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Abstract. An important upscaling effect in heterogeneous poroelastic Biot media is the dissipation
mechanism due to wave-induced fluid flow caused by mesoscopic scale heterogeneities, which are larger
than the pore size but much smaller than the average wavelengths of the fast waves in the seismic range of
frequencies. To perform numerical simulations using Biot’s equations of motion, it would be necessary
to employ extremely fine meshes to properly represent these mesoscopic heterogeneities. An alternative
approach to model this type of Biot medium is to determine effective complex moduli defining locally
a viscoelastic medium having in the average the same properties than the original medium. This work
presents a finite element procedure combined with a Montecarlo approach to estimate the effective phase
velocity and mesoscopic attenuation in highly heterogeneous porous rocks. The method involves the use
of stochastic fractals to generate different stochastic parameter patterns within the porous sample. For
each realization of the stochastic parameters, a local boundary value problem is solved on a representa-
tive volume of bulk material. Numerical experiments showing the implementation of the procedure are
presented.
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1 INTRODUCTION

One important cause of attenuation at seismic frequencies in fluid-saturated porous media
is the mesoscopic loss mechanism, caused by heterogeneities in the rock and fluid properties
which are small compared with the wavelengths of the fast compressional and shear waves
but larger than the average pore size. These heterogeneities can be due to local variations in
lithological properties or to patches of immiscible fluids. For example, a fast compressional
wave traveling across a porous rock saturated with water and patches of gas induces a greater
fluid pressure in the gas patches than in the water saturated parts of the material. This in turn
generates fluid flow and slow Biot waves which diffuse away from the gas-water interfaces
generating significant losses in the seismic range of frequencies.

Using Biot’s theory, (Biot, 1956a), (Biot, 1956b), White (White et al., 1975) developed a the-
ory predicting that a fast P-wave traveling through thin layers alternatively saturated by either
gas or water can suffer strong attenuation. Numerical simulations confirming this prediction
was presented in (Rubino, J. G. et al., 2007) using finite element methods to solve Biot’s equa-
tions of motion in the seismic range of frequencies. Also, numerical simulations to analyze
attenuation effects in an homogeneous sandstone saturated with brine and spherical gas pockets
at laboratory frequencies were presented in (Carcione et al., 2003) and (Helle et al., 2003).

The main disadvantage of using numerical simulations to represent these attenuation mech-
anisms is that extremely fine meshes are needed to represent the mesoscopic scale hetero-
geneities.

An alternative approach to model these type of Biot media is to determine effective complex
P-wave and shear moduli defining locally a viscoelastic medium having in the average the same
properties than the original Biot medium.

In this work the complex P-wave and shear moduli in heterogeneous fluid-saturated porous
media are obtained using gedanken experiments in a Montecarlo fashion. The experiments are
defined as local boundary value problems on a reference representative volume of bulk material
containing stochastic heterogeneities characterized by their statistical properties.

These boundary value problems represent compressibility and shear tests needed to deter-
mine these moduli for a given realization. The moments of the phase velocities and quality fac-
tors associated with these moduli were obtained by averaging over realizations of the stochastic
parameters. The Montecarlo realizations were stopped when the variance of the computed
quantities stabilized at a constant value.

The approximate solution of the local boundary value problems was obtained using a finite
element procedure, employing standard bilinear finite element spaces for the solid phase and
the vector part of the Raviart-Thomas-Nedelec mixed finite element space of order zero for
the fluid phase ( Raviart and Thomas, 1975; Nedelec, 1980). The procedure was validated by
reproducing known solutions in the case of periodic layered media.

Numerical experiments showing the implementation of the procedure to estimate the average
and variance of the phase velocities and inverse of the quality factors associated with the P-wave
and shear moduli in fluid-saturated porous sandstones are presented.

