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A DISTANCE BASED TEST ON RANDOM TREES

ANA GEORGINA FLESIA AND RICARDO FRAIMAN

ABSTRACT. In this paper, we address the question of comparison between populations of trees.
We study an statistical test based on the distance between empirical mean trees, as an analog
of the two sample z statistic for comparing two means. Despite its simplicity, we can report
that the test is quite powerful to separate distributions with different means but it does not
distinguish between different populations with the same mean, a more complicated test should
be applied in that setting. The performance of the test is studied via simulations on Galton-
Watson branching processes. We also show an application to a real data problem in genomics.

1. INTRODUCTION

Random trees have long been an important modeling tool. Trees are useful when a collection
of observed objects are all descended from a common ancestral object via a process of duplication
followed by gradual differentiation. This would be the case of two broad approaches to con-
structing random evolutionary trees: forwards in time “branching process” models, such as the
Galton-Watson process, and backwards-in-time “coalescent” models such as Kingman’s coalescent
(Kingman, 1982). We will show in our examples that the presence of specific short sequences or
motifs in a string of elements taken from a finite alphabet is also related to a tree structure, so a
random distribution of strings is directly related to a random distribution of trees.

In this preprint, we consider trees that have a root and evolve forward in time in discrete
generations, and each parent node (or vertex) having up to m offspring nodes in the next gener-
ation, as in Balding el al(2004), BFF'S from now on. Given a suitable metric, BFFS prove law of
large numbers for empiric samples of trees and an invariance principle on the space of continuous
functions defined on the space of trees.

In this context, let v, v* be distributions that give mass only to finite trees. The goal is to test
differences between the population laws

(1) Hy:v=v" Hy:v#£V*

using i.i.d. random samples with distribution v and v* respectively. Intuitively, if the expected
mean of each population is different, a naive test for this problem will reject the null hypothesis
when the distance between the empirical means associated with each sample is large enough, but
it will fail if the population have different laws but the same expected mean. A Kolmogorov-type
of test have been devised for this problem in BFFS (2004) but a direct approach to calculate
effectively the test statistic is quite difficult, since it is based on a supremo defined over the space
of all trees, which grows exponentially fast. The computation of the BFFS test, along with some
discussion of identifiability of the measure have been worked out in Busch et al (2007).

In note we have studied the naive distance based test over simulations of Galton Watson pro-
cesses, and we will also report an application to structural genomics, that is related to Variable
Length Markov Chain Modeling. This is a similar example to the one introduced in Busch et al
(2007), with another database, that relates to the work of Bejerano(2004).
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2. TREES, DISTANCES AND TESTS

We will review the definition of tree, that can be roughly thought as a set of nodes satisfying
the condition ”son present implies father present”. Let consider an alphabet A = {1,... m},
with m > 2 integer, representing the maximum number of children of a given node of the tree.
Let V. ={1,2,...,m,11,21,...,m1,12,22,32,... } U {\}, the set of finite sequences of elements
in A, plus the symbol A which represents the root of the tree. The full tree is the oriented graph
ty=(V,E) withedges E CV x V given by E = {(v,av) : ve Vo # X, a € A} U{(\ a) a € A},
where av is the sequence obtained by concatenation of v and a. In the full tree each node (vertex)
has exactly m outgoing edges (to its offsprings) and one ingoing edge (from her father), except for
the root who has only outgoing edges. The node v = ax_1 ... aq is said to belong to the generation
k; in this case we write gen(v) = k. Generation 1 has only one node, the root.

We define a tree as a function ¢t : V' — {0, 1} satisfying

(2) t(v) > t(av).

for all v € V and a € A, including the case of the root

(3) t(A) = ta).

Abusing notation, a tree ¢t is identified with the subgraph of the full tree t = (V;, E;) with
(4) Vi={veV :tw)=1} and E; = {(v,av) € E : t(v) = t(av) = 1}.

In figure 1 we can observe a tree of depth 4. With this type of notation, the father of a node is
written as a suffix in the description of the son, as it is often done in the definition of a Variable
Length Markov Chain. We should notice though that the depth of a tree considers the root, and
in VLMC models, the depth is the maximum length of a context, which do not consider the root.

=

112 212
FIGURE 1. An example of tree of depth 4. The leaves are written in boldface.

