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Abstract. In engineering analyses, the dynamic behavior of mechanical oscillators, or the electrical 
performance of RLC circuits, is often modeled by linear, second order, inhomogeneous, ordinary 
differential equations, with constant coefficients. Their general solution can be expressed in terms of 
Duhamel's convolution integral, which involves the forcing function contained in the inhomogeneous 
term of those equations. Depending on the complexity of this function, the integration may, or may 
not, yield a closed-form solution. This article presents a general, and relatively compact, expression 
for the recursive integration by parts of Duhamel’s integral. The obtained solution is based on the 
use of second order recursive coefficients, which can be written in closed form. For forcing functions 
with zero  derivatives, the proposed expression is an exact and closed-form solution of the 
original integral. This is the case for polynomial forcing functions of degree. In this article, 
due to space limitations, only final expressions are included, but their derivation process is 
summarized. The summation format of the presented expressions allows for the proper identification 
of all components contributing to the response. They are indicated as force-derivative and as initial-
force-derivative components. An example shows the use of the proposed exact, closed-form, solution. 
It employs a forcing function defined as a quartic polynomial pulse. All different terms contributing to 
either the displacement or velocity response are identified and analyzed. The proposed expressions 
constitute ready tools for the solution of linear, second order differential equations subjected to 
polynomial forcing functions. 
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1    INTRODUCTION 
 

The behavior of linear mechanical oscillators, or linear RLC circuits, is governed by the 
same well-known linear, second order, differential equation. This work presents exact 
solutions of those equations for certain type of forcing functions. They are based on the 
Duhamel’s integral solving procedure. For continuous and continuously differentiable forcing 
functions, with zero  derivatives, the solutions are exact. The proposed expressions are 
obtained by successive integrations by parts of Duhamel’s integral. The final expression is 
exact and is written in terms of recursive coefficients. Closed forms of those coefficients are 
also presented. Hence, the proposed solution is not only exact, but also a closed-form 
expression. 

thN

Unfortunately, the complete derivation process is excessively long and cannot be included 
in this article. Most derivation steps are presented in a Journal article that is being 
simultaneously prepared and submitted for possible publication. Even though the length of the 
derivation process is large, the final expressions are relatively compact. Their compactness is 
based on the use of recursive coefficients derived via a mathematical inductive process. This 
work presents a summary of the steps, and intermediate auxiliary expressions, leading to the 
final proposed solution. 

Particular characteristics of the attained solution allow for the proper identification of 
contributions to the response from different sources. They include contributions from the 
forcing function and its time derivatives as well as from all initial conditions of the forcing 
action at time zero. 

An example is fully developed to show the implementation of the proposed expressions. It 
uses a quartic polynomial pulse as the forcing function. This pulse is similar in shape to the 
haversine pulse commonly used to represent a frontal barrier collision in vehicle safety 
research (Varat, 2003). 
 
2    FORMULATION 
 

2.1   Equation of Motion of a Single-Degree-of-Freedom (SDF) Oscillator 
 

The motion of a SDF, mechanical, linear oscillator subjected to an arbitrary, external, time-
varying forcing function, ( )f t , and to initial displacement and velocity conditions, is 
described by the following second-order, linear ordinary differential equation: 
 

 . (1) 
 

(2) (1) (0) (1) (1)

0( ) ( ) ( ) ( )     with     (0)      and     (0)m u t c u t k u t f t u u u u+ + = = = 0

In this article, the notation , on top of a variable, indicates its ( )j thj  derivative with respect 

to time. For 0j = , the superscript (0  indicates the original function. Thus,  is the 
relative displacement of the oscillating mass with respect to the point of static equilibrium; 

 is its relative velocity; and  is its relative acceleration. Quantities , , and  are 
constant values representing, respectively, the mass, damping, and stiffness coefficients of the 
oscillator. Its natural undamped and damped circular frequencies are 

)
(0)

( ) ( )u t u t=

(1)

( )u t
(2)

( )u t m c k

k mω =  and 
21dω ω ζ= − , respectively. ζ  is the oscillator damping ratio, = crc c c m2ζ ω=  , and 

2 4crc m kω= = m
1

 is its critical damping value. In this work, we consider subcritically 
damped oscillators with 0 ζ≤ < . In particular, the undamped case, 0ζ = , is also included. 
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The stiffness and damping coefficients can be written in terms of the oscillating mass, the 
natural circular frequency, and the damping ratio: ; 2k mω= 2c mζ ω= . Substitution of 
these expressions into Eq. (1), and division by the mass, results in the following equation of 
motion normalized with respect to the mass: 
 

 
(2) (1)

2 ( )( ) 2 ( ) ( ) f tu t u t u t
m

ζ ω ω+ + = . (2) 
 

The right-hand side of this equation represents the induced external acceleration acting on the 
oscillator. 

Alternatively, all terms of Eq. (2) can be expressed in units of displacement. For this, the 
mass is substituted by 2k ω  and the equation is divided by 2ω : 
 

 
(2)

(1)

2

( ) 2 ( )( ) ( )u t f tu t u t
k

ζ
ω ω

+ + = . (3) 
 

The right-hand side of Eq. (3) is equivalent to a static displacement ( ) ( )stu t f t k= . This 
displacement would occur if the forcing function acts in a slow enough fashion to produce 
negligible velocity and acceleration (no dynamic effects). Details on the mathematical 
modeling of linear oscillators are found in most textbooks on vibrations and dynamics 
(Chopra, 2007). 
 
