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Abstract. In this work a general multibody system theory is implemented within a bond graph 

modeling framework. In classical mechanics several procedures exist by which differential 

equations can be derived of a system of rigid bodies. In the case of large systems these 

procedures are labor-intensive and consequently error-prone, unless they are computerized. 

The bond graphs formalism allows for a unified modeling of multidisciplinary physical 

systems. It is well-suited for a modular modeling approach based on physical principles. The 

theory of multibody system dynamics in terms of bond graphs modeling is revisited with the 

purpose of designing a multibond graph library for such systems. Several mechanical systems 

undergoing large 3-dimensional rotations are numerically solved in order to validate this 

software library written in 20-sim software. 
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1 INTRODUCTION 

odeling and simulation has an increasing importance in the development of complex, 

large mechanical systems. In areas like road vehicles (Bos (1986); Filippini (2004); Filippini 

et al. (2007)), rail vehicles, high speed mechanisms, industrial robots and machine tools (Ersal 

(2004)), simulation is an inexpensive way to experiment with the system and to design an 

appropriate control system. 

The above indicated kind of mechanical systems belong to a broader class of rigid body 

systems frequently called multibody systems. They consist of a finite number of rigid bodies, 

interconnected by arbitrary joints. The latter may exhibit properties of rotational or 

translational degrees of freedom, also damping and compliance, and normally contain some 

sort of attachment for drives and external forces. 

In classical mechanics several procedures exist through which differential equations can be 

derived for a system of rigid bodies. In the case of large systems these procedures are labor-

intensive and consequently error-prone, unless they are computerized (Shabana; Geradin-

Cardona 2001).  

This work applies the multibody theory through the multibond or vector bond graph 

technique (Rosenberg; Bos (1986); Cellier; Ersal (2004)) with the purpose of designing a 

multibond graph library for such system. Primarily, bond graphs represent elementary energy-

related phenomena (generation, storage, dissipation, power exchange) using a small set of 

ideal elements that can be coupled together through external ports representing power flow. 

Thus, they are well-suited for a modular modeling approach based on physical principles. 

Hierarchical modeling becomes possible through coupling of component or subsystems 

models through their connecting ports. Besides these physical features capturing energy 

exchange phenomena, it is also possible to code on the graph the mathematical structure of the 

physical system, in the sense of showing the causal relationships (in a computational sense) 

among its signals. On the one side, this allows connecting BG-models to signal flow graphs or 

block diagrams, and -on the other side- it turns the algorithmic derivation of mathematical and 

computational models from BG into a highly formalized task (Rosenberg). The conjunction of 

all these features make of BG a physically based, object-oriented graphical language most 

suitable for dynamic modeling, analysis and simulation of complex engineering systems 

involving mixed physical and technical domains in their constitution (Cellier). 

2 MATHEMATICAL AND BG MODELING 

This section presents the multibond graph library and addresses the essential issues 

concerning the bond graph modeling of multibody systems as used in this work.  

2.1 Rigid Body 

To determine the spatial motion of the rigid body the well known Euler equations are used, 

which appear in (1) and (2) in both, their intrinsic way of representation and their tensorial 

counterparts.  

The first one represents the conservation of linear momentum, written as: 
 

M

2944



 

kjijk

rel

ii
i

rel

p
dt

dp

dt

dp
F

p
dt

pd

dt

pd
F

ωε

ω

+==

×+==∑
    (1) 

where pF ,,ω  represents the external forces, the angular velocity vector and the linear 

momentum vector respectively; d/dt, d/dt|rel, εijk represent the derivative respect to the inertial 

frame, the derivative respect to the body attached frame and the Levi-Civita tensor used to 

express the cross product in tensor notation. 

The second of the Euler equations sets up the conservation of angular momentum: 
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where M , h represent the external torque and the angular momentum vector. 

