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Abstract. When two or more players are engaged in a game with uncertainties, they need to consider
what the other players’ beliefs may be, which in turn are influenced by what they think the first player’s
ideas are. Harsanyi defined type spaces simply as a set in which all possible players-as defined by their
beliefs- could be found. Later on, more meaningful constructions of this set were performed.

The theory of coalgebra, on the other hand, has been created to deal with circular phenomena, so
its application to the problem of type spaces is only natural. We show how to apply it and we use the
more general framework of category theory to compare the relative strength of previous solutions to the
problem of defining type spaces.
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1 MOTIVATION

A player in a game can be optimistic, pessimistic, cautious, daring, suspicious, paranoid, etc.
We want to describe players according to their behaviors. Players displaying different kinds
of behaviours will be called players of differenttype. Since behaviors are determined by the
players’ beliefs (assuming they are rational), these are going to be the focus of our attention. To
get a mathematical definition, we need to be clear on which kind of games we are talking about,
and then we can proceed to see how we can describe the ‘type’ of a player.

Definition 1.1. (following Osborne and Rubinstein(1994)) An extensive game with perfect
informationG = (N, H, P, Un) consists of:

• A setN , the set of players.

• A setH of sequences (finite or infinite) that satisfies the following three properties:

– The empty sequence∅ is in H.

– If (ak)k=1,...,K ∈ H (whereK may be infinite) andL < K then(ak)k=1,...,L ∈ H.

– If an infinite sequence(ak)∞k=1 satisfies(ak)k=1,...,L ∈ H for every positive integer
L, then(ak)∞k=1 ∈ H.

The members ofH are calledhistories. A history (ak)k=1,...,K ∈ H is terminal if it is
infinite or there is noaK+1 such that(ak)k=1,...,K+1 ∈ H. The set of terminal histories is
denoted withZ.

• A functionP : H \Z → N , that indicates for each history inH which one of the players
takes an action after the history.

• FunctionsUn : Z → R for n ∈ N that give for each terminal history and each player, the
payoffof that player after that history.

The setH can be seen as a tree with root∅, with its nodes labeled by the functionP , and
the leaves labeled by the functionsUn. We indicate the elementsak on the edges of the tree so
following a particular branch from the root will give the history that names each node.

Example 1.1.

◦
l

rrdddddddddddddddddddddddd
c��

r

,,ZZZZZZZZZZZZZZZZZZZZZZZZ 1

◦
l

xxqqqqqq r

&&MMMMMM
2 ◦

l

xxqqqqqq r

&&MMMMMM
2 ◦

l

xxqqqqqq r

&&MMMMMM
3

◦ ◦ ◦ ◦ ◦ ◦

(1, 1, 0) (2, 0, 0) (3, 1, 1) (0, 3, 1) (2, 0, 3) (0, 2, 3)

In the diagram above we have a game whereN = {1, 2, 3}; P (∅) = 1 meaning that player1
gets to decide the first move in the game, and has three options available:l, c, r (the letters stand
for left, center or right, respectively). If player1 choosesl or c, then player2 decides what’s the
next action, and she has optionsl andr available. If player1 choosesr instead, it is player3
who decides what’s the final move. Under each terminal node in the tree, a triple indicates the
values of the utility functionsU1, U2 andU3. So, for example if the history of the game is(c, l),
then player1 gets a payoff of3, while players2 and3 get a payoff of1.
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Alternatively, extensive games with complete information can be given by indicating (instead
of the utility functions) a family of preorders(≺n)n∈N that represent thepreferencesof the
players. For our purposes, it will be enough to assume that all players prefer to maximize their
payoffs and are indifferent to what other players’ payoffs are.

Games with incomplete informationare games in which the incompleteness of the informa-
tion arises in three main ways.

1. The players may not know thephysical outcome functionof the game which specifies the
physical outcome produced by each strategy available to the players.

2. The players may not know their own or some other players’utility functions, which spe-
cify the utility payoff that a given playeri derives from every physical outcome.

3. The players may not know their own or some other players’strategy space, i.e. the set of
all strategies available to various players.

‘All other causes of incomplete information can be reduced to these three basic cases– in-
deed sometimes this can be done in two or more different (but essentially equivalent) ways’
(Harsanyi, 1967). The challenge is to be able to take the best possible decisions when these un-
certainties are present. A breakthrough in this field was made in 1967, when a series of papers
by John C. Harsanyi, (Harsanyi, 1967, 1968a,b) saw print. The idea was to tame the uncertainty
by transforming the games with incomplete information into games with complete butimperfect
information.

Definition 1.2. An extensive game withimperfect informationis a gameG = (N, H, P, Un, In)
whereN, H, P andUn are as in Definition1.1, and for each playern ∈ N, In is a partition on
the setHn = {h ∈ H \ Z : P (h) = n}. The equivalence classes in this partitions are called
information sets.