2.2   General Solution of the Equation of Motion 
 

The complete displacement response, or general solution, of the above mass-spring-damper 
system, consists of two distinctive parts: the complementary, or homogeneous, component 

, and the particular component : ( )Hu t ( )Pu t
 

 ( ) ( ) ( )H Pu t u t u t= + . (4) 
 

To obtain this solution, we use Duhamel’s integral approach. It considers that  is the 
response of the unforced oscillator subjected only to the initial conditions of the motion (  

and ), and that  is the response of the forced oscillator with zero initial displacement 
and velocity. The corresponding equations for both components are: 

( )Hu t

0u
(1)

0u ( )Pu t

 
(2) (1) (1) (1) (1)

2
0 0( ) 2 ( ) ( ) 0    with    (0) (0)     and    (0) (0)H H H H Hu t u t u t u u u u u uζ ω ω+ + = = = = =  (5) 

 
(2) (1) (1)

2 ( )( ) 2 ( ) ( )      with     (0) 0     and    (0) 0P P P P P
f tu t u t u t u u
m

ζ ω ω+ + = = =  (6) 
 

For subcritically damped oscillators ( 0 1ζ≤ < ),  has the following expression: ( )Hu t
 

 
(1)

0
0 0( ) ( ) ( )H C

uu t u h t u h tζ
ω

⎛ ⎞
⎜ ⎟= + +
⎜ ⎟
⎝ ⎠

S , (7) 

 

where and  are non-dimensional, exponentially decaying, sinusoidal functions: ( )Sh t ( )Ch t
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 ( ) 2( ) sin 1t
S dh t e tζ ω ω ζ−⎡ ⎤= ⎣ ⎦ − , (8) 

 

 ( )( ) cost
Ch t e tζ ω ω−= d . (9) 

 

The sub-indices S and C, in  and , are used to indicate their respective sine and 
cosine factors. 

( )Sh t ( )Ch t

Component  can be obtained in terms of Duhamel’s convolution integral: ( )Pu t
 

 
0 0

( ) ( ) ( ) ( ) ( )
t t

Pu t h f t d h t f dτ τ τ τ τ τ= − = −∫ ∫ , (10) 
 

where 0 tτ≤ ≤ . The time function  is the unit impulse response function. For 
subcritically damped oscillators, 

( )h t
0 1ζ< < . Its expression is: 

 

 sin( )( )
t

d

d

eh t
m

ζ ω ω
ω

−

=
t . (11) 

 

Since  and  are related as ( )h t ( )Sh t ( ) ( )Sh t h t mω= , Duhamel’s integral can be expressed in 
terms of : ( )Sh t
 

 
0 0

( ) ( ) ( ) ( ) ( )
t t

P Su t h t f d h t f d
k
ωτ τ τ τ τ τ= − = −∫ ∫ . (12) 

 

A compact form of the general solution of the equation of motion, , is 
obtained by adding Eqs. 

( ) ( ) ( )H Pu t u t u t= +
(7) and (12): 

 

 
(1)

0
0 0 0

( ) ( ) ( ) ( ) ( )
t

C S S
uu t u h t u h t h t f d

k
ωζ τ τ

ω

⎛ ⎞
⎜ ⎟= + + + −
⎜ ⎟
⎝ ⎠

∫ τ  (13) 

 
2.3   Nth Integration by Parts of Duhamel’s Integral - Summary 
 

This section presents a summary of the process leading to a compact expression for the 
 integration by parts of Duhamel’s integral. The right-hand side of Eq. thN (12) is the selected 

form of the original integral to be successively integrated by parts. Herein, it is denoted as 
: 0 ( )D t

 

 0 0 0
( ) ( ) ( ) ( ) ( )

t t

SD t h t f d h t f d
k
ωτ τ τ τ τ τ= − = −∫ ∫ . (14) 

 

The zero subscript in  indicates the original expression without having been integrated 
by parts yet. After j successive integrations, the resulting expression is denoted . Each 
successive integration by parts expresses the same entity in a different mathematical form. 
That is: 

0 ( )D t
( )jD t

 

 . (15) 
 

0 1 2 3( ) ( ) ( ) ( ) ( ) ( )jD t D t D t D t D t D t= = = = = = =L L N

For a continuous, and N-times differentiable forcing function ( )f τ , Duhamel’s integral 
can be successively integrated N-times by parts. In order to assist this integration process, four 
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auxiliary expressions were obtained. The first two are the antiderivatives of (Sh t )τ−  and 
(Ch t )τ−  with respect to τ . Their expressions are: 

 

 ( ) ( )1( )S S Ch t d h t h t Cτ τ ζ τ τ
ω

⎡− = − + − +⎣∫ S⎤⎦ , (16) 

 ( )21( ) ( ) 1 ( )C C Sh t d h t h t Cτ τ ζ τ ζ τ
ω
⎡− = − + − − +⎣∫ C

⎤⎦ , (17) 
 

where  and  are integration constants. These antiderivatives were used to obtain two 

additional expressions. They are for the integration by parts of 

SC CC
( 1)

