temperafyg, R,.; R.., Rgq, at four positions
from the wall,y™ = 4, 16, 38, 116. Once again these Figures, as commented previously,
clearly show the strong correlation of axial velocity anchperature in the viscous and buffer
regions. Then afar from the wall, toward the center of thendleg there is a departure between
axial velocity and temperature, as it is seengor= 116. Also from both first locations, at
yT = 4 and16, it is clear the presence of long streamwise structurestim figlds, thermal and
axial velocity. The two-point correlations in the spanwieection, on the other hand, with its
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Figure 3:Two-point correlations coefficient. (a) Streamwise separation; (b)\Bisa separation. Solid
line,u/;0--0--0,6; ———,v; — —.— ,w'. Atfour locations from the wall. (i)™ = 4, (ii)
yt =16, (i) y* = 38, (iv) y™ = 116.

minimum aty ™ = 50 in the viscous and buffer region, show the presence of strésgrvortices
in these regions (Kline, et al. 1967; Kim, Moin, and Mosei87p In contrast, in the center of
the channel this coefficient indicates a closer behaviar ahdd in the spanwise direction.

The results presented in this item indicate, as it is renthrkethe literature, the/’ and
0’ close behavior in the viscous and buffer region. And a gredeacorrelation or increasing
dissimilarity as the wall distance increases.

(b)Local statistics: In this item statistics of the serial time of the turbulentctlations are
presented and discussed, at four positions from the wal}{(1~ 4, at the top of the viscous
layer, which means approximately at the top of the low véjosireaky structure in the very
near wall (Kim, Moin, and Moser, 1987; Hamilton, Kim, and \&fé¢, 1995); (2)y* ~ 16, at
the buffer region where approximately occurs the maximstdaity fluctuations; (3)* ~ 38,

at the end of the buffer region and beginning of the semi-émgan, where it is expected to be
located approximately the top of the streamwise vortiqaicstires in the wall layer, and (4) at
yT ~ 116, in the flow center region. The statistics time integratinas taken on time interval
greater thari5, 000v/u2 or 906 /u. in all cases.

Statistics y™ =4 yt =15 yt =38 yt =116

Su 0.64078 -0.17126 -0.54905 -0.53791
F, 3.02714 2.18137 3.09128 3.53121
So 0.70177 -0.11165 -0.45057 -0.72089
Fy 3.13215 2.17178 2.81946 3.73155
Se -0.30437 -0.02992 0.06042 0.17884
Fy 5.94181 4.21981 3.45856 3.18046

Table 1:SkewnessS, and flatnesg;, factors forPr = 1.0, for «/, ¢, and¢’ .

Figures 4(a) and 4(b) show the probability density funciopdf, for axial velocity and
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Figure 4:Probability density function of axial velocity and temperature at four positioom the wall,
for two Prandtl numbers. Solid line = «/; — — — a = 0. (a) Pr=0.71; (b) Pr=1.0. (" = 4; (ii)
yT =16, (iii) y* = 38, (iv) y© = 116.
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Figure 5: Probability density function of axial velocity and temperature differen¢efor Pr = 1.
Solid liney™ =4, — — -y =16; —. —.— ,yt =38, ----- ,y+ = 116. Vertical lines denotes
¢/ < ¢* >1/2=£2.5.
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temperature fluctuations fdfr = 0.71 and1, at the four positions from the wall. And Table 1
show the skewness factdt, and flatness facto#, for v/, ', and¢’ at the four positionss' is
positive in the viscous layer, and negative in both variainethe other locations. Both pdf are
almost symmetric for the second and third locations, at tifeebregion and beginning of the
logarithmic sublayer. They show, however, that for vergéavalues of/ its pdf p(u) is smaller
thanp(0) in the four positions. These last results are consistett @iperimental results in the
literature (Antonia, Krishnamoorthy, and Fulachier 1988ric 1975). They show also that for
very low values ofu/, thep(u) is slightly greater than thg(6) in the first three locations near
the wall, and almost the same in the center of the channel.