The idea here is that playern knows in which information set the game currently is, but
doesn’t know exactly the whole history that has lead the game into that set. Note that the
players still have perfect information. They know the payoffs in all the possible outcomes.

Example 1.2.

◦
l

rrdddddddddddddddddddddddd
c��

r

,,ZZZZZZZZZZZZZZZZZZZZZZZZ 1

◦
l

xxqqqqqq r

&&MMMMMM
2 ◦

l

xxqqqqqq r

&&MMMMMM
2 ◦

l

xxqqqqqq r

&&MMMMMM
3

◦ ◦ ◦ ◦ ◦ ◦

(1, 1, 0) (2, 0, 0) (3, 1, 1) (0, 3, 1) (2, 0, 3) (0, 2, 3)

Now the dotted line indicates that the set{l, c} is an information set for player2. She does not
have information about whether player1 moved to the right or to the center, but she does know
what the payoffs will be in each case, and also knows that, since it’s her turn, player1 did not
chooser.

If all the information sets contain exactly one node of the tree, we have a game with perfect
information. The information sets allow us to represent games in which the players make their
moves simultaneously (and thus don’t know when making their decision what are the other
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players’ moves), and also to represent situations in which “nature” or “chance” make a move
we cannot predict. This feature will be exploited later.

Some further assumptions are made about the games under study. In the first place, it is
assumed that the beliefs the players of the game have can be represented through probability
measures (this is called theBayesian approach). It is also assumed that the players are aware
of the extent of the knowlege or ignorance of the other players, and that they will always act
“rationally”, that is, they will take the action that gives them the highest possible expected
payoff, based on the information available to them. The notion of rationality is quite hard to
formulate and still topic of debate in among game theorists.

In Harsanyi’s words, (Harsanyi, 1967):

It seems to me that the basic reason why the theory of games with incomplete
information has made so little progress so far lies in the fact that these games give
rise, or at least appear to give rise, to an infinite regress in reciprocal expectations
on the part of the players.

The argument is the following: suppose the game has incomplete information and just two
players. Player1 has some beliefs about what are the actual values of the missing information.
This is represented as a probability measure over the space of all possible values the unknown
could take. Player1 also knows that player2 cannot know the actual value and hence resorts
to using a probability distribution representing her beliefs as well. In order to take a decision,
player1 then must form some mental model of what player2’s beliefs are. Player2’s beliefs
include those that, in turn, player2 has about player1’s beliefs. This kind of reasoning promptly
leads to an infinite regression of unfolding beliefs. Harsanyi calls any model of this kind a
sequential-expectationsmodel for games with incomplete information.

Harsanyi was concerned with finding ways of analising these games with incomplete infor-
mation. The solution he offered involved the construction of a game with complete but imperfect
information based on the given one with incomplete information. In the new game, there are
new chance moves that are assumed to occur before the two players choose their strategies. In
these random moves, the actual payoff of the two players are determined, but being a game with
imperfect information, the players only know they are in some information set, and a probabi-
lity distribution for the random moves (this probability distribution is assumed to be common
knowledge to all the players). Using conditional probabilities, they can then derive the different
expected values they need to assess the strategies to be taken in the game.

There is an alternative interpretation of the random moves added to the game. Instead of as-
suming that they determine important characteristics of the players (in particular, their payoffs),
it could be assumed that the players themselves are being chosen at random from ‘certain hy-
pothetical populations containing individuals of different “types”, each possible “type” of a
playeri being characterized by a different attribute vectorci, i.e., by a different combination of
production costs, financial resources, and states of information.’(Harsanyi, 1967)

It is these populations that we’ll calltype spaces, and their elements will be of course,ty-
pes. While Harsanyi assumes the type space was given, he already suggested they could be
constructed from the considerations about beliefs explained above:

As we have seen, if we use the Bayesian approach, then the sequential-expectations
model for any given [incomplete information] gameG will have to be analyzed in
terms of infinite sequences of higher and higher-order subjective probability distri-
butions, i.e. subjective probability distributions over subjective probability distri-
butions (Harsanyi, 1967).
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Harsanyi was discouraged from this approach by the technical difficulties it presented:

Probability distributions over some space of payoff functions or of probability dis-
tributions, and more generally probability distributions over function spaces, in-
volve certain mathematical difficulties [...]. However, as Aumann has shown (Au-
mann, 1961) and (Aumann, 1964), these mathematical difficulties can be overcome.
But even if we succeed in defining the relevant higher order probability distribu-
tions in a mathematically admissible way, the fact remains that the resulting model
–like all models based on the sequential-expectations approach–will be extremely
complicated and cumbersome.