0
( ) ( ) ( )

jt

S j SI t h t f dτ τ τ
−

= −∫  

and 
( 1)

0
( ) ( ) ( )

jt

C j CI t h t f dτ τ τ
−

= −∫ , where 1,2, ,j N= K : 
 

 

( 1)

0

( 1) ( 1)

( )

0

( ) ( ) ( )

( ) ( ) ( ) (0)1

( ) ( ) ( )

jt

S j S

j

S C

jt

S C

I t h t f d

f t h t h t f

h t h t f d

τ τ τ

ζ

ω

j

ζ τ τ τ

−

−

= −

⎧ ⎡ ⎤− +⎣ ⎦⎪
= ⎨ ⎬

⎪ ⎪⎡ ⎤− − + −⎣ ⎦⎩ ⎭

∫

∫ τ

− ⎫
⎪

,

 (18) 

 

 ( )

( )

( 1)

0

( 1) ( 1)
2

( )
2

0

( ) ( ) ( )

( ) ( ) 1 ( ) (0)1

( ) 1 ( ) ( )

jt

C j C

j

C S

jt

C S

I t h t f d

f t h t h t f

h t h t f d

τ τ τ

ζ ζ ζ

ω

j

ζ τ ζ τ τ τ

−

−

= −

⎧ ⎫⎡ ⎤− + −⎪ ⎪⎣ ⎦
= ⎨ ⎬

⎪ ⎪⎡ ⎤− − + − −⎣ ⎦⎩ ⎭

∫

∫

−

.

 (19) 

 

Eqs. (18) and (19) are useful tools to integrate Duhamel’s integral  times by parts. Even 
though each successive integration generates more intricate expressions, a proper pattern 
analysis, based on mathematical induction, yields the following, compact, general expression 
after  integrations by parts (Maldonado, 1992): 

thN

thN
 

 

( 1) ( 1)
( )

1 1 0
1

( ) ( ) (0)1 1( ) ( ) ( )

j j
N Ntj j

N Nj N
j

r f t h t f
D t h t f d

k
τ τ τ

ω ω

− −

− −
=

⎡ ⎤⎛ ⎞−⎢ ⎥⎜ ⎟= −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∫ −

C

, (20) 

 

where functions  are linear combinations of  and : ( )jh t ( )Sh t ( )Ch t
 

 . (21) 
 

( )1( ) ( ) ( )j j j S jh t r r h t r h tζ −= + +

All coefficients  , for jr 1,2, ,j N= K , are obtained by using the following second order, 
three-term, linear recursion: 
 

1 1 0 12      with     1, 2, , ( 1)     and starting values  0  and  1j j jr r r j N r rζ+ −= − − = − = =K  (22) 
or 

1 2 0 12      with     1, 2, ,      and starting values  0  and  1     j j jr r r j N r rζ − − −= − − = = = −K (23) 
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Alternatively, two closed-form expressions for  are presented below. One of them is given 
in terms of trigonometric functions, and is based on the solution of the above recursion. Its 
expression is: 

jr

 

 { }1sin cos ( ) sin cos ( )jr j 1ζ ζ−⎡ ⎤ ⎡= −⎣ ⎦ ⎣
− ⎤− ⎦ . (24) 

 

The second closed-form expression is given in terms of factorials: 
 

max 1
1 2

max
1

( 1) ( )! 2 1 ( 1)(2 )   with    and  1, 2, , .  
( 1)! ( 2 1)! 4

q j q j
j q

j
q

j q jr q
q j q

ζ
+ +

+ −

=

− − + + −
= =

− − +∑ K

 

j N=  (25) 

 

As previously indicated, all expressions presented in this work are valid for subcritically 
damped oscillators, including the undamped case. That is, they are valid for 0 1ζ≤ < . 

Eq. (20) presents three distinctive components: 
 

 [ ] [ ] [ ]0( ) ( ) ( )f I
N N ND t D t D t D= + + N , (26) 

where 

 [ ]
( 1)

1
1

1( ) ( )
N j

jf
N j

j

r
D t

k ω

−

−
=

= ∑ f t , (27) 

 [ ]
( 1)

0
1

1

( )1( ) (0)
N j

j
N j

j

h t
D t f

k ω

−

−
=

= − ∑ , (28) 

 [ ]
( )

1 0

1( ) ( ) ( )
NtI

N NND t h t f d
k

τ τ τ
ω −= − −∫ . (29) 

 

[ ]( )f
ND t  is the force-derivative component. It involves the original forcing function and its 

time derivatives. [ ]0 ( )ND t  is the initial-force-derivative component. It contains transient terms 

associated to the initial values of the forcing function and its derivatives at time zero. [ ]( )I
ND t  

is the integral component. It contains the remaining integral from the successive integration-
by-part process. It represents the contribution of the derivative of the forcing function to 
the dynamic response. 

thN

 

2.4   Closed-Form Expressions with 
( )

( ) 0
N

f t =  
 

An important simplification of Eq. (20) occurs if 
( )

( ) 0
N

f t = . In such a case, the integral 
component vanishes and  reduces to: ( )ND t

 

 
( 1) ( 1) ( )