Thus the main characteristic of these figures is that theufuicins of temperature are always
slightly larger than velocity fluctuations. When fluctuasaare positive, the absolute value of
the temperature fluctuations are larger, and when fluctus&oe negative, the absolute values
of the temperature fluctuations are smaller. In this worknd ¢ have the same boundary
conditions, therefore, positive fluctuations means inssweeping movements of warm fluid
with high momentum toward the wall. Thus Figures 4(a) and) 4fiow that for those warm
high momentum movements toward the wall, temperature expet stronger oscillations than
velocity. In contrast, for the ejections of cold fluid witwlanomentum from the near wall
region toward the center of the channefluctuations are stronger.

Figure 5, which shows the pdf for the fluctuation of axial wé#ip and temperature differ-
ence,¢’, for the four positions from the wall foPr = 1, shows also the same difference in
negative and positive andé fluctuations. In other words, the correlation betweeandd is
for positiveu’ and positive?’. There are only few events where these fluctuations havesitppo
sign. Thusg < 0 means sweeping motions, antd> 0 ejections. And Figure 5 shows, and
the same can be seen frafy factor in Table 1, largep(¢) of negative fluctuations in in the
wall layer. Thus sweeping motions are more frequent thactiejes next to the wall. Another
aspect in this figure is that pdf @f seems to be the results of two kind of flow, a background
turbulence and an intermittent phase, like as it was takeddrc (1975) in his paper. One
phase foky’ in the intervak-2.5¢" (where¢t means the rms af), which can be associate with
a calm period of flow. And a second phase fight > 2.5¢™, for abrupt events like as ejections
or sweeping motions. Thatcan reflect these two phase of turbulence is not a surprisee fi
is the instantaneous dissimilarity. In the last subsedti@result is used as a criteria to detect
the dissimilarity in amplitude that cause the most enecgatents at the wall layer.

More details of the,’ andé’ correlation degradation from the wall toward the centehef t
channel can be extracted from the joint probability den&ityction, jpdf, of both variables.
Figures 6(a), and 6(b) show the jpdf faf and ¢’, for the four positions from the wall, for
Pr = 0.71, and Pr = 1.0. Note that it was used a difference in scales. The results for
Pr = 0.71 show the effect of the lower Pr for all fluctuations at the wiss layer, and basically
for negative fluctuations at the buffer region. In other vepifdr those fluctuations coming from
the cold low momentum flow near the wall, where moleculargfanof momentum and heat
are important. Note that fluctuations in these Figures atenaomalized by the rms. Based
on the fact that correlation equalis a linear function, Figures 6(b)-a to d, clearly show how
correlation change from high values at the viscous layerdoenor less a half at the center of
the channel.

Same last results are presented in this subsection basaepoint correlation. They are
the comparison of the patterns of the two correlations: fekiion-streamwise vorticity, and
wall heat transfer-streamwise vorticity. Some works hagerbpublished related with drag
reduction, where it was found that regions of high skintioic at the wall are related with the
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wall, for two Prandtl numbers. (a) Pr=0.71; (b) Pr=1.0.y«(0) = 4; (ii) y* = 16, (iii) y™ = 38, (iv)
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Figure 7: Two-point normalized correlatio®(r,, y,7.) between the wall shear rate and streamwise
vorticity, in the plangx, 2T) at four positions from the wall. ()" = 0.016, (b)y* =4, (c)y* = 16,

(d) y™ = 38. Contour levels are in the rage2.5, +2.5 with increments of).25. Positive and negative
contours are represented by solid and brokenlines, respectivalyd oes denote detection point at the
wall.
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Figure 8: Two-point normalized correlatio®(r,., y,r.) between the wall heat rate and streamwise
vorticity, in the plangx, 2T) at four positions from the wall. ()" = 0.016, (b)y* =4, (c)y* = 16,

(d) y™ = 38. Contour levels are in the rage2.5, +2.5 with increments of).25. Positive and negative
contours are represented by solid and brokenlines, respectivalyd oes denote detection point at the
wall.

presence of streamwise vortical structures in the buffgiore First Choi, Moin, and Kim(1993)
have shown that regions of high skin-friction are assodiati¢gh streamwise vortices right above
the wall. Then Kravchenko, Choi, and Moin(1993) shown tham-$iction correlates with
near-wall streamwise vortices.