The difficulty pointed out by Aumann in (Aumann, 1961) is that ifX andY are measurable
spaces and we denote byY X the set of all measurable functions fromX to Y , then there
is no natural way of endowingY X with a σ-algebra that makes the evaluation functionev :
Y X × X → Y given byev(f, x) = f(x) measurable. Aumann proposes in (Aumann, 1964)
to choose a single real number that represents a probability distribution. In our approach, the
problem is overcome by considering the spaces∆X of all probability measures overX instead
of looking at all the measurable functions in[0, 1]X that have integral1 overX.

So, to formalize the notion of types that Harsanyi had in mind, we want a mathematical
object, thetype space, such that each element ortypewill have associated to it, in a natural way,
beliefs (represented by probability distributions) over the states of nature and the types of the
other players in the game. In a game withN players, each player will assume one of the types
t ∈ T , as if they were roles in a play.

A first approach would be to find a correspondenceT ∼= ∆(S × T ), where the setT would
be the type space andS the states of nature. The states of nature are the possible values the
unknown variables in the game can take. We want bothS andT to be measurable spaces so we
can define probability measures on them. Letm : T → ∆(S × T ) be the desired isomorphism.
Then for eacht ∈ T , m(t) represents the beliefs of a player of typet.

To find this isomorphism, we will introduce first the notion of coalgebras, for which we will
also need some of the language provided by category theory.

2 COALGEBRAS

The theory of coalgebras was introduced to model certain circular phenomena, like the theory
of non wellfounded sets (seeAczel (1988)). It has been found to encompass many different
examples, and it has abstracted interesting properties out of them.

Given a categoryC and an endofunctorF : C → C, a coalgebrafor the functorF (or
F -coalgebra) is a pair(X, c) consisting of an objectX in the categoryC and a morphism
c : X → F (X). Given F -coalgebras(X, c) and (Y, d), a F -coalgebra morphismis a C-
morphismf : X → Y such that the following diagram commutes:

X
f //

c
��

Y

d
��

F (X)
F (f)

// F (Y )

A final object in a categoryC is an object1 such that for anyC-object A there exists a
unique morphism!A : A → 1. We will be interested in the final objects of the categories of
F -coalgebras (final coalgebras), mainly because of the following property:
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Theorem 2.1. (Lambek’s Lemma,Lambek(1968)) If (Z, e) is a finalF -coalgebra, thene is an
isomorphism betweenZ andF (Z).

Final coalgebras need not to exist in general. For example, the powerset functor in the cate-
gory of sets has no final coalgebra (if it had one, Lambek’s Lemma would contradict Cantor’s
theorem).

Since we are representing beliefs as probability measures, we will work within the category
Meas of measurable spaces and measurable functions between them.

We will consider the endofunctor∆ in Meas that assigns to each measurable spaceM , the
set∆M of all the probability measures overM , endowed with theσ-algebraΣ∆ generated by
the sets of the formβp(E) whereE is a measurable subset ofM and

βp(E) = {µ ∈ ∆M : µ(E) ≥ p} (1)

If f : M → N is measurable, we define∆f : ∆M → ∆N as follows: forµ ∈ ∆(M) and
E ∈ Σ′,

(∆f)(µ)(E) = µ(f−1(A)).

Definition 2.1. The class ofmeasure polynomial functorsis the smallest class of functors on
Meas containing the identityId , the constant functorM for each measurable spaceM , and
closed under binary products, coproducts and∆.

Example 2.1. If we consider a fixed measurable space like the real interval[0, 1] with its bo-
rel subsets as the measurable ones, we can build the measure polynomial functors∆([0, 1] ×
X), (X + [0, 1])×∆X, etc.

Theorem 2.2.(Moss and Viglizzo, 2006; Viglizzo, 2005b) All polynomial measure functors have
final coalgebras.

3 TYPE SPACES AS COALGEBRAS

We now see that the isomorphismm : T → ∆(S × T ) would be a byproduct of finding
the final coalgebra for the functor taking a measurable spaceX to ∆(S ×X). There are some
problems with this approach. If the game hasN players, then each playeri with typeti should
have beliefs about the types of all the other players, so the functor to use could be

F (T ) = ∆(S × TN). (2)

Furthermore, we want each type to know his own type. To model this, we need some definitions
and results from measure theory.

Given a probability distributionµ over a product spaceX × Y , its marginalsare the distri-
butionsµX andµY over the spacesX andY respectively defined bymarXµ(E) = µ(E × Y )
andmarY µ(F ) = µ(X × Y ) for all E measurable subset ofX andF measurable subset ofY .
Using the functor∆ and the projections, we may write this asmarXµ = (∆πX)µ = µ ◦ π−1

X ;
marY µ = (∆πY )µ = µ ◦ π−1

Y .
If X is a measurable space andx is a point inX, let δx be the probability distribution given

by δx(E) = 1 if x ∈ E and0 otherwise.
So we don’t wantT to be isomorphic to∆(S × TN), but to the subset of∆(S × TN)

of probability distributions in which the marginal of eachm(ti) on thei-th copy ofT is the
distributionδti which has support on the pointti. Adding this extra condition to the definition
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would steer us away from the definition of coalgebras onMeas, but we can overcome this
difficulty by changing the functor in an appropriate way. The key observation here is that for
any product of measurable spacesA×B andb0 ∈ B such that the singleton{b0} is measurable,
there is an isomorphism between the spaces{µ ∈ ∆(A×B) : marBµ = δb0} and∆A.