Let 7 be the set of all trees, and let ¢ : V — RT be a strictly positive function such that
> ver @(v) < co. We define a distance between two trees in 7 as a weighted sum over the nodes
that are present in a tree and absent in the other, following the formula

(5) d(t.y) =Y ¢()[t(v) — y(v)|.
veV

as it have been done in BFFS(2004). The natural sigma algebra is the minimal one containing
cylinders, sets of trees defined by the presence/absence of a finite number of nodes. The natural
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topology is the one generated by the cylinders as open sets. So it is easy to prove that the distance
d we defined before generates the natural topology, and (7,d) becomes a compact metric space,
see BFFS (2004). We denote B the o-field of Borel subsets of 7, induced by the metric d.

Random trees. A random tree with distribution v is a measurable function
(6) T:Q— T such that P(T € A) = / v(dt) .
A
for any Borel set A € BB, where (2, F,P) is a probability space and v a probability on (7, B).

Expected value. The expected value or d-mean of a random tree T is the set (of trees) E T
which minimizes the expected distance to T

(7) BT = argmin /[ da(t, y) v(dy)

The set E4T is not empty, see BFFS (2004). Any element of the set E;T is also called a d-mean
or d-center. Since Ey T depends only on the distribution v induced by T on 7, it may also be
denoted as E4(v).

Empiric mean trees. Let T = (71,...,T,) be a random sample of 7' (independent random trees
with the same law as T'). The empiric mean tree (empiric d-center, sample d-mean) is defined as
the random set of trees given by

) 1 n
(8) T := arggél;?;d(ﬂ,t)

This formula may show the problem as more difficult that it is, since it is calling for a search over
the whole set of trees, that grows exponentially in the number of nodes. But it is easy to prove
that the empiric mean tree of a set of trees can be built by majority vote over the nodes. That
means, at least one of them can be defined as the tree whose nodes are present only if they are
present in at least half of the sample.

Proposition 2.1. Let T = (T1,...,Ty,) be a random sample of T , and let t* be the tree defined
as the tree whose nodes are present only if they are present in at least half of the sample. Then t*
1S an empiric mean tree.

Proof Let first notice that if t € 7

n

%Zd(Ti,t) - %Z Z o(v)|T;(v) — t(v)|

1=1 i=1veV
= Yo, ST @)+ Y 6)s ST i)
veEV, i=1 veUVr, /Vi i=1

#trees in the sample v is not present #trees in the sample v is present
> é() + Y 6

n

n
veVy veUVT, /V;

So, to reduce the average of distances we have to reduce both summands, keeping and adding
nodes to the candidates of empiric means. The first point to notice is that the first summand is
reduced when the candidate ¢ keeps nodes that are present in many trees of the sample. If ¢ keeps
a node that is not in any tree of the sample, the first summand adds the full value of ¢(v). The
second summand is reduced when the tree ¢ do not keep a node that is present only in a few trees
of the sample. The cut off that balance the presence-absence relationship for each node is then
1/2. O
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Remark 2.2. We should notice that if the number of trees in the sample is odd, the empiric mean
is unique, but if the sample size is even, the node that it is present in exactly a half of the sample
can be kept or not, without increasing the distance, so we will have at least two empiric means,
one will have the least of possible present nodes, and the other the most.

Example 1: Galton-Watson related population of trees. We consider binary trees, m = 2,
the extension to an arbitrary number of offsprings m is straightforward. In a binary binomial
Galton-Watson model, the offspring number is 0, 1 or 2 with probabilities (1 — p)?, 2p(1 — p) and
p?. The expected mean tree keeps a node v, if and only if gen(v) < ko, where ky = max{k €
{0,1...}: p¥ > 1/2}. When p < 1/2, the expected mean tree is the empty tree. For instance, if
p = 0.5 and p* = 0.75, the expected mean trees are T, = {A\} and T~ = {A, 1,2}, the full trees
of depth 1 and 2 respectively, but for p € [0.5,0.70] the population have the same expected mean
tree. This is a very simple parametric case where the maximum likelihood test has maximum
power, so it is not of much use to introduce a new test in this setting, if we knew that we have
a Galton Watson process producing our observations. We consider this example only to asses the
power of the proposed test via simulation.