1
1

1 1( ) ( ) ( ) (0)     with   ( ) 0
N j j N

N j jj
j

D t r f t h t f f t
k ω

− −

−
=

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑ = . (30) 

 

Consequently, if ( )f t  is a function of time, expressed in closed form, continuous and 

continuously differentiable N times, with respect to time, with 
( )

( ) 0
N
f t = , Eq. (30) constitutes 

a closed-form solution of Duhamel’s integral. In this case, possesses only two 
components: 

( )ND t
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 . (31) 
 

[ ] [ ]
( )

0( ) ( ) ( )     with     ( ) 0
N

f
N N ND t D t D t f t= + =

As previously indicated, the relative displacement response of the oscillator can be written 
in terms of the original Duhamel’s integral: 0( ) ( ) ( )Hu t u t D t= + . After  integrations by 
parts,  can be substituted by  to get: 

N

0 ( )D t ( )ND t
 

 ( ) ( ) ( )H Nu t u t D t= + . (32) 
 

If  is given in closed form, as in Eq. ( )ND t (30),  is also a closed-form expression. In this 
case, substitution of Eqs. 

( )u t
(7) and (30) into (32) produces the following exact, closed-form 

expression for the relative displacement of the oscillator: 
 

(1)
( 1) ( 1) ( )

0
0 0 1

1

1 1( ) ( ) ( ) ( ) ( ) (0)    with   ( ) 0.
N j j N

C S j jj
j

uu t u h t u h t r f t h t f f t
k

ζ
ω ω

− −

−
=

⎛ ⎞
⎛ ⎞⎜ ⎟= + + + −⎜ ⎟⎜ ⎟ ⎝ ⎠

⎝ ⎠
∑ = (33) 

 

Its three distinctive components are: 
 

 , (34) 
where 

[ ] [ ]
( )

0( ) ( ) ( ) ( )   with   ( ) 0
N

f
H N Nu t u t D t D t f t= + + =

 
(1)

0
0 0( ) ( ) ( )H C

uu t u h t u h tζ
ω

⎛ ⎞
⎜ ⎟= + +
⎜ ⎟
⎝ ⎠

S , (35) 

 [ ]
( 1)

1
1

1( ) ( )
N j

f j
N j

j n

r
D t f t

k ω

−

−
=

= ∑ , (36) 

 [ ]
( 1)

0
1

1

( )1( ) (0)
N j

j
N j

j n

h t
D t f

k ω

−

−
=

= − ∑ . (37) 

 

The corresponding exact, closed-form expression for the relative velocity  is: 
(1)

( )u t
 

(1)
(1) (1) (1) ( ) (1) ( 1) ( )

0
0 0 1

1

1 1( ) ( ) ( ) ( ) ( ) (0)   with  ( ) 0,
N j j N

jC S jj
j

uu t u h t u h t r f t h t f f t
k

ζ
ω ω

−

−
=

⎛ ⎞
⎛ ⎞⎜ ⎟= + + + −⎜ ⎟⎜ ⎟ ⎝ ⎠

⎝ ⎠
∑ =

C

 (38) 

 

where the first derivatives of the exponentially decaying sinusoidal functions can be written in 
terms of  and  as follows: ( )Ch t ( )Sh t
 

 ( )
(1)

2( ) 1 ( ) ( )C Sh t h t h tω ζ ζ⎡ ⎤= − −⎣ ⎦ , (39) 

 
(1)

( ) ( ) ( )S C Sh t h t h tω ζ⎡ ⎤= −⎣ ⎦ , (40) 

 . (41) 
 

( )
(1)

1 1( ) ( ) ( )j j C j j Sh t r h t r r h tω ζ− −
⎡= − +⎣ ⎤⎦

Substitution of Eqs. (39), (40) and (41) into (38), and rearrangement of terms, yileds: 
 

2680



 
( )

1(1) (1) (1) ( )

0 0 0 1
1

( 1) ( )

1 12
1

1 1( ) ( ) ( ) ( )

1 1 ( ) ( ) (0)   with   ( ) 0,

N j

C S jj
j

N j N

j C j j Sj
j

u t u h t u u h t r f t
k

r h t r r h t f f t
k

ω ζ
ω

ζ
ω

−

−
=

−

− −−
=

⎡ ⎤= − + +⎢ ⎥⎣ ⎦

⎡ ⎤− − +⎣ ⎦

∑

∑ =

S

 (42) 

 

where the upper limit of the first summation was reduced from  to  (because 

). In this expression, there are also three distinctive components: 

N 1N −
( )

( ) 0
N

f t =
 

 , (43) 
 

(1) (1)(1) (1)
[ ] [0]( ) ( ) ( ) ( )f

H N Nu t u t D t D t= + +

where 
 

 , (44) 

 

(1) (1) (1)

0 0 0( ) ( ) ( )H Cu t u h t u u h tω ζ⎡ ⎤= − +⎢ ⎥⎣ ⎦
(1) 1 ( )
[ ]

1
1

1( ) ( )
N j

jf
N j

j

r
D t f t

k ω

−

−
=

= ∑ , (45) 

 
( )(1) ( 1)1 1[0]

2
1

( ) ( )1( ) (0)
N jj C j j S

N j
j

r h t r r h t
D t f

k

ζ

ω

−− −

−
=

⎡ ⎤− +⎣= − ∑ ⎦ . (46) 

 
3    EXAMPLE 
 

      Closed-Form Solution for a Quartic Polynomial Forcing Function. 
 