The following Lemma proves that in the case above, it is enough to know the marginals to
determine the measure.

Lemma 3.1.Letµ be a probability measure on a product measurable spaceA×B. If marBµ =
δb0 for someb0 ∈ B, thenµ = marAµ× δb0 .

Proof. We only need to prove it for rectanglesG×F , whereG is a measurable subset ofA and
F is a measurable subset ofB.

We want to prove thatµ(G×F ) = (marAµ)(G)×δb0(F ). We have two cases: ifb0 /∈ F , this
reduces to proving thatµ(G× F ) = 0, and ifb0 ∈ F , then we want to show thatµ(G× F ) =
marAµ(G) = µ(π−1

A (G)) = µ(G×B).
Notice first that forµ(G × B) = µ(π−1

A (G)) = marAµ(G) = marAµ(G) × δb0(B). Also
µ(A× F ) = marBµ(F ) = δb0(F ) = (marAµ)(A)× δb0(F ).

Now we can prove that ifb0 /∈ F , thenµ(G × F ) ≤ µ(A × F ) = 0, and if b0 ∈ F , then
µ(G×F ) = µ(G×{b0})+µ(G×(F \{b0}) ≤ µ(G×{b0})+µ(A×(F \{b0})) = µ(G×{b0}).
On the other hand,µ(G×B) is also equal toµ(G× {b0}) + 0.

So now we can model the introspection condition by considering coalgebras for the functor

F (T ) = ∆(S × TN−1). (3)

The problem of finding auniversal type space, that is, a type space containing all the pos-
sible types a player could adopt, could be solved by finding the final coalgebra for the functor
F (X) = ∆(S ×XN−1). This can be done using Theorem2.2. Lambek’s Lemma2.1provides
the isomorphism we are looking for.

But when we look at a single coalgebra for this functor, that is, a measurable mapm : T →
∆(S × TN−1) we get a somewhat unsatisfactory model. Why should all the players come
from the same type space? It would be better to be more general and to assume that there are
type spacesT1, T2, . . . , TN and the type of playeri is selected from the correspondingTi. This
motivates the following definition:

Definition 3.1. Let MeasN be theN -fold product of the categoryMeas. Each objectM in
MeasN is aN -tuple of measurable spaces(M1, . . . ,MN), and the morphisms areN -tuples of
measurable functionsfi : Mi → M ′

i . Let Proj N
i : MeasN → Meas be thei-th projection

functor.

Definition 3.2. We define then atype spacefor a game withN players over the measura-
ble spaceS of states of nature, as a coalgebra for the endofunctor inMeasN given byT =
(T1, T2, . . . , TN) where for1 ≤ i ≤ N ,

Ti = ∆(S ×
∏
j 6=i

Proj N
j ). (4)

The diagram for a coalgebra(X,m) of this functor is:

(X1,

m1

��

X2,

m2

��

. . . , XN)

mN

��
(∆(S ×

∏
j 6=1 Xj), ∆(S ×

∏
j 6=2 Xj), . . . , ∆(S ×

∏
j 6=N Xj))

549



The definition above is a particular case of the more general one that follows.

Definition 3.3. A measure polynomial functor on many variablesT : MeasN → Meas is a
functor built from the functorsProj N

1 , . . . ,Proj N
N and constant functors for measurable spaces,

using either products, coproducts and∆. For any natural numberN ′, we can extend the notion
of a measure polynomial functor to functorsT = (T1, . . . , TN ′) : MeasN → MeasN ′

such that
eachTi, 1 ≤ i ≤ N ′, is a measure polynomial functor on many variables fromMeasN to Meas
as defined above.

Example 3.1.For a fixed measurable spaceM , consider the polynomial functor on three varia-
blesF : Meas3 → Meas2 given by:

F = ( ∆(Proj 3
1 + Proj 3

2) , ((∆Proj 3
3)× Proj 3

2) + M )

We are going to center our attention on measure polynomial functors on many variables that
are endofunctors of the categoryMeasN , and the coalgebras for those functors.

Theorem 3.1. (Viglizzo, 2005a) If T : MeasN → MeasN is a measure polynomial functor in
many variables, then it has a final coalgebra.