2 REVIEW OF BIOT THEORY

Consider a porous solid saturated by a single phase, compressible viscous fluid and assume
that the whole aggregate is isotropic. Let us = (us

i ) and ũf = (ũf
i ), i = 1, · · · , d denote the

averaged displacement vectors of the solid and fluid phases, respectively, where d denotes the
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Euclidean dimension. Also let

uf = φ(ũf − us), ξ = −∇ · uf ,

where φ denotes the effective porosity and set u = (us, uf).
Let εij(u

s) be the strain tensor of the solid. Also, let σij(u), i, j = 1, · · · , d, and pf (u)
denote the stress tensor of the bulk material and the fluid pressure, respectively. Following
(Biot, 1962), the stress-strain relations can be written in the form:

σij(u) = 2µ εij(u
s) + δij(λc ∇ · us − α Kav ξ), (1a)

pf(u) = −α Kav ∇ · us +Kavξ. (1b)

The coefficient µ is equal to the shear modulus of the bulk material, considered to be equal to
the shear modulus of the dry matrix. Also,

λc = Kc −
2

d
µ,

withKc being the bulk modulus of the saturated material. Following (Rubino, J. G. et al., 2007;
Gassmann, 1951) the coefficients in (1) can be obtained from the relations

α = 1 −
Km

Ks
, Kav =

(

α− φ

Ks
+

φ

Kf

)

−1

Kc = Km + α2Kav,

where Ks, Km and Kf denote the bulk modulus of the solid grains composing the solid matrix,
the dry matrix and the saturant fluid, respectively.

Let ρs and ρf denote the mass densities of the solid grains and the fluid and let

ρb = (1 − φ)ρs + φρf

denote the mass density of the bulk material. Let the positive definite matrix P and the nonneg-
ative matrix B be defined by

P =

(

ρbI ρfI
ρfI gI

)

, B =

(

0I 0I
0I bI

)

.

Here I denotes the identity matrix in Rd×d. The mass coupling coefficient g represents the
inertial effects associated with dynamic interactions between the solid and fluid phases, while
the coefficient b includes the viscous coupling effects between such phases. They are given by
the relations

b =
η

k
, g =

Sρf

φ
, S =

1

2

(

1 +
1

φ

)

, (2)

where η is the fluid viscosity and k the absolute permeability. S is known as the structure or
tortuosity factor.

Next, let L(u) be the second order differential operator defined by

L(u) = (∇ · σ(u),−∇pf(u))
t .
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Then if ω = 2πf is the angular frequency, in the absence of body forces, the equations of
motion can be written in the form (Biot, 1956a,b):

− ω2Pu(x, ω) + iωBu(x, ω) − L(u(x, ω)) = 0. (3)

It was shown in (Biot, 1956a,b) that in this type of media two compressional waves, denoted
here as P1 and P2, and one shear or S wave can propagate. The P1 and S waves correspond
to the classical compressional and shear waves propagating in elastic or viscoelastic isotropic
solids. The additional P2 slow mode is a wave strongly attenuated in the low frequency range,
associated with the motion out of phase of the solid and fluid phases.

3 THE COMPRESSIBILITY AND SHEAR EXPERIMENTS

Field measurements show that permeability values in reservoir rocks have a high degree of
spatial variability and exhibit long range correlations. It is also the case that in hydrocarbon
reservoirs, regions of non-uniform patchy saturation occur at gas-oil and gas-water contacts.
These type of heterogeneities can be represented using stochastic fractals.

These are two examples of highly heterogeneous saturated porous media where the sizes
of the heterogeneities are small as compared with the wavelengths of the fast compressional
and shear waves in the seismic range of frequencies. Consequently, solving Biot’s equations
of motion in these type of media can be computationally very expensive or even not feasible
due to the extremely fine meshes that would be needed to define the local (mesoscopic scale)
heterogeneities.

The objective of this work is to define an upscaling numerical procedure to determine in a
statistical framework the complex plane wave and shear moduli associated with a representative
sample of our heterogeneous material. This procedure will allow in turn to define an equivalent
viscoelastic solid where its complex moduli carry over to the macroscale the effects due to the
mesoscopic scale heterogeneities.

For that purpose, the space-frequency formulation of Biot’s equations of motion combined
with a Montecarlo approach is particularly convenient, since it can handle complex geometries
and deal with extremely large variability in stochastic parameters. The proposed algorithm is
described as follows.

