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Abstract. Meshfree fluid flow simulation has achieved large populantthe last few years.
Meshfree Galerkin Methods and Smooth Particle Hydrodyoaiie typical examples of mesh-
free techniques, whose ability to handle complex probleassiotivated the interest in the field.
In this work we present a new meshfree strategy that makesfuseving least square (MLS)
to discretize the equations. A mesh is only employed to neatiegneighborhood relation of
points spread within the domain, avoiding thus the probldrke@ping a good quality mesh.
The modeling of the free surface is based on the volume of (M@dF) technique. Distinct
from mesh dependent discretization approaches, whicmastithe fraction of fluid from the
mesh cells, our approach employ the neighborhood relatioth @ semi-Lagrangian scheme
to compute the free surface. Results of numerical simuiafpyoving the effectiveness of our
approach in two-dimensional fluid flow simulations are presd and discussed.

51


Administrador
Cuadro de texto
Mecánica Computacional Vol. XXIV
A. Larreteguy (Editor)
Buenos Aires, Argentina, Noviembre 2005



MECOM 2005 — VIl Congreso Argentino de Mecanica Computacional

1 INTRODUCTION

The need for new techniques for the solution of problems aitter classical numerical methods
fail or are prohibitively expensive has motivated the depeitent of new approaches, such as
meshfree methods. Aiming at avoiding difficulties as theegation of good quality meshes
and mesh distortions in large deformation problems, thehfnes methods try to construct
approximation functions in terms of a set of nodes.

The literature has presented a set of different meshfrebadst such as generalized finite
difference method (GFDM) smoothed particle hydrodynamics (SPH)lement-free Galerkin
method (EFGM} diffuse element method (DEM);eproducing kernel particle methods (RKP#M),
and partition of unit method (PUM).According to computational modeling, the meshfree
methods may be put into two different claséesiose that approximate the strong form of a
partial differential equation (PDE) and those that apprate the weak form of a PDE.

The techniques in the first class, in general, discretizd®E by a collocation technique.
Examples of such methods are SPH and GFDM. The methods irtoad class, i.e., serving
as approximations of the weak from of a PDE, are often Galesldak formulations (meshfree
Galerkin methods). Examples of such an approach are EFGN,[BIKPM, and PUM.

In this work we present a new meshfree method that approgsriae strong form of a PDE.
Our approach estimates the derivatives involved in a PDi faopolynomial approximation
conducted in each discretized node. Different from GFDMhuds, which use the classical
Taylor series expansion to calculate the polynomial fronictvithe derivatives are extracted,
our strategy adopts a more flexible scheme to compute tha@ailial approximation, namely
the moving least square (ML&)The moving least square presents some advantages over Taylo
series expansion. For example, the weight assignmentllyisnaployed to control the contri-
bution of neighbor nodes to the polynomial approximaticem ©e accomplished in a more
straight way by MLS. Furthermore, MLS can be combined withtipan of unity in order to
tackling the problem of the number of neighbor nodes prgperl

In order to show the effectiveness of the proposed technigeg@resent a free surface fluid
fluid flow simulation whose governing equations have beecreiszed by our approach jointly
with a semi-Lagrangian scheme. The strategy employed W@ sbé Poisson’s equation gener-
ated from our discretization strategy is another novelthisfwork. The free surface is modeled
by a scheme similar to VO¥The details of such a modeling is also presented.

The work is organized as follows: Section 2 presents the BEpsre discretization method
proposed in this work. A description of how to employ suchscotization method in Navie-
Stokes equations is discussed in section 3. The schemeeadmptefine the free surface is
presented in section 4. Section 5 presents some resulis@dtaom the proposed approach.
Conclusions and future work are in section 6.
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2 LEAST SQUARE APPROXIMATION

In this section we present some basic definitions and notatigployed in the remaining of the
text.

2.1 Star and Node Arrangement

LetV = {vy,vs,...,v,} be a set of discrete nodes representing a dormain R2. For each
nodev; € V we define thdocal coordinate system ef by writing any pointr = (z,y) € D
ast; = r —r;, wherer; = (z;,y;) are the coordinates of. We denote by, ; = r; — r; the
coordinates of a nodeg, € V' written in the local coordinate systemqf

Let.S C V be a non-empty subset of nodes and S a node ofi’. The setS is astar ofv;,
denoted bys;, if the two conditions bellow are satisfied:

1 if ||Tss]| < |ITksll, Vor €V, k # sthenv, € S
2. if v, is in the convex hull ofS thenv, € S

Thelocal minimum lengtlof a stars; is defined as:

h; = flels 1754 (1)

Notice that the local minimum length is the same for all stdrs;. From the definition of
local minimum length we can define tgobal minimum lengthvith respect td/:

h = min h; (2)

v, €V

in another words, the global minimum lendilis the shortest distance of the nodes representing
D.