Going back to the type spaces for a game withN players, application of the Theorem above
yields a final type space, also known in the literature asuniversal type space. We also get the
following Lemma:

Lemma 3.2. If T : MeasN → MeasN is the functor given by(Ti = ∆(S×
∏

j 6=i Proj N
j ))1≤i≤N ,

and (Zi)1≤i≤N is a final coalgebra forT then for eachi, Zi is isomorphic to∆(S ×
∏

j 6=i Zj)
and all the spacesZi, 1 ≤ i ≤ N are isomorphic.

The fact that all the type spaces in the universal type space for a game withN players are
isomorphic, together with the fact that all final coalgebras for a given functor are isomorphic
justifies naming ittheuniversal type space for the game.

4 A BRIEF REVIEW OF THE LITERATURE ON TYPE SPACES

There have been several constructions of type spaces and universal type spaces in the lite-
rature, each one trying to capture the intuitive idea behind the definition in a slightly different
way. Here we review them, as we compare them with the framework we just exposed.

4.1 Armbruster, Böge and Eisele

In Bayesian Game Theory(Armbruster and B̈oge, 1979), W. Armbruster and W. B̈oge pre-
sent their approach to the study of games with unknown utility functions, in which the players
“will have at least a subjective probability distribution on [the] alternatives”. This is called
theBayesian assumption. In order to construct “canonical representations for the players’ sub-
jective probability measures”, the following notion is introduced, and attributed to Böge, in a
lecture on game theory given in 1970.

Definition 4.1. Let S0
1 , . . . , S

0
N be compact Hausdorff spaces. AnN -tuple of compact sets and

continuous maps(S1, . . . , SN , ρ1, . . . , ρN) is called anoracle systemfor S0
1 , . . . , S

0
N if for all

i, ρi : Si → S0
i ×

∏
j 6=i ∆r(Sj). Here∆r is the functor that assigns to each topological space

X the space of all the probability distributions overX with theσ-algebra of its borel sets.
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This is the same as saying that(S, ρ) is a coalgebra for the functor
T = (S0

i ×
∏

j 6=i ∆r(Id j))1≤i≤N in the categoryCHausN whereCHaus is the category of com-
pact Hausdorff spaces and continuous functions. The underlying assumption here is that each
player has a different space of state of natureS0

i in which their unknowns lie.
The final coalgebra is constructed by taking the projective limit of the corresponding final

sequence. This final coalgebra is called thecanonical oracle system. Note that not all the
components of the functor are the same, so in general the spacesZi will not be isomorphic to
each other as in Lemma3.2. This is a reasonable assumption, and using Theorem3.1, one can
extend the definition and existence of canonical oracle systems to the general case of measurable
spaces.

It is important to note that here appears for the first time a coalgebra (not necessarily the final
one) as a model of the beliefs of a player. This transcends the idea of just looking for the space
of all possible types, to give more restricted models that can be useful to describe situations in
more manageable terms.

W. Böge and Th. Eisele present a slightly different approach in the paperOn Solutions of
Bayesian Games, (Böge and Eisele, 1979). Here again the topological setting is the category
CHaus. The space over which the behavior of the players is selected is similar to the one we
proposed in (2), but with certain restrictions.

Given a compact space of states of natureR0, a nonempty subspaceR1 ⊆ R0× (∆rR
0)N of

common a-priori information is selected.

Definition 4.2. A system(R, ρ) with

ρ : R → R0 × (∆rR)N

is called asystem of complete reflections over the information setR1 if

(1R0 × (∆r(πR0 ◦ ρ))) ◦ ρ ⊆ R1 ⊆ R0 × (∆rR
0)N . (5)

R

ρ
��

R

ρ
��

R0 × (∆rR)N

πR0

��

R0 × (∆rR)N

1R0×(∆r(πR0◦ρ))N

��

R0 R0 × (∆rR
0)N

The spaceR1 has to satisfy a couple of conditions, the first one specifying that each player
knows what their beliefs are, and the second one saying that each player will try to maximize
their utility function. These requirements preclude the systems of complete reflections from
being coalgebras. We have seen before how the first condition, of each player knowing their
beliefs, can be dealt with by taking a different functor.

The construction of the final object in the category of systems of complete reflections is done
by taking the projective limit, and restricting the spaces so that the image of the mapρ for the
final object has image contained inR1.
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4.2 Mertens and Zamir

The paperFormulation of Bayesian Analysis for Games with Incomplete Informationby
Jean-François Mertens and Shmuel Zamir, (Mertens and Zamir, 1984), is the most often cited
one in the literature about type spaces.

Starting from a compact spaceS calledparameter-spaceor set of states of nature, they seek
to define a setY of the “states of the world” in which every point contains all characteristics,
beliefs and mutual beliefs of all players. The equations that summarize their goals are:

Y = S × TN (6)

T = the set of all probability distributions on(S × TN−1) (7)

These equations are, of course, intended to be solved up to isomorphism. Equation (7) is
essentially our (3). Some of the definitions in this work are interesting and we will analyse
them here, trying to understand their motivation and how they are accounted for in our model.