Equation (3) will be solved in the 2D case on a reference square Ω = (0, L)2 with boundary
Γ in the (x, y)-plane containing a representative set of stochastic heterogeneities with a given
distribution and size. Thus, in a Montecarlo fashion (3) will be solved for a finite number
of frequencies in the seismic range and for a large number of realizations of the stochastic
parameters, with boundary conditions representing compressibility and shear experiments that
after averaging over realizations will yield the moments (average and variance in this case) of
the phase velocities and inverse of quality factors of our heterogeneous material. To stop the
Montecarlo procedure, a criteria based on the stabilization of the variance of those quantities
was employed.

Set Γ = ΓL ∪ ΓB ∪ ΓR ∪ ΓT , where

ΓL = {(x, y) ∈ Γ : x = 0}, ΓR = {(x, y) ∈ Γ : x = L},

ΓB = {(x, y) ∈ Γ : y = 0}, ΓT = {(x, y) ∈ Γ : y = L}.

Denote by ν the unit outer normal on Γ and let χ be a unit tangent on Γ so that {ν, χ} is an
orthonormal system on Γ.
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For obtaining the undrained complex plane wave modulus of our fluid-saturated porous
medium, let us consider the solution of (3) with the following boundary conditions

σ(u)ν · ν = −∆p, (x, y) ∈ ΓT , (4)

σ(u)ν · χ = 0, (x, y) ∈ ΓT , (5)

σ(u)ν · χ = 0, (x, y) ∈ ΓL ∪ ΓR, (6)

us · ν = 0, (x, y) ∈ ΓL ∪ ΓR, (7)

us = 0, (x, y) ∈ ΓB, (8)

uf · ν = 0, (x, y) ∈ Γ. (9)

For this set of boundary conditions the solid is not allowed to move on the bottom boundary
ΓB, the fluid is not allowed to flow out of the sample, a uniform compression is applied on the
boundary ΓT and no tangential external forces are applied on the boundaries ΓL ∪ ΓR ∪ ΓT .
In the case of periodic layered media, this experiment mimics exactly the one described by
White et al. (1975) for a periodic sample obtained by a mirror reflection with respect to the x-
axis of the domain Ω, enclosing the periodic sample in a thin impermeable jacket and applying
a uniform compression on the boundary ΓT and its corresponding image boundary after the
indicated reflection.

The effective undrained complex plane wave modulus Mc(ω) is recovered by measuring
the vertical displacement us

y(x, L) on the boundary ΓT and using this value to compute the
volume change associated with this compressibility experiment. The corresponding complex

compressional velocity is Vpc(ω) =
√

Mc(ω)
ρb

. The following relations allow us to estimate the

effective compressional phase velocity Vp(ω) and quality factor Qp(ω) in the form:

Vp(ω) =

[

Re

(

1

Vpc(ω)

)]

−1
1

Qp(ω)
=

Im(Vpc(ω)2)

Re(Vpc(ω)2)
(10)

For obtaining the effective complex shear modulus of our fluid-saturated porous medium, let us
consider the solution of (3) with the following boundary conditions

−σ(u)ν = g, (x, y) ∈ ΓT ∪ ΓL>ΓR, (11)

us = 0, (x, y) ∈ ΓB, (12)

uf · ν = 0, (x, y) ∈ Γ, (13)

where

g =











(0,∆p), (x, y) ∈ ΓL,

(0,−∆p), (x, y) ∈ ΓR,

(−∆p, 0), (x, y) ∈ ΓT .

The effective complex shear modulus µ(ω) is recovered by measuring the horizontal displace-

ment us
x(x, L) at the top boundary ΓT ; the complex shear velocity is Vsc(ω) =

√

µ(ω)
ρb

. The
corresponding shear phase velocity and quality factor are obtained as in (10).