Example 2: Variable Length Markov Chains and related population of trees. A Variable
Length Markov Chain is a stochastic process introduced first by Rissanen (1983) in the setting of
information theory, and that have been recalled lately by Biithlmann and Wyner (1999), and many
others in the context of Protein Functionality Modeling, see Bejerano (2003) and references therein.
In this model the probability of occurrence of each symbol at a given time depends on a finite
number of precedent symbols. The number of relevant precedent symbols may be variable and
depends on each specific sub-sequence. More precisely, a VLMC is a stochastic process (X, )nez,
with values on a finite alphabet A, such that

(9) PX, = |X")=2"=PX,=| X"} =2"",],

— 00 — 00 n

where zf, represents the sequence s, Tsy1,. .., 2, and k is a stopping time that depends on the se-
qUeNce Tp_g,...,Tn—1. Asthe process is homogeneous, the relevant past sequences (z,—g, ..., Tn—1)
do not depend on n and are called contexts, and denoted by (z_,...,2_1). The set of all contexts
T can be represented as a rooted tree t, where each complete path from the leaves to the root in
t represents a context. Calling p the transition probabilities associated to each context in 7 given
by (9), the pair (7, p), called probabilistic context tree, has all information relevant to the model,
see Rissanen (1983) and Bithlmann and Wyner (1999). As an example, take a binary alphabet
A = {1,2} and transition probabilities

PX,=1|X""5=11 =0.7,
(10) PX,=2,| X" =2" =S P[X, =1|X""}=21] =04,
PX,=1|X,1=2] =02

so that, if x,—1 = 2, then the stopping time k£ = 1 and X,, = 1 with probability 0.2; otherwise
the stopping time is £ = 2 and X,, = 1 with probability 0.7 if both z,,_1 = x,_o = 1 or with
probability 0.4 if z,_; =1 and z,,_o = 2. The set of contexts is 7 = {11, 21,2}, when the set of
all active nodes of the associated rooted tree t is V; = {1,11,21,2, A}, since 1 is an internal node
in the path of the context 11 and 21, and A is the root. Another example over the same alphabet
is given by the transition probabilities

PlY,=1|Y,_1=1 =06,
(11) PlY, =y, | Y =y ] = PV, =1|Y" 1 =22 =04,
PlY,=1|Y"} =12 =02
The set of contexts is n = {1,12,22}, when the set of all active nodes of the rooted tree y is

Vy, = {A,1,12,2,22}, since 2 is an internal node in the path of the context 12 and 22. The
corresponding rooted trees t and y are represented in Figure 2. Let compute the distance between
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1 2 1 2
(0.2,0.8) (0.6,0.4)

11 21 12 22

(0.7,0.3) (0.4,0.6) (0.2,0.8) (0.4,0.6)

FIGURE 2. An example of two probabilistic context trees over the alphabet A =
{1,2}. (a) The tree t represents the pair (7,p), where 7 = {11,21,2} is the set
of contexts and p are the transition probabilities given by (10).(b) The tree y
represents the pair (n,q), where n = {12,221} is the set of contexts and ¢ are
the transition probabilities given by (11).

the these two trees,

dt,y) = > 6)|tw) —y(v)|
veV
= NN =y’ N+ o(D[t(1) — y(1)] + ¢(21)[£(2) — y(2)] + ¢(11)[t(11) — y(11)]
+¢(12)[¢(12) — y(12)| + ¢(21)[£(21) — y(21)] + #(22)[¢(22) — y(22)|
= 0+0+0+¢(11) + ¢(12) + $(21) + $(22)
= 4x0.36% = 0.186624

considering ¢(v) = 29| 2 = 0.36.

Now, let suppose that we are given a sequence of symbols that have been produced by a
VLMC with an unknown context tree. There are several algorithms that estimates the context
tree associated to the chain using the sequence as an input. Let fix the rule of estimation, par
example, the Probabilistic Suffix Trees algorithm (PST) from Bejerano (2004). This rule is a
random tree that generate trees in 7 following a given probability distribution v that is associated
to the chain. If we have two independent samples of strings that have been hypothetically produced
by two different unknown chains, we would like to derive a test that will rule if there is evidence
in the samples to support that hypothesis. We should stress the fact that we are not using the
probability transitions but the structure of the estimated context trees to derive the test. In the
case that the chains have the same structure and the probability transitions are different, this
approach will not apply.