Definition 4.3. (Mertens and Zamir, 1984) Let S be a compact space. AnS-based abstract
beliefs space (BL-space)is an(N + 3) tuple(C, S, f, (ti)N

i=1) whereC is a compact set,f is a
continuous mappingf : C → S andti, i = 1, . . . , N , are continuous mappingsti : C → ∆(C)
(with respect to the weak-* topology) satisfying:

c̃ ∈ C andc̃ ∈ Supp(ti(c)) ⇒ ti(c̃) = ti(c). (8)

The condition (8) specifies that “a player assigns positive probability (in the discrete case)
only to those points inC in which he has the same beliefs. In other words, he is certain of his
own beliefs.” It can be rewritten as:

c̃ ∈ C andc̃ ∈ Supp(ti(c)) ⇒ c̃ ∈ (ti)−1[ti(c)].

Or the following equivalent equations:

Supp(ti(c)) ⊆ (ti)−1[ti(c)]

ti(c)[(ti)−1[ti(c)]] = 1

(∆ti)ti(c) = δti(c).

Thus, even though the first impression could be that Belief spaces are coalgebras for the functor
FX = S×∆X, we see immediately that we need the functionf to have the specific codomain
S, and we need many different functionsti with codomain∆C.

However, we can see that an adaptation from our definitions yields spaces with the same
properties: If(X,m) is a type space for a game overS with N players, as in Definition3.2,
then let

C = S ×
N∏

i=1

Xi

C−i = S ×
∏
j 6=i

Xj

Let πi andπ−i be the projections fromC to Xi andC−i, respectively. Now for allc ∈ C, let
ti : C → ∆C be defined by

ti(c) = miπi(c)× δπi(c).

Thusti(c) ∈ ∆C. LettingπS : C → S be the projection, we have that
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Proposition 4.1. (C, S, πS, (ti)N
i=1) is a BL-space.

Proof. We only need to check that condition (8) is satisfied. Notice that the type spaces of Defi-
nition 3.2are defined for any measurable spaceS, and the functionsmi need not be continuous,
just measurable. Condition (8) is stated in terms of the support of the probability measure
ti(c), which does not necessarily exist in the more general case. We will prove the condition
ti(c)[(ti)−1[ti(c)]] = 1 which is equivalent to (8) when the support is defined.

ti(c)[(ti)−1(ti(c))] = ti(c)[(ti)−1(miπi(c)× δπ(c))]
= ti(c)[((mi × δ) ◦ πi)

−1(miπi(c)× δπi(c))]
= ti(c)[(πi)

−1(mi × δ)−1(miπi(c)× δπi(c))]

The set(mi × δ)−1(miπi(c) × δπi(c)) is not empty, since at leastπi(c) is in it. It is also equal
to the setm−1

i miπi(c) ∩ δ−1(δπi(c)) = m−1
i miπi(c) ∩ {πi(c)} so its inverse image underπi is

C−i × {πi(c)}. Therefore

ti(c)[(ti)−1(ti(c))] = ti(c)[C−i × {πi(c)}]
= miπi(c)(C−i)× δπi(c)(πi(c))
= 1

Note that in Mertens and Zamir’s approach, the universal type spaces are constructed by
constructing first the universal BL-spaceY and then taking takingT = ti(Y ), while here we
have shown how to construct belief spaces from the type spaces.

Definition 4.4. (Mertens and Zamir, 1984) A coherent beliefs hierarchy [overS] of level K
(K = 1, 2, . . .) is a sequence(C0, C1, . . . , CK) where:

1. C0 is a compact subset ofS and fork = 1, . . . , K,Ck is a compact subset ofCk−1 ×
[∆(Ck−1)]

N (as topological spaces). We denote byρk−1 andti the projections ofCk onto
Ck−1 and thei-th copy of∆(Ck−1) respectively.

C0 C1
ρ0oo . . .ρ1oo CK

ρK−1oo

2.
ρk−1(Ck) = Ck−1; k = 1, . . . , K

3. For all ck ∈ Ck, let ck−1 = ρk−1(ck). Then for alli, andk = 2, . . . , K,

H1) the marginal distribution ofti(ck) onCk−2 is ti(ck−1);

H2) the marginal distribution ofti(ck) in the i-th copy of∆(Ck−2) is the unit mass at
ti(ck−1) = ti(ρk−1(ck)).