It can be shown that for ω small uniqueness holds for the two boundary value problems
defined above. The proof will appear elsewhere.
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4 A VARIATIONAL FORMULATION

In order to state a variational formulation for (3) and either (4)-(9) or (11)-(13) we need
to introduce some notation. For X ⊂ R

d with boundary ∂X , let (·, ·)X and 〈·, ·〉∂X denote
the complex L2(X) and L2(∂X) inner products for scalar, vector, or matrix valued functions.
Also, for s ∈ R, ‖ · ‖s,X and | · |s,X will denote the usual norm and seminorm for the Sobolev
space Hs(X). In addition, if X = Ω or X = Γ, the subscript X may be omitted such that
(·, ·) = (·, ·)Ω or 〈·, ·〉 = 〈·, ·〉Γ. Also, let us introduce the spaces

H1,P
0,B (Ω) = {v ∈ (H1(Ω))2 : v · ν = 0, on ΓL ∪ ΓR, v = 0 on ΓB},

H1,T
0,B(Ω) = {v ∈ (H1(Ω))2 : v = 0 on ΓB},

H0(div; Ω) = {v ∈ [L2(Ω)]2 : ∇ · v ∈ L2(Ω), v · ν = 0, on Γ}.

The spaces H1,P
0,B and H1,T

0,B are closed subspaces of H1(Ω). Also, the norm in H0(div; Ω) is
given by

‖v‖H(div;Ω) =
[

‖v‖2
0 + ‖∇ · v‖2

0

]1/2
.

Let us introduce the spaces

V(P ) =
[

H1,P
0,B (Ω)

]2

×H0(div; Ω), V (T ) =
[

H1,T
0,B(Ω)

]2

×H0(div; Ω).

Then multiply equation (3) by v =
(

vs, vf
)t

∈ V(P ), use integration by parts and apply the
boundary conditions (5), (6) and (9) to see that the solution u(P ) = (u(s,P ), u(f,P )) ∈ V (P ) of (3)
and (4)-(9) satisfies the weak form:

Λ(u(P ), v) = 〈∆p, vs · ν〉ΓT , ∀v =
(

vs, vf
)t

∈ V(P ), (14)

where for u = (us, uf), v = (vs, vf) ∈ [H1(Ω)]2 × H(div; Ω), the bilinear form Λ(u, v) is
defined by

Λ(u, v) = −ω2 (Pu, v) + iω (Bu, v) +
∑

l,m

(τlm(u), εlm(vs)) −
(

pf (u),∇ · vf)
)

.

Similarly, the solution u(T ) = (u(s,T ), u(f,T )) ∈ V (T ) of (3) and (11)-(13) satisfies the weak
form:

Λ(u(T ), v) = 〈g, vs〉ΓT , ∀v =
(

vs, vf
)t

∈ V(S). (15)

Uniqueness of the solution of the boundary value problem (3) and either (4)-(9) or (11)-(13)
and its variational formulations (14) or (15) can be demonstrated for ω sufficiently small using
Poincare’s inequality. Existence will be assumed.

5 THE FINITE ELEMENT PROCEDURES

Let T h(Ω) be a non-overlapping partition of Ω into rectangles Ωj of diameter bounded by h
such that Ω = ∪J

j=1Ωj . Different finite element spaces, denoted Nh,P
0,B ⊂ H1,P

0,B (Ω) and N h,T
0,B ⊂

H1,T
0,B(Ω) will be used to approximate the solid displacement vector for the compressibility and

shear tests models, respectively. They are defined as follows

N h,P
0,B = {v : v|Ωj

∈ P1,1 × P1,1, v · ν = 0, on ΓL ∪ ΓR, v = 0 on ΓB} ∩ [C0(Ω)]2

N h,T
0,B = {v : v|Ωj

∈ P1,1 × P1,1, v = 0 on ΓB} ∩ [C0(Ω)]2,
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where P1,1 denotes the polynomials of degree not greater than 1 on each variable.
To approximate the fluid displacement a closed subspace of the vector part of the Raviart-

Thomas-Nedelec space of zero order, denoted Wh
0 , was employed (Raviart and Thomas, 1975),

(Nedelec, 1980). It is defined as

Wh
0 = {v : v|Ωj

∈ P1,0 × P0,1, v · ν = 0, on Γ}.