This example considers the motion of a SDF, linear oscillator subjected to zero initial 

conditions, , and to a quartic polynomial forcing function 
(1)

0 0 0u u= = 1

1

( )
N

j
j

j

f t a t −

=

=∑ , with 

. The normalized equation of motion, with respect to the stiffness , is: 5N = k
 

 
(2)

5(1) (1)
1

0 02
1

( ) 2 ( ) 1( ) ( )    ;   0   ;   0n
n

n

u t f tu t u t a t u u
k k

ζ
ω ω

−

=

+ + = = =∑ = . (47) 
 

The quartic polynomial pulse is selected to be similar in shape to the haversine pulse, 
2hav(2 ) sin ( )t tη ηπ = π , where dt t Tη =  is the normalized time, and  is the pulse duration. 

The haversine pulse is commonly used in automobile crash and safety studies (Varat, 2003). It 
models the main dynamic force produced in frontal barrier collisions. Figure 1 shows the 
normalized shapes of both, the quartic and the haversine pulses. The quartic pulse, 

dT

( )p tη , is 
herein defined with amplitude A  and time duration . Its expression, in terms of tdT η , is: 
 

 . (48) 
 

2 3 4( ) 16 2      with     0 1p t A t t t tη η η η⎡ ⎤= − + ≤⎣ ⎦ η ≤

The corresponding polynomial forcing function, in terms of time , is: t
 

 
2 3 45

1

1
( ) 16 2      with     0n

n d
n d d d

t t tf t a t A t
T T T

−

=

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥= = − + ≤⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ T≤ . (49) 

 

2681



0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Normalized time, t / T d

N
or

m
al

iz
ed

 P
ul

se
,  

p(
t/T

d)
 / 

A

 
 

Figure 1: Quartic (solid line) and haversine (traced line) pulses. 
 
All five coefficients  are identified in the following expanded form of Eq. na (49): 
 

 ( ) ( )
5

1 0 1 2 3
2 3

1

16 32 16( ) 0 0n
n

n d d d

A A 4
4

Af t a t t t t t
T T T

−

=

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = + + + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑ t , (50) 

 

 1 2 3 4 52 3

16 32 160     ,          ,          ,     
d d

4
d

A Aa a a a a
T T

= = = = − =
A

T
. (51) 

 

Table 1 shows the characteristics of the forcing pulse, its derivatives and their 
corresponding values at time zero. In this table, the expressions are presented in such a form 
that the normalized time dt t Tη =  is easily identified. Table 2 shows the recursive coefficients 

 and their combinations used in the expressions of the response components. jr
The general closed-form solution for the relative displacement  is given by Eqs. ( )u t (34) 

to (37). In this particular example, 5N = , 
(1)

0 0 0u u= = , and component . Therefore, 
Eq. 

( ) 0Hu t =
(34) reduces to: 

 

 [ ] [ ]0
5 5( ) ( ) ( )fu t D t D t= + . (52) 

 

In order to analyze these two components, each of their terms is written as a single entity, 
[ ]( )f
j tΔ  or [ ]0 ( )j tΔ , as follows: 

 

 [ ] [ ] [ ]
( 1)

5 5( 1)

5 1 1
1 1

1 (( ) ( ) ( )     where     ( )
j

j
j jf f f

j jj j
j j

r r )f tD t f t t t
k kω ω

−
−

− −
= =

= = Δ Δ =∑ ∑ , (53) 

 [ ] [ ] [ ]
( 1)

5 5( 1)
0 0 0

5 1 1
1 1

( ) ( )1 (( ) (0) ( )     where     ( )
j

j
j j

j jj j
j j

h t h t fD t f t t
k kω ω

−
−

− −
= =

= − = Δ Δ = −∑ ∑ 0) . (54) 

 

The individual response terms [ ]( )f
j tΔ  and [ ]0 ( )j tΔ , due to the quartic pulse, are shown in 

Tables 3 and 4, respectively. 
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j 

Polynomial 
Coefficients 

 
 ja

Forcing Function and its Time Derivatives 
 

( 1)

( )
j

f t
−

 

Evaluated Forcing 
Function & Derivatives 

at Time Zero 

 
( 1)

(0)
j

f
−

1 0 
2 3

( ) 16 2
d d d

t t tf t A
T T T

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥= − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

4

 (0) 0f =  

2 0 
2 3

(1) 16( ) 2 6 4
d d d d

A t t tf t
T T T T

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥= − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

 (1)

(0) 0f =  

3 2

16

d

A
T

 
2

(2)

2

16( ) 2 12 12
d d

A t tf t
T T T

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= − +⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦d

 
(2)

2

32(0)
d

Af
T

=  

4 3

32

d

A
T

−  
(3)

3

16( ) 12 24
d d

A tf t
T T

⎡ ⎤⎛ ⎞
= − +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 

(3)

3

192(0)
d

Af
T

= −  

5 4

16

d

A
T

 [ ]
(4)

4

16( ) 24
d

Af t
T

=  
(4)

4

384(0)
d

Af
T

=  

 

Table 1: Characteristics of the Selected Quartic Polynomial Forcing Function: ( ) ( )df t p t T= . 