The coherent hierarchies are used to build the universal beliefs spaceY . Thay can be seen as
the firstK steps in the iteration that leads to the final sequence. The additional conditions we
see come from different complications introduced in the construction. Part2 of the definition
states that the projections should be surjective. This condition is necessary here because the
spacesCk are compact subspaces ofCk−1 × (∆Ck−1)

N and not that whole space.
ConditionsH1) andH2) of part3 have the following intuitive meaning:

553



H1) says that playeri’s k-level beliefs coincide with his(k − 1) level beliefs in
whatever concerns hierarchies up to level(k− 2). ConditionH2) says that playeri
knows his own previous order beliefs. (Mertens and Zamir, 1984)

Under a more technical light,H1) can be written as

(∆ρk−2)t
i(ck) = ti(ck−1) = ti(ρk−1(ck)) (9)

for everyck ∈ Ck. This condition is saying thatck is an element of the projective limit of the
spacesCk. The conditionH2) can be written as: for everyck ∈ Ck,

(∆ρk−2)t
i(ck) = ti(ck−1) = tiρk−1(ck). (10)

There is some abuse of notation here: for each numberk ≥ 1, functionsti : Ck → ∆Ck−1 are
defined, so there is a different functionti that is applied tock and another one that’s applied to
ck−1, and it should be clear which one is needed in each ocurrence ofti. Having (10) is needed
in order to obtain(8) in the projective limit.

Morphisms between BL-spaces are defined as follows:

Definition 4.5. (Mertens and Zamir, 1984) A beliefs morphism(BL-morphism) from a BL-
space(C, S, f, (ti)N

i=1) to a BL-space(C̃, S̃, f̃ , (t̃i)N
i=1) is a pair(ϕ, ϕ′) whereϕ′ is a continuous

mapping fromC to C̃ and ϕ is a continuous mapping ofS to S̃ such that for eachi; i =
1, 2, . . . , n, the following diagram commutes:

S
ϕ // S̃

C

f

OO

ϕ′ //

ti

��

C̃

f̃

OO

t̃i

��
∆C

∆ϕ′ // ∆C̃

Given a fixed spaceS of states of nature, theuniversal BL-spaceis the final object in the
category of BL-spaces overS and BL-morphisms. The universal BL-space over a fixed space
S is built by taking the projective limitY of a sequence of coherent beliefs hierarchies:

LetY0 = S; Y1 = S×∆S×. . .×∆S and fork ≥ 2, letYk = {yk ∈ Yk−1×[∆(Yk−1)]
N : H1)

For all i the marginal distribution ofti(yk) onYk−2 is ti(yk−1) andH2) the marginal distribution
of ti(yk) on∆i(Yk−2) is the unit mass atti(yk−1)}.

With this definition, for each value ofk, the sequence(Y0, . . . , Yk) is a coherent beliefs
hierarchy overS of level k, and it also is the biggest one that can be constructed. All the
coherent hierarchies of beliefs can be mapped to the ones constructed above, and all the BL-
spaces can be mapped in a unique way to their limitY .

It is clear from the proof given that the spaces under consideration are assumed to be com-
pact Hausdorff topological spaces. Mertens and Zamir use Riesz’s Representation theorem to
prove what essentially amounts to Theorem4.1 below, but one needs to also assume that the
probability measures involved are all regular, as (Armbruster and B̈oge, 1979) and (Heifetz,
1993) point out.

Theorem 4.1.(seeHeifetz(1993), alsoMètivier(1963), Theorem III.3.2) LetXn be a sequence
of Hausdorff topological spaces andfn : Xn+1 → Xn a surjective continuous map forn ≥ 0.
If µn is a regular Borel probability measure onXn such thatµn+1f

−1
n = µn for all n ≥ 0, then

there is a unique regular Borel probability measureµ on the projective limit of theXn such that
for all n ≥ 0, µπ−1

n = µn.
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4.3 Heifetz and Samet

Aviad Heifetz and Dov Samet, in their paperTopology-Free Typology of Beliefs, (Heifetz
and Samet, 1998), are the first to solve the problem of finding the universal type space in the
general case of measurable spaces. They present two constructions of the space, much in the
spirit of the two constructions of final coalgebras for measure polynomial functors presented in
Moss and Viglizzo(2006) andViglizzo (2005b), respectively.

Their methods have provided us with guiding insight for the constructions of final coalge-
bras we cited before. In the language-based construction, we have presented new languages
L(T ) based on each measure polynomial functorT . We have also introduced two important
refinements:

Their operatorBp
i (e) is used to express that a playeri believes that an event represented by

e has probability bigger thanp. In our formulation, this would be expressed as[next]iβ
p(e),

a formula of sortId i for the functorT from definition4 that is, the syntactic operatorBp
i has

been factored in two parts. This allows us to have more expressive power and describe points
of coalgebras that are not of the form∆S(X) for some measure polynomial functorS.

4.4 Types and Non-wellfounded sets

4.4.1 Lismont

In the paper (Lismont, 1992), Lismont claims to use the set theoryZFC−AFA to prove
the existence of a universal beliefs space in the sense of Mertens and Zamir. He proposes the
functorΛ for a classC, as the class of all probability measures on setsc ⊆ C (which therefore
need to be measurables spaces). Thus, any subset ofC needs to be a measurable space. This
does not seem to be a very reasonable assumption. Consider a non-measurable subsets of a
measurable spacec. Sinces ⊆ c ⊆ C, Λs ⊆ ΛC, but the inclusion cannot possibly be a
measurable function.