Let

Π
(P )
h :

[

H2(Ω) ∩H1,P
0,B (Ω)

]2

→ N h,P
0,B , Π

(T )
h :

[

H2(Ω) ∩H1,T
0,B(Ω)

]2

→ N h,T
0,B

be the projections defined locally such that Π
(P )
h |Ωj

= Π
(P )
h,j , Π

(T )
h |Ωj = Π

(T )
h,j , where

(Π
(P )
h,j ϕ− ϕ, v) = 0, v ∈ P1,1 × P1,1, v · ν = 0, on ΓL ∪ ΓR, v = 0 on ΓB,

(Π
(T )
h,j ϕ− ϕ, v) = 0, v ∈ P1,1 × P1,1, v = 0 on ΓB.

Also, let

Qh : H1
0 (div; Ω) → Wh

0

be the projection defined by

〈(Qhψ − ψ) · ν, 1〉B = 0, B = ∂Ωj ∩ ∂Ωk orB = ∂Ωj ∩ ∂Ω.

It is well known that, for all ϕ ∈ [H2(Ω) ∩ H1,P
0,B (Ω)]2, ψ ∈ [H2(Ω) ∩ H1,T

0,B(Ω)]2 and
η ∈ H1

0 (div; Ω) (Ciarlet, 1980; Nedelec, 1980; Raviart and Thomas, 1975)

‖ϕ− Π
(P )
h ϕ‖0 + h‖ϕ− Π

(P )
h ϕ‖1 ≤ Ch2‖ϕ‖2, (16a)

‖ψ − Π
(T )
h ψ‖0 + h‖ψ − Π

(T )
h ψ‖1 ≤ Ch2‖ψ‖2, (16b)

‖η −Qhη‖0 ≤ Ch‖η‖1, (16c)

‖η −Qhη‖H(div;Ω) ≤ Ch (‖η‖1 + ‖∇ · η‖1) . (16d)

Let us define the finite element spaces

V(h,P ) = N h,P
0,B ×Wh, V(h,T ) = N h,T

0,B ×Wh.

Then the finite element procedure to compute the approximate solution of the compression
problem (14) is defined as follows: find u(h,P ) =

(

u(s,h,P ), u(f,h,P )
)t

∈ Vh,P such that

Λ(u(h,P ), v) = 〈∆p, vs · ν〉ΓT , v =
(

vs, vf
)t

∈ V(h,P ). (17)

Similarly, the finite element procedure to compute the approximate solution of the shear
problem (15) is: find u(h,T ) =

(

u(s,h,T ), u(f,h,T )
)t

∈ V(h,T ) such that

Λ(u(h,T ), v) = 〈g, vs〉ΓT , v =
(

vs, vf
)t

∈ V(h,T ). (18)

Since u(h,P ) ∈ H1,P
0,B , u

(h,T ) ∈ H1,T
0,B , uniqueness for the discrete problems (17) and (18)

follows with the same argument than for the continuous case provided the frequency ω is small.
Existence follows from finite dimensionality.

The following a priori error estimates can be derived.
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Theorem 5.1 For ω small, the solutions u(h,P ), u(h,T ) of problems (17) and (18) satisfy the
following a priori error estimates

‖u(s,h,P ) − u(s,P )‖1 + ‖u(f,h,P ) − u(f,P )‖0 + ‖∇ ·
(

u(f,h,P ) − u(s,P )
)

‖0 (19)

≤ C11(ω)h
(

‖u(s,P )‖2 + ‖u(f,P )‖1 + ‖∇ · u(f,P )‖1

)

,

‖u(s,h,T ) − u(s,T )‖1 + ‖u(f,h,T ) − u(f,T )‖0 + ‖∇ ·
(

u(f,h,T ) − u(s,T )
)

‖0 (20)

≤ C11(ω)h
(

‖u(s,T )‖2 + ‖u(f,T )‖1 + ‖∇ · u(f,T )‖1

)

.