Here the same kind of two-point correlation used by Kravé&best al. was used for the
instantaneous wall normal gradient:odndé, with the instantaneous streamwise vorticity. The
objective of these results was to compare the gross pattéhese correlations. Note that in
this work the correlations are normalized. The two-pointelations were evaluated froa
instantaneous flow fields withr = 1, that were equally separated in tird@ Ov/u?. These
correlations are,

Qg r.) = (A(z,Ya, 2)we (T + 10y, 2 + 1)) ®)

+
w.’L’

where(z, yq4, z) is the detection point antk + r,,y, z + r,) the second pointd is equal to
(Ou'/0y)(z,y = 0, z) for the skin-friction, and tq0¢’ /0y)(x,y = 0, z) for wall heat transfer,
and( ) denotes averaging in, z, and time.

In this paper only a few results for these correlations amevshin Figures 7 and 8, where
they clearly show that normal temperature gradient at tHecoarelates with streamwise vor-
ticity in almost the same way that wall normal gradient ofgdwelocity does.

More results using this two-point correlation techniquighw’ at the detection poiritc, y4, 2)
and the streamwise vortiCity(z, yq, 2)w.(x + r,,y,z + 7)), or the wall normal velocity,
(¢(x,ya, 2)v(x + 1y, y, 2 +1.)), among other variables were calculated. And these coioeat
were evaluated for different positions of the detectiompaaty™ = 4, 16,23, 38. The most
interesting results from these correlations, that will bparted elsewhere, is that dissimilar-
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Figure 9: Sample of filtered instantaneous fluctuations. «a) 35; (b) ¢’ + 20; (c) ¢’ + 10, (d)
(0p’ /0x™) x 10. Vertical dots denote two particular events.

ity occurs basically between two regions with oppositeastr@ise vorticity inz — z planes,
and that it correlates basically with negative wall normelbeity in region immediately above
the detection point. This region with negative wall normelocities is a vertical and narrow
region that begins near the center of the channel. Thesksgste more support to the specu-
lation that dissimilarity is mainly associated with swegpmovements of warm flow with high
momentum toward the wall.

3.2 Mean contribution to dissimilarity from most energetic events

Figure 9 shows a sample with the filtered instantanedud’, ¢', (0p’/0x) atyt = 16. In
order to filter the fluctuations a moving mean was appliedyguisi short period of time[+ =
tu? /v = 3.6, in comparison with the period of time of the most energetengs like as sweeping
or ejection motions near the wall (Luchik and Tiederman,7t@hah and Antonia 1988).

An interesting aspect in Figure 9 is that, eventually, theme events in which/ and ¢’
clearly show different behavior. For instance, in the esetgnoted ag:/) and (:i), tempera-
ture fluctuations present, superimposed, small amplitsd#lations of high frequencies, at the
extremes of the main fluctuations. In contrast, these highuiency oscillations look almost
dumped in the axial velocity fluctuations. On the other hahi Figure clearly shows, as it
was expected, that exists an association of the strongestrdiarities, or big oscillations in
¢, with the most energetic events in the axial gradient’af the major part of the sample. It
is also important to remark that clearly presents, as it was also expected, two phases. One
associated with the important oscillations of the flow, atitieomore calm, where dissimilarity
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Figure 10:Contribution to dissimilarity of the most energetic events in the wal layes (&) - - * , puo;
o--0--0, VAR norm; +--+--+ ., VAR norm from events that satisfy condition (9). (B)AR norm
from events that satisfy the following conditions: - + - - + , condition (9);0 - - o - - o, condition (11);

% - - % - -, condition(12). (c)Same as in (b) but’ AR ,0rm as% of total VAR jorm. (d) Events
with the following conditions i¥%. O..0-.0, condition (9) over the whole sample; - o - - o condition
(11) over events that satisfy (9; - = - - * , events that satisfy (12) of events that satisfy (11);
Q-<-<-<, events that satisfy condition (13) of events that satisfyf9); o> - - > , events that satisfy
(14) of events that satisfy (9).

presents high frequency and small amplitude. Thus it sepm®pariate to find out the contri-
bution to dissimilarity of the big oscillations, and thoserh differences in frequency. And this
is presented in this and next subsection.