The bond graph representation of the 3-dimensional motion of a rigid body based on the 

Euler equations is shown in figure 1. Three power multibonds are attached to the upper 1-

junction representing the center-of-mass speed-vector v . The effort variable associated to the 

multibond pointing into the inertia I:m is the first term in the right-hand side of (1);  the effort 

of the multibond on the left is the second term of the right-hand side, while that of the 

multibond on the right is the term of the left-hand side. The latter represents the external 

forces acting on the center-of-mass point of the body and, thus, it is an input or external 

connection port of this module. An analog description can be given for the lower 1-junction 

concerning the rotational speed vector ω  and the torques in (2). Note the multisignal link 

from the lower 1-junction to the MGR-element, necessary to implement the modulation of the 

second term in the right-hand side of (1) by the speed ω . The components of the inertia 

matrix J  are the principal moments of inertia with respect to the principal axes of the rigid 

body. The lower part of Fig. 1 is the mask which will be used as a compact representation 

when connecting this model to others in the case of modeling a complex system. 
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Fig. 1: Bond Graphs representation of the spatial rigid body dynamics. 

 

2.2 Transformation of Translation 

The port variables of the above model are defined respect to the system attached to the 

center of mass of the rigid body. Referring these port variables to the coordinates of 

interconnection with other bodies allow to couple the whole model. Figure 2 shows the bond 

graph implementation of the equation system representing how the port variables of two 

arbitrary points 'A' and 'B' of a given spatial body transform each other. The equations relating 

the linear and rotational efforts are the following: 

 

kjijki rFM
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×=
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For the flow variables the equations are the following: 
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Fig. 2: Power variables transformation between two points ‘A’, ‘B’  belonging to a given 3-dimensional rigid 

body. 

 

2.3 Transformation of Rotation 

To transform the dynamic equations from those expressed in the body attached frame of 

reference (roll, pitch and yaw axes) to a spatially fixed frame of reference (X,Y,Z : inertial 

frame) it is necessary to choose some parameterization for the rotations. Among the multiple 

possibilities, Euler angles are used in this work. To transform these rotations the following 

equations are used:  

 

ωφω =′′   (5.a);   ωθω ′′=′  (5.b);   ωψϖ ′=G  (5.c) 

vv φ=′′  (5.d);   vv ′′=′ θ  (5.e);   vv G ′=ψ  (5.f) 

 

where, 
 

















−=

φφ

φφφ

cossin0

sincos0

001

 

















−

=

θθ

θθ

θ

cos0sin

010

sin0cos

 














 −

=

100

0cossin

0sincos

ψψ

ψψ

ψ

 
 

















=

z

y

x

ω

ω

ω

ω   

















′′

′′

′′

=′′

z

y

x

ω

ω

ω

ω   

















′

′

′

=′

z

y

x

ω

ω

ω

ω  

















=

Z

Y

X

G

ω

ω

ω

ω  

















=

z

y

x

v

v

v

v   

















′′

′′

′′

=′′

z

y

x

v

v

v

v   

















′

′

′

=′

z

y

x

v

v

v

v  

















=

Z

Y

X

G

v

v

v

v  

 

Its bond graphs representation is observed in figure 3, where the power variables are 

transformed from (x,y,z) axes to the rotated ones (X,Y,Z) according to the angles φ, θ, ψ  

respect to each axis. It may be observed that while the flow variables are rotated from (xyz) to 
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(XYZ), the effort variables are transformed back from (XYZ) to (xyz). 

 

 
Fig. 3: 3-dimensional rotation equations expressed in terms of power variables. 

2.4 Spherical Joint 

The Spherical Joint element is a joint that allows three main axis rotations between the 

joined bodies. It means, translation freedom is restricted on the three frame axes, meanwhile 

the rotation is not. 

The bond graph representation of the Spherical Joint is shown in figure 4. Se=0 is a null 

effort source that does not impose any torque at both joint ends. The J
v1 = J

v2  relationship is 

achieved through the use of C elements with specific parameters values, making the joint 

flexible instead of completely rigid. It is important to note that vectors 1v  and 2v , shown in 

Fig. 4, may not be equal; in fact these vectors represent the joint connected rigid body 

velocities respect to the self local frame. Vector projections 1v  and 2v  at joint reference 

frame, made by a modular transformation tool, allows the joint to calculate efforts at this 

frame system. At the same time, by the same transformation, the calculated efforts at joint 

reference frame may be projected to the local reference frame of each body. 