6 A MONTECARLO APPROACH FOR STOCHASTIC FRACTAL PARAMETER DIS-
TRIBUTIONS

For the compressibility test, let us consider a porous sample with a spatially variable gas
- water distribution in the form of irregular patches fully saturated with gas and zones fully
saturated with water. No mixing nor capillary forces are taken into account and the two fluids
are assumed to occupy different mesoscopic regions of the model.

The generation of these kind of heterogeneities involves the use of a stochastic fractal field,
based on the so-called von Karman self-similar correlation functions. These models are widely
used in the statistical characterization of heterogeneities for different applications.

Following (Frankel and Clayton, 1986) and more recently (Santos, J. E. et al., 2005), we
consider a particular case for which the spectral density of the stochastic field is given by:

Sd(qx, qy) = S0(1 + q2a2)−(H+E/2) (21)

where q =
√

q2
x + q2

y is the radial wavenumber, a the correlation length, H is a self-similarity
coefficient (0 < H < 1), S0 is a normalization constant and E is the Euclidean dimension.
Equation (21) corresponds to a fractal process of dimension D = E + 1 −H at scales smaller
than a.

The first step to generate a patchy fluid distribution is to assign to each subdomain Ωj of the
partition T h a pseudo-random number using a generator with uniform distribution associated
with a given seed number giving a realization n. This random field is Fourier transformed
to the spatial wavenumber domain and its amplitude spectrum is filtered using equation (21).
The result is then transformed back to the spatial domain, obtaining a micro-heterogeneous
gas saturation model S(j)

g , j = 1, · · · , J . Next, to construct the patchy distribution, i.e. the
mesoscopic heterogeneities, we established different water saturation threshold values S∗

w so
that for each subdomain Ωj where S(j)

g ≤ S∗

w we changed the value to 100% gas saturation (i.e.
0% water saturation) and for S(m)

g > S∗

w we consider 0% gas saturation. In this way for a given
realization and a fixed value of S∗w, an overall gas saturation S̄g is obtained for the computational
rock sample.

For a given realization n of patchy distribution with associated overall gas saturation S̄g, the
numerical problem (3) with boundary conditions (4) - (9) was solved for a finite number of
frequencies ωm, m = 1, · · · , NF in the seismic range, from where the values of V n

p (ωm) and
1/Qn

p(ωm) are obtained.
This procedure was repeated for a large number of realizations n = 1, · · · , NR, and the

statistical behavior of V n
p (ωm) and 1/Qn

p(ωm) after NR realizations was analyzed by computing
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the mean and variance of these quantities in the form:

〈Vp(ωm, NR)〉 =
1

NR

NR
∑

n=1

V n
p (ωm), (22)

σ2
Vp

(ωm, NR) =
1

(NR − 1)

NR
∑

n=1

[

V n
p (ωm) − 〈Vp(ωm, NR)〉

]2
. (23)

The corresponding standard deviation is
√

σ2
Vp

(ωm, NR). Analogous definitions were used

to obtain the statistics associated with the inverse of the quality factor Qp(ω).
For the shear test, we choose to perform the numerical experiments on a porous sample with

heterogeneities in the petrophysical properties and an uniform water distribution. The hetero-
geneous porous matrix is composed of two materials with fractal distribution, a sandstone and
a shaley sandstone. Even for the case of pure shear, the presence of this type of heterogeneities
can produce fluid pressure gradients causing mesoscopic loss effects.

To analyze the convergence of the Montecarlo approach in terms of the number of realiza-
tions NR, the frequency average of the variances was computed by

‖ σ2
l (NR) ‖=

[

1

NF

NF
∑

m=1

σ2
l (ωm, NR)

]1/2

, l = Vp, Vs, Qp, Qs. (24)

The Montecarlo simulations were stopped when the variance (24) of the computed quantities
stabilized at a constant value.