Busch et al (2007) go further in this line of reasoning, suggesting a test that can rule when
two samples from a collection of different VLMV models, clustered by a specific characteristic, are
significantly different or not. Our test is not as general as it, but it is very simple to understand
and to compute, and this ideas can extend easily to clustering and discrimination problems, that
are based on distance. In Flesia et al (2007), we are currently working with an extension of the
K-means algorithm for clustering, and k nearest neighbors procedure for discrimination, with a
population of trees that are estimations of a VLMC context tree chain.

Testing differences of populations. We consider measures v € Qy, the space of probability
measures that concentrate mass on trees with a finite number of nodes. We describe the two-sample
problem.
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Let v,v* be distributions in Q. The goal is to test
(12) Hy:v=v" Hy:v#£V*

using i.i.d. random samples T = (T1,...,T,) and T* = (T7,...,T) with distribution v and v*
respectively.

Test based on the distance between mean trees. When the expected d-means are different,
ET # ET*, one expects that the distance between the empirical mean trees T, T will be positive,
for functions ¢ which do not penalize too much the first generations, as ¢(v) = 28en(v) with
0<z< % A simple and naive test for this problem will reject the null hypothesis when the
distance between the empirical means associated with each sample is large enough.

Computation. The lack of knowledge of the distribution of the distance between empirical means
may be overcame using Monte Carlo randomization. If the null hypothesis is v = v*, and

di = d(T,T) = Y [T(v) - T' ()| 6(v)
veV
is the empiric distance between the mean trees of the kth pair of simulated sample, created by
randomly rearranging the whole set of observations, and assigning the first n; observations to the
first sample and the rest to the second sample, we define the quantile ¢, as the value such that

a = P(d(TaT*) > QOz)

This value can be approximated using the order statistics dV), ..., dN) and taking ¢, as d((N1—®)D
(here [a] denotes the greatest integer not greater than a). For the original samples T and T*,
the test will reject the hypothesis if d(T, T*) > g, at level a. The type-2 error can be estimated
analogously for each alternative hypothesis v,.

3. COMPUTATIONAL EXAMPLES

Simulation. To study the performance of the tests on a controlled environment we simulate
several populations of trees using Galton-Watson processes and simple variations of it. We carefully
choose the parameters to challenge the power of the tests.

Assume we have two random samples, each one from a Galton-Watson process with possibly
different parameters p and p*, denoted GP(p) and GP(p*). We we would like to test if these
samples come from the same process, that is,

Hy:T ~GP(p), T* ~GP(p*) p=p"  Ha:T~GP(p), T*" ~GP(p*), p#p"

In our simulation we already know the parameters of the underlying distributions v and v*.
Thus, we have performed a Monte Carlo simulation test sampling trees from a mixture of both
laws at random, until we reach the size of the first sample and label it sample 1. Then continue
selecting with the same mixture, until we reach the size of the second sample, and label it sample 2.
We compute the test statistics with these random samples, and store it, and repeat the process
1000 times. Then we generate a fixed number of times a sample from the distribution v, and
a sample from the distribution v*, and calculate the test statistics with them. If the true test
statistic is greater than (1-a)% of the random values, then the null hypothesis is rejected at p < a.
The percentage of rejections for each value of a is considered a measure of the power of the test.

We have computed the percentage of rejection over 1000 tests of level o = 0.10,0.05,0.01, when
Ty, Ty, is GP(p*), with p* = 0.6,0.75,0.8 and 0.85, for sample sizes n = 31,51,101, 151 and
201. The results are reported on Table 1.

These results are in agreement with our intuitive ideas. As the sample size increases, the test
is not able to reject the hypothesis of equal populations when p = 0.5 and p* = 0.6, since their
expected mean trees are equal. But when the expected mean trees are different, the test detects
the difference with higher power as the sample size increases.
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a=01 |n=31 n=51 n=101 n=151 n =201
p=0.6 5.6 2.1 0 0 0
p=0.75 52.8 65 92.5 99.3 100
p=20.8 86.2 93.7 99.9 100 100
p=0.85 99 99.9 100 100 100
a=005|n=31 n=51 n=101 n=151 n =201
p=20.6 5.60 02.1 0 0 0
p=0.75 | 52.80 47 92.5 99.3 100
p=0.8 78.60 93.7 94.7 100 100
p=0.85| 97.80 99.8 100 100 100
a=001|n=31 n=51 n=101 n=151 n =201
p=0.6 0.70 2.10 0 0 0
p=0.751| 39.10 47.00 58.40 95.10 96.9
p=20.8 51.70 76.90 94.70 95.10 96.2
p=0.85] 55.40 98.40 100 100 100