 
 
 

j 

Coefficients 
 

1 22j jr r jrζ − −= − −
 

with 
 and  0 0r = 1 1r− = −

Combined Coefficients in 
Expression for [ ]0 ( )j tΔ  

 

( )1j jr rζ −+  

Combined Coefficients in 

Expression for  
 

(1)
[0] ( )j tΔ

( )1j jr rζ − +  

1 1 ( )ζ  ( )1  

2 ( )2ζ−  ( )22 1ζ− +  ( )ζ−  

3 ( )24 1ζ −  ( )34 3ζ ζ−  ( )22 1ζ −  

4 ( )38 4ζ ζ− +  ( )4 28 8ζ ζ 1− + −  ( )34 3ζ ζ− +  

5 ( )4 216 12 1ζ ζ− +  ( )5 316 20 5ζ ζ ζ− +  ( )4 28 8ζ ζ− +1  
 

Table 2: Coefficients Used in the Expressions for the Relative Displacement and Velocity Responses. 
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j [ ] [ ]
( 1)

1
1 1

1( ) ( ) ( )
N Nj

jf f
N jj

j j

r
D t f t t

k ω

−

−
= =

= =∑ ∑Δ    where   [ ]
( 1)

1

( )
j

jf
j j

r f t
kω

−

−Δ =  

1 [ ]
1 ( )f tΔ =  

2 3 4
( ) 16 2

d d d

f t t t t
k T T T

A
k

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥= − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

 

2 [ ]
2 ( )f tΔ =  

( ) 2 3

64 3 2
d d d d

t t t
T T T T
ζ

ω
A
k

⎡ ⎤− ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥− +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

 

3 [ ]
3 ( )f tΔ =  

( ) 22

2 2

1 4
32 1 6 6

d d d

t t
T T T
ζ

ω
A
k

⎡ ⎤− + ⎛ ⎞ ⎛ ⎞
⎢ ⎥− +⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

4 [ ]
4 ( )f tΔ =  

( )3

3 3

2
768 1 2

d d

t A
T T

ζ ζ

ω

−

k
⎡ ⎤⎛ ⎞
− +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 

5 [ ]
5 ( )f tΔ =  

( )4 2

4 4

16 12 1
384

d

A
T k

ζ ζ

ω

− +
 

 

Table 3: Individual Force-Derivative Terms Contributing to the Relative Displacement 
Response of an Oscillator Subjected to Pulse ( )dp t T . 

 
 

j 

[ ] [ ]
( 1)

0 0
1

1 1

( )1( ) (0) ( )
N Nj

j
N jj

j j

h t
D t f t

k ω

−

−
= =

= − = Δ∑ ∑  

where 

[ ] ( )( 1) ( 1)
10

1 1

( ) ( )( ) (0) (0)( )

j j
j j S j Cj

j j j

r r h t r h th t f ft
k k

ζ

ω ω

− −

−

− −

⎡ ⎤+ +⎣ ⎦Δ =− = −  

1 [ ]0
1 ( )tΔ =  0  

2 [ ]0
2 ( )tΔ =  0 

3 [ ]0
3 ( )tΔ =  ( )

( ) ( )3 2

2 2

4 3 ( ) 4 1 ( )
32

S C

d

h t h t A
T k

ζ ζ ζ

ω

⎡ ⎤− + −⎣ ⎦−  

4 [ ]0
4 ( )tΔ =  ( )

( ) ( )4 2 3

3 3

8 8 1 ( ) 8 4 ( )
192

S C

d

h t h t A
T k

ζ ζ ζ ζ

ω

⎡ ⎤− + − + − +⎣ ⎦  

5 [ ]0
5 ( )tΔ =  ( )

( ) ( )5 3 4 2

4 4

16 20 5 ( ) 16 12 1 ( )
384

S C

d

h t h t A
T k

ζ ζ ζ ζ ζ

ω

⎡ ⎤− + + − +⎣ ⎦−  

 

Table 4: Individual Initial-Force-Derivative Terms Contributing to the Relative Displacement Response of an 
Oscillator Subjected to Quartic Pulse ( )dp t T . 
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For zero initial conditions of the motion, the relative velocity response of an oscillator, 

subjected to the above quartic pulse ( 5N = ), is given by the following two main components: 
 

 , (55) 
 

(1) (1)(1)
[ ] [0]
5 5( ) ( ) ( )fu t D t D t= +

where  is the first derivative of the force-derivative component, and  is the first 
derivative of the initial-force-derivative component. To analyze their individual terms, the 
following expressions are considered: 

(1)
[ ]
5 ( )fD t

(1)
[0]
5 ( )D t

 

 
(1) (1) (1)5 1 5 1 5 1( ) ( )
[ ] [ ] [ ]
5 1 1

1 1 1

1( ) ( )      where     ( )
j j

j jf f f
j jj j

j j j

r r
D t f t f t

k kω ω

− − −

− −
= = =

= = Δ Δ =∑ ∑ ∑ , (56) 

and 

 
( ) [ ]