7 NUMERICAL EXPERIMENTS

The finite element procedures (17) and (18) were implemented to obtain the (effective) com-
plex frequency dependent plane wave and shear moduli for sandstones saturated with an irreg-
ular patchy distribution of gas and water. For the compressibility tests, the following material
properties (taken from Carcione J.M. and Picotti S. (2006)) were used: absolute porosity φ =
0.3, matrix permeability κ = 10−12 m2, mineral bulk modulus Ks = 37 GPa, dry matrix bulk
modulus Km = 4.8 GPa and shear moduli µ = 4.8 GPa, water bulk modulus Kw = 2.25 GPa,
water viscosity ηw = 0.03 Poise, gas bulk modulus Kg = 0.012 GPa and gas viscosity ηg =
0.0015 Poise.

First, to validate the code, Figure 1 displays the results of the compressibility model to obtain
the P-wave phase velocities and inverse of quality factors for the case in which the sample is a
periodic medium consisting of alternating layers of equal thickness 40 cm saturated with either
gas or water (i.e. S̄g = 0.5). As can be observed in Figures 1a and 1b, the computed values are
in excellent agreement with those predicted by White’s theory (White et al., 1975).

To validate the code for the case of the shear test, it was checked that for uniform either gas
or water saturation, the code yields the real shear modulus at the zero limit frequency.

The next set of experiments shows the results of the Montecarlo procedure for the compress-
ibility tests in the case of patchy saturation. The computational domain Ω was chosen to be
a square of size L = 70 cm with a uniform partition T h of Ω into squares Ωj of side length
h = L/75. The parameters needed in (21) to generate the patchy gas-water distributions were
E = 2, a = 10cm, D = 2.2. For each realization, the water threshold value S∗

w was adjusted
to obtain an overall gas saturation S̄g = 0.1. The excitation frequency was varied from 0 to
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(b)

Figure 1: Comparison between the compressional velocity (a), and the inverse quality factor (b) obtained using
White’s model and the numerical compressibility test.
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Figure 2: Example of patchy fluid distribution. The black zones correspond to 100 % gas saturation and the white
zones to 100 % water saturation in the pores. Overall gas saturation S̄g = 0.1

60 Hz using NF =15 equally spaced values. Other types of heterogeneities, such as fractal
porosity-permeability distributions may be analyzed (Santos, J. E. et al., 2005), but they are not
considered here for brevity.

Once the solution u(h,P ) of (14) is obtained, the undrained complex plane wave modulus
Mc(ω) is easily obtained as indicated in Section 3, and the corresponding phase velocities and
quality factors are obtained as in (10).

Figure 2 illustrate a realization of the patchy gas-water distribution, where the black zones
correspond to 100 % gas saturation and the white zones to 100 % water saturation in the pores.
Figure 3 shows the mean compressional velocity versus frequency after 70 realizations and the
corresponding standard deviations (which are indicated using dotted lines), where the important
velocity dispersion with frequency within the seismic range can be observed.

Next in Figure 4 we illustrate the behavior of the mean inverse compresional quality factor
versus frequency (after the 70 realizations) and their corresponding standard deviations, indi-
cated again using dotted lines. Note the noticeable very low values of Qp with a peak of 1

Qp
near

20 Hz, demonstrating clearly the mesoscopic loss mechanism. Also, in the low frequency limit
we observe that the attenuation varies almost linearly with frequency.

Figures 5 and 6 display the variance of the compressional velocities and inverse quality fac-
tors averaged in the whole range of frequencies for different values of NR (computed according
to (24)). In both cases it is interesting to observe the stabilization and the low values of these
statistical properties, which suggests that for a given S̄g the averaged effective velocities and
inverse quality factors obtained give representative values for the chosen overall saturation S̄g.
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Figure 3: Mean of the compressional phase velocity vs. frequency (solid lines). Dotted lines indicate the corre-
sponding standard deviations. Overall gas saturation S̄g = 0.1
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Figure 4: Mean of the compressional inverse quality factor vs. frequency (solid lines). Dotted lines indicate the
corresponding standard deviations. Overall gas saturation S̄g = 0.1
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Figure 5: Averaged variance of the compressional velocity for S̄g = 0.1 as a function of the total number of
realizations.