TABLE 1. Percentage of rejections over 1000 tests, computed with with p = 0.5
and p* = 0.6,0.75,0.8,0.85, sample size n = 31,51, 101, 151 and 201.

Variable Length Markov Chain Modeling of Protein Functionality. A central problem
in computational biology is to determine the function of a new discovered protein using the infor-
mation contained in its amino acid sequence. Proteins are complex molecules composed by small
blocks called amino acids. The amino acids are linearly linked, forming a specific sequence for
each protein. There exist 20 different amino acids represented by a one-letter code.

There are several problems related to protein functionality, we will only point out two of them
here. One is the classification of the function of a new protein with the help of a training set, and
the other is clustering a group of new and known proteins into meaningful functionality families.
The goal of clustering protein sequences is to get a biologically meaningful partitioning. Genome
projects are generating enormous amounts of sequence data that need to be effectively analyzed.
Given to the amount of available data, and the lack of proper definition, clustering is a very
difficult task, so there is a need for ways of checking the validity of the partition proposed. As
most databases are created by sequence alignment related methods, an impartial way of checking
validity would be to apply an alignment free, model based methodology.

Most methods for clustering and classification need as input a similarity matrix, usually com-
puted by sequence alignment. Model based clustering and classification without sequence align-
ment is leaded by Markov Chain modeling. Par example, Bejerano et al (2001) models protein
sequences with stationary Variable Length Markov Chains (VLMC), in order to classify a new
given protein as belonging to the family whose model has higher probability of having produced
that string. This approach needs also a reliable training set in order to build an accurate estimate
of the unknown context tree of the chain.

In this paper, we propose to check the coherence of of selected protein families performing a
simultaneous hypothesis test, as it has been done in Busch et al(2007). We would like to test
if several families that are members of a well known database are simultaneously significantly
different. We are going to use the same database that was cited in Bejerano et al (2001), which
provided the training data for the classification problem. The Pfam database is known to be a
good reference for protein functionality clustering, so it would provide a benchmark for assessing
the performance of our approach.

We start modeling each functionality family of proteins as realizations of an unknown VLMC.
But instead of learning the model using all the sequences of a given family to estimate the context
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tree with the Probabilistic Suffix Trees algorithm (PST) as in Bejerano et al (2001), we consider
this rule as a random tree that generate one tree in 7 per sequence. The probability distribution
v of the random tree is associated to the chain that rules the family in an unknown fashion. If we
have two independent samples of strings that have been hypothetically produced by two different
unknown chains, we estimates with each of them the context tree of its chain and then consider
we have two independent samples of trees, each one following a distribution associated to the
family. We then test if there are enough evidence in the samples to reject the hypothesis of equal
distribution. If we do reject, we consider the two families significantly different.

We must emphasize the difference between the example from Busch et al (2007) and our ap-
proach. They use the latest version of the Pfam database, which is significantly different from the
one we are working, and they model each family as a collection of VLMC models, in correspon-
dence with the notion of subfamily. We use the approach of Bejerano, modeling small families
with only one VLMC, but estimating it several times with independent strings.

Let 74 be the space of trees with m = 20 possible children per node (the symbols of the amino
acid alphabet), and fixed maximum length M = 4 and the parameter of the distance fixed as
z = 0.36. We test if ten families selected from de P-fam database version 1, Bateman et al (2004),
are simultaneously significantly different using the following two step procedure

(1) Transform the amino acid chains into trees via the Probabilistic Suffix Trees (PST) from
Bejerano(2004), obtaining 10 samples of trees of maximum length of context equal to 3.
The parameters of the PST have been set as the default.

(2) Apply a Bonferroni correction to the 45 pairwise BFFS based comparisons, that means,
each test is performed with a level of significance of @ = 0.05/45 = 0.001 to get a simul-
taneous comparison of the 10 families, with overall level o = 0.05.