Thus the idea in this subsection is to detect events chaiasdeasimportant dissimilarity
eventwith some algorithm and evaluate their mean contributiothéomean dissimilarity, as it
was defined in equation (6). As detection algorithms formaportant dissimilarity evenbne
analogous to those used in the literature to detect burgeotien events, was used. The most
common of these algorithms are the quadrant 2, the variable interval time average (VITA),
and theu—Ilabel techniques. And they have been used in order to imagstburst period and
high pressure peaks frequency in wall turbulence(Lu andnviiith, 1973; Blackwlder and
Haritonidis, 1983; Luchik and Tiederman, 1987; Shah andAiat 1988; Johansson, Her, and
Haritonidis 1987). In this work, however, the idea is not étate the most important instan-
taneous oscillations in with events like as burst, ejections or sweeping motionshé&tahan
the objective is only to identify the most energetic eventthe wall layer. And then to evalu-
ate their importance in the production of axial velocity daechperature mean dissimilarity, no
matter they are burst, ejections or sweeping motion evéid. no matter if an events like as

3656



an ejection is split out in two or more events.
Then the algorithms used to detect important dissimilaitgnts, based on the VITA and
the second quadrant algorithms, detect one events whertiamee of is,

92— > kot (9)
where as mean values forthe mean values of the whole sample is used, which is almost ze

for the thermal case solved here, and the wide-hat symbohsnaanean values in the time
filtering intervalT’,

- 1 [T/
ST = 3 [ (10)
T Ji—r)o
The algorithms above have two parameters, the filtering pereod 7" and the threshold

k. k was taken equdl, as a conservative value based on the pdp ¢¢alues ofp out of the
interval +2.5¢™) in Figure 5. As regarding the second parameter, the pefitilasing 7, this
period in dimensionless form used in this work wi&s = 1.2, which is well out the range,
6 < T+ =tu?/v < 13, for dimensionless burst period found in the literature.t@mother
hand, because the mean and the rms values®f and, used in the algorithms are evaluated
for the whole sample, the algorithms can be used for instaotas values without any filter.
Moreover, numerical tests were done which shown that reswdtre only slightly sensible to
the filtering period for values df ™ < 10.

Therefore, using the algorithms above, once an event ttaifygjas important dissimilarity
event was detected, conditional probability with diffedreonditions were used in order to char-
acterize whether these events with strong dissimilarigxial velocity and temperature, satisfy
a second, or a second and a third condition. Some of the comslilsed were,

P(¢'2 — & > kot u'/ < 0) (11)

aiming at to detect how many of the events detected as impodiasimilarity events, also
belong to events in the second quadrant, Q2.

P(¢2— ¢ > k¢, uv) < 0,0 < 0) (12)

aiming at to detected events in Q2 and also with negativeuiddictin of normal velocity.
P(§2 — § > 267, 0p' [0z < 0) (13)
P(§2 - ¢* > 20,09/ /0 > 0) (14)

aiming at to detect whether dissimilarity is associatedhvaiorable or adverse instantaneous
axial pressure gradient.

Figure 10 show some of the most relevant results. In firstepl&gure 10-a shows the
correlation coefficienp,4, the total dissimilarity, equation (6), and the dissimtlapwing to
those events that qualify as the most energetic events indhdayer, at the four positions from
the wall used in this work. The first conclusion from this figis that the most energetic events
are responsible of a part of total dissimilarity, but it istive four locations less than a half of
the total. In other words, as it is shown in Figure 10-c, thetgbution of these big events to
the total dissimilarity is alway smaller tha0% in the whole wall layer.
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Hence, the main features of Figures 10-(a), (b) and (c)catdi as it commented above,
that the most energetic events have a part in dissimildmitithe major contribution are due to
another physical causes. On the other hand, this contibtdi dissimilarity by the energetic
events in the wall layer decreases toward the center of thien&i. At the center of the channel
its contribution is less thaB0% of the total dissimilarity as it is shown by Figure 10-(c).