The same behavior is observed for the other overall saturations but for brevity they are not
shown in this work. As expected, when the shear test was performed for the patchy saturation
case, very small values of velocity dispersion and attenuation were obtained.

Instead, as indicated above, the shear test was applied to a water saturated heterogeneous
porous matrix composed of two different materials with fractal distribution, a sandstone and
a shaley sandstone, with fractal parameters E = 2, D = 2.2, a = 30 cm. The sandstone has
porosity φ = 0.4, mineral bulk modulus Ks = 39 GPa, dry matrix bulk modulus Km = 3.9
GPa and shear moduli µ = 3.9 GPa, while the shaley sandstone, of porosity φ = 0.2, has
mineral bulk modulus Ks = 34.25 GPa, dry matrix bulk modulus Km = 16.1 GPa and shear
moduli µ = 12.5 GPa. These values for the properties of the two materials were obtained using
the model in Goldberg, I. and Gurevich, B. (1997). The water properties were the same used
above for the compressibility test. The permeability for both materials was determined using
the Kozeny-Carman relation (Mavko et al., 1998) for an average grain size. The domain and
mesh sizes were the same as in the compressibility test.

Figure 7 shows a realization of the heterogeneous shaley sandstone used to perform the shear
test, where the black zones correspond to 100 % sandstone and the white zones to 100 % sha-
ley sandstone. The following picture (Figure 8) displays the computed shear phase velocity
versus frequency, which shows very little dispersion. The corresponding inverse of the quality
factor is plotted in Figure 9, which shows a peak at approximately 15 Hz. For this example,
the mesoscopic loss mechanism is less noticeable than in the case of the compressibility test
and patchy fluid distribution. The corresponding statistical analysis was performed showing the
stabilization of the variance as in the previous example and it is not shown here for brevity. Fur-
ther research to determine higher attenuation effects for shear waves in heterogeneous porous
materials is currently being performed.

8 CONCLUSIONS

In this paper a finite element procedure to estimate the effective phase velocity and meso-
scopic attenuation in highly heterogeneous saturated porous rocks is presented.

The methodology is based on the finite element solution of the classical Biot equations to
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Figure 6: Averaged variance of the compressional inverse quality factor for S̄g = 0.1 as a function of the total
number of realizations.
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Figure 7: Example of an heterogeneous lithologic distribution. The black zones correspond to 100 % sandstone
and the white zones to 100 % shaley sandstone.
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Figure 8: Shear phase velocity Vs vs. frequency.
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Figure 9: Inverse of the quality factor Qs vs. frequency.
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simulate oscillatory compressibility and shear tests, combined with a Montecarlo approach to
obtain the complex effective plane wave and shear modulus for different heterogeneity patterns.
Unlike the theoretical White’s theory (White et al. (1975)) valid only for periodic layered media,
our method allows to simulate any distribution of heterogeneities within the domain.

In the case of patchy saturation, our results indicate that in the frequency range analyzed, the
presence of small patches of gas (i.e., low overall gas saturation values S̄g) cause strong dis-
persion and attenuation effects. In particular, the very low values of the quality factors confirm
the importance of the mesoscopic loss mechanism in the presence of irregular heterogeneities,
which may result in strong amplitude decays of a seismic signal traveling through a reservoir
rock. Since this mechanism is negligible for the case of homogeneous fluid distributions, a
careful analysis of seismic amplitudes and velocities may help to understand and discriminate
the saturation type (homogeneous or heterogeneous) and the overall fluid content.

In the case of an heterogeneous porous matrix composed of two types of lithology with
fractal distribution and uniform fluid saturation, the effective shear phase velocities show little
dispersion and the values of the quality factors are not so significant as in the compressibility
experiment. We noticed that in this type of materials the mesoscopic loss mechanism is very
sensitive to the shapes and sizes of the heterogeneities.

Although the present conclusions are based on the analysis performed in the seismic fre-
quency range, the methodology described in this work can be extended to the high frequency
range (such as the sonic or ultrasonic).
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