[ ] ( )

(1)
(1) 5 ( 1)

[0]
5 2

1

(1)5 5( 1)1 1 0
2

1 1

( 1)
(1)

1 10
2

1 ( )( ) (0)

( ) ( )1 (0) ( )

( ) ( ) (0)where  ( ) .

jj
j

j

jj C j j S
jj

j j

j
j j S j C

j j

h tD t f
k

r h t r r h t
f t

k

r r h t r h t ft
k

ω

ζ

ω

ζ

ω

−

−
=

−− −

−
= =

−

− −

−

= −

⎡ ⎤− +⎣ ⎦= − = Δ

⎡ ⎤+ −⎣ ⎦Δ =

∑

∑ ∑  (57) 

 
In order to graph the relative velocity response in normalized fashion, it is more convenient 

to rewrite Eqs. (56) and (57) in terms of the damping coefficient . Hence, the stiffness 
coefficient  is substituted by the following expression: 

c
k

 

 ( ) ( )2k cω ζ= . (58) 
 

After this substitution, Eqs. (56) and (57) become: 
 

 
( )

(1) (1) (1)5 1 5 1( )
[ ] [ ] [ ]
5 1

1 1

2 (( ) ( )      where     2
j

j
j jf f f

j jj j
j j

r r )f tD t f t
c c
ζ ζ

ω ω ω

− −

−
= =

= = Δ Δ =∑ ∑ , (59) 

 
( ) [ ]

[ ] ( )

(1)
(1) 5 ( 1)

[0]
5 2

1

(1)5 5( 1)1 1 0
2

1 1

( 1)
(1)

1 10
1

2 ( )( ) (0)

( ) ( )2 (0) ( )

( ) ( ) (0)where  ( ) 2 .

j
j
j

j

jj C j j S
jj

j j

j
j j S j C

j j

h tD t f
c

r h t r r h t
f t

c

r r h t r h t ft
c

ζ
ω ω

ζζ
ω ω

ζ
ζ

ω

−

−
=

−− −

−
= =

−

− −

−

= −

⎡ ⎤− +⎣ ⎦= − = Δ

⎡ ⎤+ −⎣ ⎦Δ =

∑

∑ ∑  (60) 

 

The individual response terms  and , due to the quartic pulse, are shown in 
Tables 3 and 4, respectively. 

[ ]
(1)

( )f
j tΔ [ ]

(1)
0 ( )j tΔ
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(1) (1)1 1( )
[ ] [ ]

1
1 1

2( ) ( )
N Nj

jf f
N jj

j j

r
D t f t

c
ζ

ω ω

− −

−
= =

= ∑ ∑= Δ      where     

( )
(1)
[ ] ( )2

j

jf
j j

r f t
c

ζ
ω

Δ =  

1 
(1)
[ ]
1 ( )f tΔ =  

2 3
64 3 2

d d d d

t t t
T T T T c
ζ

ω
A⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞

⎢ ⎥− +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

 

2 
(1)
[ ]
2 ( )f tΔ =  

22

2 2128 1 6 6
d d d

t t
T T T

ζ
ω

A
c

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥− + −⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

3 
(1)
[ ]
3 ( )f tΔ =  

( )3

3 3

4
384 1 2

d d

t A
T T

ζ ζ

ω

− +

c
⎡ ⎤⎛ ⎞
− +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 

4 
(1)
[ ]
4 ( )f tΔ =  

( )2 4

4 4

2
3072

d

A
T c

ζ ζ

ω

−
 

 

Table 5: Individual Force-Derivative Terms Contributing to the Relative Velocity Response of an Oscillator 
Subjected to Quartic Pulse ( )dp t T . 
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(1)
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1

( ) ( ) (0)( ) 2
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ζ
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−
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−
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1 
(1)
[0]
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(1)
[0]
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(1)

0
3 ( )tΔ =  

( )2

2 2

2 1 ( ) 2 ( )
64

S C

d

h t h t A
T c

ζ ζ
ζ

ω
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4 [ ]
(1)

0
4 ( )tΔ =  

( ) ( )3 2

3 3

4 3 ( ) 4 1 ( )
384

S C

d

h t h t A
T c

ζ ζ ζ
ζ
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5 [ ]
(1)

0
5 ( )tΔ =  

( ) ( )4 2 3

4 4

8 8 1 ( ) 8 4 ( )
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S C

d

h t h t A
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Table 6: Individual Initial-Force-Derivative Terms Contributing to the Relative Velocity Response of an 
Oscillator Subjected to Quartic Pulse ( )dp t T . 
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In order to compare the response components listed in Tables 3 to 6, the following 
normalization process is performed. Firstly, the normalized time, tη , and normalized 
frequency, , are defined as: Ω
 

 
( )

     and     
2d d

tt
T Tη

ω
π

= Ω = . (61) 

 

The associated normalized damped frequency is 21d ζΩ = Ω − . Secondly, the following 
substitutions are performed in the expressions of the responses: 
 

    ;   2    ;   2    ;   2    ;   2d d d d dt t T T t t t t Tη η ηω π ω π ω π ω→ → Ω → Ω → Ω → π Ω . (62) 
 

Then, responses are written in the following form: 
 

 ( )( ) ( ) ( )du t u t T d t A kη η= = , (63) 
 

 (
(1) (1)

( ) ( ) ( )du t u t T v t A cη η= = ) . (64) 
 

where ( )d tη  is the normalized relative displacement, ( )( )u t A k , and ( )v tη  is the normalized 

relative velocity, ( )
(1)

( )u t A c . Both, ( )d tη  and ( )v tη , are written in terms of normalized time 
and normalized frequency. 