2.2 Least Square Approximation

Letv; € V be a node in the domail andS; be a star of;. Suppose that : D — R is areal
function defined inD. We aim at approximating in a neighborhood of; by a functionf of
the form:

fi(®) = f(r;) + Wi(T) )
wherelV; is a polynomial of degreé that can be written as:
N
Wi(t) = chP(j). (4)
j=1

The termsPY) in expression (4) forms a basis of monomial y, 22, zy, 42, . . .}, which can
be numbered as in figure 1. Notice that the constant monosticonsidered, as the polyno-
mial will be employed to approximate derivatives, thus tbhestant term can be neglected.
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Figure 1: Monomial basis and numbering scheme.

Given the values of in each nodey, € S;, we can compute the coefficientsof I; by
solving the linear systerc = B:

an - 1N 1 by
=1 )
ani -+ QNN CN by
where the elements; of the matrixA and the elements of vectorb are given by:
vkESi
bi= Y (flre) = F(r:)) PO (Tr)wy (7)

'vaSi
As can be seen from equations (6) and (7), we are assignimgtsei, for the nodey,, € S;.
Such weights can depend on the distance betwgemdv; or they can be a Gaussianin
It is important to point out that the rank of depends on the number of elementsSin For

example, for a quadratic polynomial approximation therk bé needed at least five nodes in

S;. The higher the degree oF; the more nodes are needed.
Once the coefficients; have been computed, the derivativesfofan be approximated in

v; by the derivatives off;. Furthermore, iff; is a quadratic polynomial then the second order

derivatives are given directly from the coefficienisi.e.,

0% f; *W,;
g om 2%
& fi O*W;
ooy ozoy (8)
827, A
— = — = 2¢;5
0y? 0y?
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It can be shown that the discretization strategy preseriiedeais consistent if the nodes in
S, are distributed properly. Details about this theoretiesutt can be found in Pefia’s master
dissertationt?

In order to verify the effectiveness of the scheme above menrical simulations, we apply
the proposed strategy in an incompressible fluid flow sinmtaproblem. How to conduct
the discretization of the Navier-Stokes equations fromapproach is the subject of the next
section.

3 DISCRETIZING NAVIER-STOKES EQUATIONS

Although the discretization technique presented in theskastion has been developed for mesh-
free domain decompositions, we prefer using a mesh to makadbess to the neighborhood
of a node easier. To this end, the set of nodes representiognaid D has been input in a
Delaunay mesh generator. It is not difficult to show that Dely meshes guarantee the first
condition of the definition of a star. Without any post-presiag a Delaunay mesh satisfy the
second condition in almost every node. Steiner points candeeted if it is strongly necessary
to respect condition 2 of the definition of a star.

Pressure discretization will also be making use of the nmestve are storing the pressure on
the triangular cells. It is worth mentioning that the vetgdield is stored on the nodes. Such a
scheme has been adopted in order to make velocity and peedscoupling easier.

Consider the Navier-Stokes equations:

Du 1
D VPt Re
V-u=0. (20)

whereRe is the Reynolds number arfd- is the Froude number.
The material derivativ% is discretized by the semi-Lagrangian method:

1
Viu + Wg, (9)

Du  u(x,t+6t) —u(x—x,1)
Dt 5t
Using the fractionary step method (projection method), &io the set of equations:

. (11)

u(Xx,t+ dt) —u(X — ox,t) 1, 1
= — — 12
ot Revu+F7"29’ (12)
u(Xx,t + ot) — a(x,t + ot) _ v (13)
ot
Vip = %v a(x, t + 0t). (14)

From the above equations, the velocity and pressure fieldbeaomputed, for each time
step, as follows:
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1. Intermediate velocity

- 1 _, 1
u= u(X — 0X, t) + ot <§V u-—+ Wg) (15)
2. Intermediate pressure
1
p=—V- 1. 1
Vp &V a (16)
3. New velocity
u"t =a—6tVp @an

The termu(x — X, t) in equation (15) is computed by linear interpolation of tieéoeity u
on the nodes;, v; andvy, closest tax — dx. The Laplacian ternvV?u is computed from a least
square approximation as described in (9).

After estimatingu, we must solve Poisson’s equation (16). In fact, this is tuelést step
of the scheme. Using a quadratic polynomial for the leasasgiapproximation, & x 5 linear
system is obtained:

aix -0 Adis C1 by

= | : (18)
asy -+ 0Asp Cs bs

where the elements; andb; are given by equations (6) and (7) respectively.
Using Gaussian elimination we can re-write the system (48) a

app - Qs C1 61

=1 1. (29)
ass Cs 135

By backward substitution one can obtain the coefficieptandc; that are involved in the
discretization ofV?p, and they can be written as:

C3 = Z agp(r) + aip(rs) (20)
VL E€S;

cs= Y Bp(r) + Bip(r:) (21)
vE €S

whereq;, and gy, are constants obtained from the Gaussian elimination psoce

In that way, the Poisson matrix is sparse and non-symmelnicour implementation we
employ the bi-conjugate gradient methbtb solve the resulting linear system.

Oncep has been calculated, moving least square can be employpgrtaxamateV p, mak-
ing it possible to solve equations (17).
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4 BOUNDARY CONDITIONSAND FREE SURFACE MODELING

Up to now, the boundary conditions employed in our discegitin scheme have not been dis-
cussed. In fact, we must handle four different types of bamytdiigid contours, inflow, outflow
and free surface.