With this definition,Λ is a monotone functor, an assumption that simplifies some results, but
Λ[0, 1], for example, is much bigger than∆[0, 1]. It includes all probability measures over all
theσ-algebras that are possible over all the subsets of[0, 1] ( ∆X was defined over a measurable
space(X, Σ) as (the measurable space of) all probability measures on the algebraΣ).

So this operatorΛ is not so much of an operator inMeas, as one inSet.
Closely following Mertens and Zamir’s paper (Mertens and Zamir, 1984), the goal is to

“construct”Y andT such thatY = K × T n andT = Λ(K × T n−1).
If K is a non empty set,Λi(C) is the class of allλ ∈ Λ(K × Cn) such that a support ofλ is

a subset ofK × Ci−1 × {λ} × Cn−i (i-coherent probabilities).
Then

Λ∗(C) = K ×
∏

1≤i≤n

Λi(C)

It’s easy to verify that the operatorΛ∗ is set continuous as defined in (Aczel, 1988). There-
fore, there a biggest fixed pointΩ, and lettingΘi = Λi(Ω), we get

Ω = K ×
∏

1≤i≤n

Θi.

Ω is non empty ifK is non empty (this result uses the solution Lemma from the theory of
non-wellfounded sets).

Notice that now the equalities are actual identities in AFA.
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A beliefs spaceis , as in (Mertens and Zamir, 1984), a measurable subsetB ⊆ Y so that for
eachv = 〈k, t1, . . . , tn〉, h(ti)(B) = 1.

Then, a languageΦ is defined, with propositional variables obtained from the measurable
subsets ofB, boolean connectives, and a modalityBi,rϕ for everyϕ ∈ Φ meaning that player
i assigns probability bigger or equal thanr to ϕ.Ṫhe language induces an equivalence relation
u ≡ v iff for all ϕ ∈ Φ, u ∈ [[ϕ]] ⇔ v ∈ [[ϕ]]. The main theorem is:

Theorem 4.2. For all belief spacesB there is an application∗ : B → Ω, u 7→ u∗ so that for
all u, v ∈ B, u∗ = v∗ ⇔ u ≡ v.

Lismont admits that even thoughY can be embedded inΩ, this doesn’t mean that Mertens
and Zamir construction follows as an special case of the fixed point result in AFA.

4.4.2 Heifetz

In (Heifetz, 1996), Heifetz proposes a similar idea. Every beliefs spaceB can be mapped
(onto) it’s non-wellfounded version, constructed again from setting up the corresponding equa-
tions. In the non-wellfounded version of the space, the homeomorphisms become equalities.

The setting of the paper is compact metric spaces, so it can use the result from Mertens and
Zamir. LetY be the universal beliefs space from Mertens and Zamir’s work. Given any beleifs
spaceB, a mapH from B to Y is defined. Then the imageH(B) is proved to be in a 1-to-1
correspondence with̄B, the nwf-version ofB (similar toB∗ in Lismont’s work). This way,B̄
can borrow the topology fromY , instead of having it generated by the formulas in the language
as in Lismont. Heifetz would come back to that idea in (Heifetz and Samet, 1998).

The correspondence above is obtained by showing thatH(ω) is also a solution for the
equation that yields̄ω for any ω ∈ B. These solutions are unique under the theory of non-
wellfounded sets.

The probability measures are characterized as a family of pairs〈E, r〉 such thatE is a mea-
surable set and the measure ofE is bigger than or equal tor. An example is given where the
inadequacy of dealing with equality instead is shown.

4.5 Other related work

Among other work related to type spaces, we’d like to mention some in particular.
Spyros Vassilakis, in (Vassilakis, 1991), identifies the final sequence method as the right one

to obtain a solution forX = ∆(S ×X) in the category of Compact Hausdorff spaces. He also
suggests further applications in (Vassilakis, 1990).

Brandenburger and Dekel in (Brandenburger and Dekel, 1993) propose a similar construction
to that of (Mertens and Zamir, 1984), and explore the relation of the concept of types with the
one of common knowledge.

Probabilistic logic applied to type spaces has been studied by Heifetz and Mongin in (Heifetz
and Mongin, 2001), and Meier in (Meier, 2001). Meier also explored the simpler case of type
spaces when the probabilities are given byfinitely additivemeasures in (Meier, 2002).

This being just a cursory overview of the literature on this topic, it shows the interest in the
problem, and also suggest directions for further development in both the applications and the
general theory of coalgebras presented in section2.
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Mertens J.F. and Zamir S. Formulation of Bayesian analysis for games of incomplete informa-
tion. International Journal of Game Theory, 14:1–29, 1984.
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