Figure 10-(d) shows the frequency of events detected asrtargalissimilarity event, with
a second or a second and a third condition. It is seen thahthehes or movements of high
momentum toward the wall are felt in the whole flow, and thattamber of events detected
with this condition is more or less equal 6% in the viscous layer, decreasing slowly afar
from the wall. Looking now to the frequency of events thaisfatalso a condition on the
pressure gradient, the results show that at the viscous daygkat the center of the channel the
important dissimilarity events are almost not related i sign of the pressure gradient. On
the other hand, the sign of the pressure gradient has, glthslightly, an effect in the buffer
region and in the beginning of the logarithmic sub-region.tHis Figure 10-(d) is seen also
that there are approximately7@% of events that qualify as important dissimilarity events in
the viscous layer, which are in the second quaduarit< 0, and thed0% of them satisfy also
v' < 0. Then both percentage decrease toward the center of theafhalat the center region
of the channel less th&% of the w'v" < 0 events are also’ < 0 events. And a surprising
result is seen from condition in equation (12), which detkote important dissimilarity event
in the second quadrant that have negative normal veloditg.résults in Figure 10-b show that
in the viscous layer this kind of events are nearly 30%. In other words, the most important
dissimilarity events in the second quadrant are owing toepivey motion and not to burst or
ejections. Nevertheless, this percentage change quimkigrtl the center of the channel, where
there the contribution of burst/ejection and sweeping omstio the most important dissimilarity
events are almost the same.

In conclusion, therefore, the contribution to dissimiiaof the most energetic events in the
wall layer is important, but do not explain the major caudesoorelation degradation between
axial velocity and temperature toward the center of the nbharNeither they explain the major
fraction of dissimilarity in the viscous and buffer regiomkere these events are the strongest.

3.3 Spectral density functions

Figures 11 and 12 show the spectra for the fluctuations ottitglaomponents, temperature,
the difference between axial velocity and temperatgirend pressure, normalized by their rms,
at four locations from the wall. Note the small differencepofition of data at the center of
the channel, Figures 11-d and 12-d, related to previousegulhe spectra fgy' is in both
Figures in order to improve comparison, and also becausehbught thap’ has fundamental
importance in the energy distribution among velocity comgras and thermal field. In order
to obtain the spectra the data set, of approximatély)00r/«2 in dimensionless time, was
segmented into 92 segments with 1024 time-steps everydmen the periodograms were av-
eraged together to obtain the spectral density functiol®24 frequencies. The segments were
overlapped by one half of their length. On the other handiHerfrequency leakage the data
were windowed with a Welch window. There were selected the fmsitions aty™ = 4, 16,

38, and 126, because they give a more or less complete picture of theérapmodification in
the wall layer. It is plotted the decimal logarithmic ©6 /«, in the abscissa, and the product
of (wd/u,)®, in ordinate, whereb, is the spectral density function of the variall@ormal-
ized to unity. The area under any section of Figures 11 and p2aportional to the fraction
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Figure 11:Spectral density function af, ¢’, ¢’, andp’, at four positions from the wall, (a)* = 4; (b)
yT =16; (c)yt = 38; (d) y* = 126. Solid line,a = v/ /u™; — — — ,a=6/0F; - - - - ya=¢ /o
O"O"O,a:p//p+-
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Figure 12:Spectral density function af , w’, andy’, at four positions from the wall, (a)* = 4; (b)
yT = 16; (c) y" = 38; (d) y© = 126. Solid line,a = v'/vt; — — — ,a = w'/wt;0--0--0
a=17p/p".
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of total (a’?) /a™ in that particular frequency range. In other words, spesti@v the energy
distribution of normalized fluctuations.

From these Figures it can seen from the spectrd ahd¢’ at the four positions, that there
is a shift toward higher frequencies of both spectras. Busdha ¢’ is always greater, and
this difference increases quickly in the first three possifrom the wall. Then this difference
decreases slightly toward the center region. In both spgctrs position™ increases for the
first three positions, the peaks decreases as its positiis te shift toward higher frequency.
This results agree with was found by Antonia et al. (1987)pwild observations in a heated
turbulent boundary layer fog* < 40. At the center of the channel the peaks/ifand ¢’
spectras increases as regarding those in the beginningafittomic layer,y™ = 38. On the
other hand, spectras fgf andp’ show thatp and¢ have a very similar spectra at the viscous
region,y™ = 4. Actually, they are almost the same in the whole extensidment)’ spectra
suffers a shift toward higher frequencies in comparisop’tepectra, but at the second and
third position from the wall, buffer and beginning of the &ghmic regions, the peaks of
spectra shows a slight tendency toward lower frequenciéen bt the center of the channel,
both spectras present the lowest peaks. Looking now to #erss forn” andw’ in comparison
with p’ spectra, they cleary show that there is a tendency of botitiglcomponents spectra
to follow those ofp’. This tendency is maximum at the beginning of the logarithneigion
yT = 38. Then at the centey’ spectra shows a tendency toward lower frequencies, and its
peaks has quickly decreased. And at the center of the chatsaelunlike in the buffer and in
the beginning of the logarithmic region, spectravbfndw’ present the steepest right tail. But
most important, the right tails af andw’ spectras are toward higher frequencies as regarding
p’ spectra.