Modular transformation is obtained with the matrices shown in 2.3, which depend on the 

angles between each self body attached local frame to the local frame of the joint. For this 

kind of joint the following transformations are required:  
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Fig. 4:  Bond Graphs representation of the Spherical Joint. 

 

2.5 Revolute Joint  

The Revolute Joint element is a joint that allows turning the bodies joined between them. 

Therefore, three translations and two rotational degrees of freedom are constrained, leaving 

only one rotation degree of freedom free. 

The bond graph representation of the Revolute Joint is shown in figure 5. At the RJ 

(Revolute Joint) like as SJ (Spherical joint), constrains are controllable by the use of C 

elements. The Tk  parameter must be accurate enough to obtain approximately J
v1 = J

v2 . Fig. 5 

shows two C elements with parameters Ryk  and Rzk  that allow to obtain 
J

y1ω =
J

y2ω   and 

J

z1ω = J

z2ω , the same constraint for the rotational fixations. 

Therefore, this kind of joint has only one degree of freedom. The Se=0 null effort source 

does not impose any x-axis torque at both joint ends.   

Due to this joint condition, only one angle changes between those connected bodies, the 

modular transformation associated may be solved with only one of the matrices in 2.3 i.e. if 

rotation axis is x (as in this case), then only matrix φ  (defined above) has to be used.  
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Fig. 5: Bond Graphs representation of the Revolute Joint. 

 

 

2.6 Prismatic Joint 

  

The Prismatic Joint (PJ) is a joint that allow only a straight displacement between its joined 

bodies, fixing the remaining two translational and the whole three rotational degrees of 

freedom. Therefore, only one generalized coordinate is free to change. 

Figure 6 shows the bond graph implementation of the Prismatic Joint. Here, as the 

previously analyzed SJ and RJ joints, constrains are implemented with the usage of C 

elements with some parameters to be tuned in order to get J

1ω = J

2ω , J

xv1 = J

xv2  y J

zv1 = J

zv2  for 

this special case. Then, for this kind of joint, only a displacement on the local y-axis direction 

between 1 and 2 extremes is allowed. The effort source Se=0 is introduced for this purpose, 

with a null force on the y-axis and both joint ends. 

The transformation shown in Fig. 6 is similar to that presented above, in section 2.2, with 

the only difference that now, it is modulated, with the modulation factor (in this case ry) that 

depends on the relative position between the joint extremes. 
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Fig. 6: Bond Graphs representation of the Prismatic Joint. 

 

3 EXAMPLES AND SIMULATION RESULTS 

In the following, three examples are presented involving mechanisms with three 

dimensional movements and different types of joints, modeled with the elements described in 

Section 2. The simulation model was developed in 20-Sim, and was validated against 

solutions obtained with the module Mecano of Samcef. 

3.1 Example 1 

Figure 7 show the physical description of first example and figure 8 the bond graph 

implementation of this example, which is built via assembling the previous submodels, pretty 

much in the same way as a real mechanism is constructed. This is due to the powerful 

graphical, modular and primarily acausal nature of bond graphs.  

In order to model a mechanism, motion parts, mass properties, joints, geometrical 

properties and loads are created. The components for this example are two rigid bodies, a 

revolute joint J1 and a spherical joint J2. These components are parameterized with the 

following data: m1 = 1Kg is the mass of the rigid body m1; Ixx = Iyy = Izz = 4.167e-4 Kgm² are 

the principal moment of inertia of m1; F1 = -9.8 N is the weight of m1; w = 0.5 rad/s is a speed 

of rotation imposed to (J1); a = 0.3 m and b = 0.1 m are distances shown in figure 8. 
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Fig. 7: Physic description of Example 1. 

 

 
Fig. 8: Bond Graphs model of the example 1. 