We run all the pairwise tests at level 0.001. We also run the tests under the null hypothesis
splitting each data set at random in two subsets. Table 3 shows the critical and the observed
values for all pairwise tests of different families (non—diagonal terms). For the null hypotheses the
observed value and the p—value appear in boldface at the diagonal. Despite the crude nature of the
Bonferroni method, the hypothesis of equal distribution is rejected in all cases when the samples
came from different populations, confirming the coherence of the selected protein families. In the
case of the same family split in halves, we can observe p-values ranging from 0.12 to 0.90, values
that can be used also to analyze the coherence of the family.

4. FINAL REMARKS

We have proposed a naive test to compare two population of trees with laws that do not have
the same expected mean. The procedure is very simple, since it is based in the idea that the
empiric mean tree of each sample, a strong consistent estimator of the expectation of the law
that generates each population, should be separated in terms of BFFS distance. The test will
reject the hypothesis of equal populations if the distance between the empiric means is big enough
to ensure a small type one error. The quantile of the distribution has been derived by Monte
Carlo randomization, and the power has been studied through Galton Watson simulations. We
have also addressed a problem of functional genomics, to check the coherence of hypothesized
functionality families. We suppose that each family of proteins is related to a random tree, and
the allegedly members of each family form a sample of the law of the random tree that characterizes
the family. We check if there is enough information in the samples to reject the hypothesis of equal
populations.

This approach will not work if the two populations have the same expected mean tree, as
in the case of two sample of strings that have been generated by chains with the same context
tree but different transition probabilities. A more sophisticated test, the BFFS test, has already
been proposed by Balding et al (2004), a Kolmogorov type of test that maximizes the differences
between the information of the samples, but it does not have a naive computation, since it involves
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Family actin adh-short adh-zinc ank ATP-synt-A
actin (0.49, 0.71) (241, 985) (3.37, 10.44)  (3.47, 9.84)  (4.62, 11.21)
adh-short (1.36, 0.43)  (1.91,4.91)  (244,555)  (2.05, 5.27)
adh-zinc (1.66 , 0.57)  (2.58, 5.30) (3.05, 6.70)
ank (1.86 , 0.81) (4.27, 8.37)
ATP-synt-A (1.67 0.52 )
Family beta-lactamase cox2 cpnl0 DNA-pol efhand
actin (376, 9.71)  (4.04, 11.46)  (5.52, 12.20)  (4.01, 9.73) _ (3.06, 11.79)
adh-short (2.52,3.91)  (2.14,6.24)  (2.42,6.20) (3.61,6.44)  ( 1.86, 6.07)
adh-zinc (264 ,5.14)  (251,7.38)  (279,7.91)  (258,590)  (2.23, 6.93)
ank (3.14, 5.32) (3.03,7.94)  (5.04,10.32)  (2.51,3.16)  (2.74, 8.79)
ATP-synt-A (3.34, 6.25) (2.75,4.95)  (2.61,5.28)  (4.88,898)  (2.08, 6.27)
beta-lactamase (1.819, 0.93)  (2.98, 6.94) (2.83, 6.52) (3.16, 6.58) (2.74, 6.49)
cox2 (2.05,0.09) (2.95,6.99)  (3.77,9.19)  ( 1.67, 6.49)
cpnl0 (1.30 , 0.02) (6.6, 11.86)  ( 2.02, 3.86)
DNA-pol (1.81,0.23) (3.58 , 10.24)
efhand (0.65,0.93)

TABLE 2. Critical value and observed value of 45 pairwise comparisons at level
a = 0.001. Test rejects when the observed value is greater than the critical
value. In boldface, observed value and p-value when testing the same population,
N =1000. The distance’s parameter zeta is equal to 0.35.

a search over the set of trees that grows exponentially fast. In Busch et al (2007) the computation
of the test has been derived and the performance of the test reported. Also, they suggest a way
to model more complex group of proteins as collections of VLMC models, and test the same
hypothesis with great success.

The key features of this test are the simplicity of the definition and it fast computation, that
allows to realize easy preliminary approaches to the two samples testing problem.

Acknowledgments. I would like to thank Florencia Leonardi for providing the data used in our
example of determination of protein functionality, which was also analized in Leonardi (2007).
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