For rigid contours two different boundary conditions haeei implemented in our code:
no slip and free slip. In the first case the velocity is set t@ze all nodes defining the rigid
contours. The free slip condition imposes that the velaaitye normal direction be zero and
the derivative of the tangential velocity with respect te tftormal direction is also zero.

On the inflows, the velocity is given in the normal directidoging zero in the tangential
direction.

On the outflows, the pressure is set to zero and the derivaiti® normal component of the
velocity with respect to the normal direction is zero.

The free surface model is based on the volume of fluid (VOFhout with some special
features. The volume of a cell is represented by a scalainaatérom a functiornp : 7' — [0, 1],
whereT is the set of triangles (cells) decomposing the domain. itimély, the functiony
represents the volume of fluid in each cell.

The functiony is computed from the transport equation given by:

Dp(a)
T (22)

whereo is a cell.

Equation (22) is also discretized by a semi-Lagrangianmsehas described in (11).

The boundary conditions for pressure and velocity at thedteface are given by setting the
pressure equal to zero and sett{fly- n) - m = 0 for the velocity, wherex andm are the unit
normal and tangential vectors to the free surface. Heigthe stress tensor defined by:

1
T=—pl+ E(Vu + Vu)

As we are imposing = 0 on the surface cells we hafe= 2-(Vu + Vu')

5 RESULTS

In order to illustrate the effectiveness of our discretmatechnique, we present two examples
of simulations. The first example shows the classical fluial #tmulation in a channel. The
second example aims at illustrating the behavior of our@gugr in a mold filling simulation.

5.1 Flowin aChannd

The well knownHagen-Poiseuillélow has been chosen to validate our numerical method, as an
analytical solution is available. This simulation consist a flow between two parallel plates,
as illustrated in figure 2.
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Figure 2:Hagen-Poiseuilldlow.

The analytical solution for Hagen-Poiseuille flow, whicmdae found in Batchelo¥? is
given by:
1 Op

u(y) = _ﬂa_x(yL — ), (23)

wherey is the viscosity and the velocityis a function of the distanggeto the wall. Considering
L to be the width of the channel, the pressure gradient can itkemvas:

op _ hQ
o 12 73 (24)
where( is defined by:
L
= [ utyay (25)
0

Consideringu(y) = U on the inflow, wherd/ is the reference velocity, and choosihg=
U = 1, the analytical solution is:

u(y) = —6y(y — 1), (26)

Three different meshes have been employed to show the ganas of our method: a
course mesh with 193 cells, an intermediate mesh contaifi2&gcells, and a refined mesh
with 2853 cells. The parameters of the simulation have beeass domain3m x 1m; Viscos-
ity: 0.10Ns/m?; Density:0.10K g/m?; Reynolds:Re = 1; Froude: Fr = 0.319275. Figure 3
shows the intermediate mesh and figure 4 presents a queditatip of the velocity in.

VARV RV LY

SN N N

T
i AVAVAVAVAVL
uvyAuvAvﬂﬂ’uvuvAv”%',“g%ﬁ O]

Figure 3: Intermediate mesh with 728 cells.
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Figure 4: Velocity field inz direction.
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Figure 5: Comparing analytical and numerical results.

Figure 5 shows a comparison between the analytical and ncatheolution on a line in the
middle of the channel.

One can observe that in the refined mesh it is difficult to wiggtish the analytical from the
numerical solution.
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5.2 Mold Filling

We finish this section with an example illustrating the bebawef the method when a free
surface boundary condition is present. In this simulatidrea slip boundary condition has
been imposed on the rigid contours. A linear profile has bepted on the three inflows,
which have been defined on the right-most and left-mosteaditines and also on the horizontal
bottom line.

Figure 6a), 6b), and 6c) show the velocity field in thandy directions at three different
times respectively. The colors from blue to red represenvéfocities from-10m/s to 10m/s.
The bounding box of the domain is a rectangle with biise and heigh@m.

Figure 7 illustrates the free surface propagation at theesames as in figure 6.

Notice from figure 7 that the free surface propagation is ieoatance with what we ex-
pected.

6 CONCLUSIONSAND FUTURE WORK

In this work we present a new discretization technique thates use of least square approx-
imation to estimate derivatives. Such an approach hasdusoéeto be very robust in fluid
flow simulation with free surface, being thus a new altexrgatdr handling these kind of prob-
lems. The strategy adopted to build the Poisson’s matrixdnysSian decomposition of the least
square matrix is another contribution of this work.

The results of applying the proposed approach in the welkndagen-Poiseuille flow and
in a fluid flow simulation with free surface are very consisteonfirming thus the effectiveness
of our method.

Although this new methodology has been developed envisipaicomplete meshfree dis-
cretization scheme, we make use of a triangular mesh to wegh® access to nodes neighbor-
hood. In order to get rid of the mesh we are developing a sedtaf structures devoted to access
neighborhood of nodes. A new scheme for discretizing thequre on the nodes has also been
investigated.

Another aspect we are considering is to employ high ordei-sagrangian schemes, mak-
ing it possible to deal with higher Reynolds number.
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