One possible explanation for these behavior in spectra cfuions of turbulence is that
the intermittent phase of turbulence introduces high feeqy perturbations in the pressure
field. And, because it is through the pressure field that snelngy is redistributed among the
different velocity components (Tennekes and Lumly 1976@¢sé perturbations activate high
frequencies in the normal and spanwise velocities. Monedhis high frequency energy com-
ing from the most energetic events in the wall layer is iniet into the scalar or thermal
field through the convective terms, generating even higlegjuencies, e.g. eventandii at
Figure 9. It seems that without any 'buffer’ term like as tliegsure gradient in the momentum
equations, the energy equation generates higher gradidrhas faster oscillations on thermal
field.

It is worth to note also that the spectras fofluctuations at the four positions from the
wall, have the peaks at almost the same frequency. Based ©nethlt it appears that one
can conclude that pressure field acts driving energy in Wglaomponents, from low to high
frequencies near the wall (in the viscous, buffer, and begagof the logarithmic region), and in
opposite direction in the center region. At the center ofdih@nnel pressure field drives energy
toward lower frequencies in the momentum equations, and seesmal field, enforcing a kind
of spectras convergence in the center region. Althouglspésulated that in the present paper
there is only a small tendency to convergence owing to thed&®eynolds numbeRe, = 150.

In this sense, it would be appropriate to check low Reynoldsber effects in the present
results.

Finally, it is important to remark that without the use of thew variablegp, it would be
difficult to figure out how the difference in temperature amiahvelocity fluctuations was
conformed in the frequency domain. And, although it was etgakit would be difficult, to link
the origin of natural dissimilarity in the frequency domé&athe action ofv andw fluctuations
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through the convective terms. Figure 11-a clearly showsdisaimilarity in the viscous region
is driving by p fluctuations, through normal and spanwise velocity fludtunest

4 CONCLUSION

In this paper the causes of natural dissimilarity of axidbegy and temperature in a turbulent
channel flow were analyzed based on data generated by DNSeifiperature was considered
as a passive scalar, and the thermal field is generated witlicam energy source case.

The paper is thought to be a complement of previous conioibsiin the literature oriented
to investigate correlation of temperature and longituldietocity fluctuations. It is mainly ori-
ented to quantify the importance of the most energetic mevesin the wall layer, those in the
intermittent phase of turbulence, in the fluctuations ofgierature and axial velocity dissimilar-
ity. Itis also oriented to present more evidences of spedisaimilarity. For instance, the origin
or causes of dissimilarity in the frequency domain, owinghi pressure field fluctuations and
the action of wall normal and spanwise velocity fluctuatioAsd finally it shows that natu-
ral dissimilarity between axial velocity and temperatutetiliations has its major contributions
from frequency domain.

Thus, the main conclusions from this work are that the mostgetic events in the wall
layer, as a consequence of sweeping and ejection motionsotdoontribute significantly in
a direct way to the de-correlation between axial velocity samperature afar from the wall.
The major part of dissimilarity occurs in the frequency domdhe natural dissimilarity in the
wall layer increases afar from the wall, mainly owing to tiftsoward higher frequencies of
temperature fluctuations, in comparison with axial velpfliictuations. Temperature spectra
departs from those of axial velocity as the distance fromwa# increases, but at the center
region of the channel all velocity and temperature spechasv a tendency to convergence.
And it is speculated that such action is driven by the fluoctumast of the pressure field. It is
thought that this convergence can be greater for higher Réymombers. Therefore it would
be appropriate to check the present results for higher Rdgmaimbers.
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