 

Figures 9, 10 and 11 show the rigid body m1 g.c. position on axis X, Y, Z respectively vs. 

time. The results obtained from 20-Sim (blue) and Samcef (green) agree very well with no 

significant difference to be discussed. 

 

 
Fig. 9: Displacement global X-axis   
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Fig. 10: Displacement global Y-axis   

 

 
Fig. 11: Displacement global Z-axis   

 

3.2 Example 2 

Figure 12 show the physical description of the second example and figure 13 the bond 

graph implementation of this example. It is similar to example 1 but the spherical joint is 

replaced by a revolute joint (J2) and is imposed a moment to J1.  

The components are parameterized with the following data: m1 = 1Kg is the mass of the 

rigid body m; Ixx = Iyy = Izz = 4.167e-4 Kgm² are the principal moment of inertia of m; F = -9.8 

N is the weight of m; M = 0.1 Nm is a moment imposed to J1; a = 0.3m and b = 0.1m are 

distances shown in figure 12. 
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Fig. 12: Physic description of Example 2. 

 

 

 
 

Fig. 13: Bond Graphs model of the example 2. 

 

 Figures 14, 15 and 16 show the rigid body m g.c. position on axis X, Y, Z respectively vs. 

time. The results obtained from 20-Sim (blue) and Samcef (green) agree very well with no 

significant difference to be discussed. 
 

 
Fig. 14: Displacement global X-axis 
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Fig. 15: Displacement global Y-axis 

 

 
Fig. 16: Displacement global Z-axis  

3.3 Example 3 

Figure 17 shows the physical description of the third example and figure 18 the bond graph 

implementation of this example. It is similar to example 2 and it includes another rigid body, a 

prismatic joint (J3) and a spring in the degree of freedom of this joint.  

The components are parameterized with the following data: m1 = m2 = 1Kg are the mass of 

the rigid body m1 and m2; Ixx = Iyy = Izz = 4.167e-4 Kgm² are the principal moment of inertia 

of m1 and m2; F1 = F2 = -9.8N are the weight of m1 and m2; M = 0.1 Nm is a moment imposed 

to (J1); K = 500N/m is spring stiffness; a = 0.3m,  b = 0.1m and c0 = 0.15m are distances 

shown in figure 17. 
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Fig. 17: Physic description of Example 3. 

 

 

 
 

Fig. 18: Bond Graphs model of the Example 3. 
 

 Figures 19, 20 and 21 show again the rigid body m2 g.c. position on axis X, Y, Z 

respectively vs. time. The results obtained from 20-Sim (blue) and Samcef (green) agree quite 

well, with some minor difference during the last part of the simulation that may be justified 

due to the difference between both time integrators. 
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Fig. 19: Displacement global X-axis   

 

 

 
Fig. 20: Displacement global Y-axis   

 

 
Fig. 21: Displacement global Z-axis   
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4 CONCLUSIONS 

The main goal of this paper was the development of a multibond graph library for 

multibody systems focusing on an accurate representation of 3D large rotations. Several 

elements oriented to multibody systems were developed allowing to work with different 

reference frames, operating with them through the usage of translations and general 

transformations. 

The graphical and primarily acausal nature of bond graphs allowed to develop a modular, 

hierarchical, object-oriented modeling tool for multibody systems which is well suited to the 

needs of practising engineers. Indeed, provided that the models of the system components 

exist in the library (being open it can be always extended to satisfy this requirement), all the 

modeler needs to do is to parameterize these submodels according to the physical and 

geometrical properties of each of the components and then assembly them according to the 

system configuration (given by the interconnection structure). 

This library is currently being validated comparing its results against some equivalent 

solutions coming from other commercial software, in this case using Samcef. To start this 

validation, three examples were presented in this paper. 

Some modules of this toolbox have been successfully used in vehicle modeling in order to 

predict dynamic behavior (Filippini (2004), Filippini et al. (2007)) and also were effectively 

applied to another project concerning vehicle fault diagnosis (Delarmelina et al. (2005)). 
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