At , the forcing pulse ceases. Hence, there is no forcing action on the oscillator at 
normalized times . During this stage, the free vibration is caused by the displacement 
and velocity conditions attained at the end of the pulse (i.e., at 

1tη =
1tη >

dt T=  or ): 1tη =
 

 ( )( ) (1)du T d A k= , (65) 
 

 (
(1)

( ) (1)du T v A c= ) . (66) 
 

where all quantities are constant values. 
For  (or ), the relative displacement is denoted dt T> 1tη > ( )free su t , and is obtained by 

using Eqs. (7), (65), and (66). Its expression is: 
 

 
(1)

( )( ) ( ) ( ) ( ) ( )d
free s d C s d S s

u Tu t u T h t u T h tζ
ω

⎛ ⎞
⎜= + +
⎜
⎝ ⎠

⎟
⎟

, (67) 

 

where s dt t T= −  is the shifted time. Substitution of Eqs. (65) and (66) into (67), and 
substitution of the damping coefficient c  by 2 kζ ω , results in the following expression for 

( )free su t : 
 

 (1)( ) (1) ( ) (1) ( )
2free s C s S s
vu t d h t d h t

k
ζ

ζ
⎡ ⎤⎛ ⎞ ⎛ ⎞= + +⎢ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠⎣ ⎦

A
⎥ , (68) 
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This expression can be rewritten in terms of normalized time tη  and frequency Ω . For 

this, st  is substituted by , ( )1dT tη − stω  by ( )2 1tηπ Ω − , and d stω  by . This 
normalization process is defined by the following expression: 

(2 1d tηπ Ω )−

 

 ( )( ) ( [ 1]) ( )free s free d freeu t u T t d t A kη η= − = , (69) 
 

where ( )freed tη  is the normalized relative displacement, ( )( )free su t A k , of the freely 
vibrating oscillator, for . 1tη >

Figure 2 shows the normalized relative displacement response of an oscillator subjected to 
the quartic pulse. The selected oscillator has normalized frequency 1Ω = , and damping ratio 

0.1ζ = . The response is shown normalized with respect to A k , the static displacement due 
to the pulse amplitude A . 

Part (a) of Figure 2 shows the contributions to the response due to the forcing function and 
its derivatives. They are the polynomial functions listed in Table 3 (quartic, cubic, quadratic, 
linear, and constant terms). The curve indicated as All contains the sum of all these terms. 
Since these contributions are associated to Duhamel’s integral, they cease when the pulse 
does, i.e., at normalized time . 1tη =

Part (b) of Figure 2 presents contributions to the response due to the initial values of the 
pulse and its times derivatives at time zero. They correspond to the transient sinusoidal terms 
listed in Table 4. The contribution indicated as Quadratic(0) is a sinusoidal function due to 
the initial value of the second derivative of the quartic pulse. The contribution indicated as 
Linear(0) is a sinusoidal function due to the initial value of the third derivative of the quartic 
pulse. The Constant contribution is also a sinusoidal function. It is due to the initial value of 
the fourth derivative of the quartic pulse. Since these contributions are associated to 
Duhamel’s integral, they terminate when the pulse finish. That is, they are zero at . 1tη >

Part (c) of Figure 2 shows the total relative displacement response. From normalized times 
 to , this response is the sum of all individual contributions shown in parts (a) and 

(b). On the other hand, for , it shows the free vibration response due to the displacement 
and velocity conditions attained at the end of the pulse. 

0tη = 1tη =
1tη >

Figures 3 and 4 are similar to Figure 2. They are presented for comparison purposes. Both 
are for oscillators with the same damping ratio as that of Figure 2, 0.1ζ = . Figure 3 shows 
the response of an oscillator with normalized frequency 0.5Ω = , and Figure 4 presents the 
response of an oscillator with . 2Ω =

It is observed that, for the same damping ratio, 0.1ζ = , the force-derivative contribution 
corresponding to  is larger in normalized magnitude than the one corresponding to 

 and, in turn, this is larger than the one for 
0.5Ω =

1Ω = 2Ω = . This is also the case for the 
contribution due to the initial value of the force and its derivatives at time zero. However, 
even though the force-derivative and the initial-force-derivative contributions present larger 
normalized magnitudes for smaller frequencies, the maximum normalized peak response 
occurs at frequency values close to . 1Ω =

For 0.1ζ = , the maximum normalized peak displacement response, to the above quartic 
pulse, corresponds to an oscillator with 0.993Ω = . The non-dimensional value of this 
maximum is 1.51. Therefore, it is 51% larger than the corresponding static response A k . 
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Figure 2:  Displacement Response for Oscillator with ( )2 / 1dTω πΩ = =  and 0.1ζ = . 
(a) Response Contributions due to the Fo . 
e Contributions Due to the Initial Conditions of the Force and its D

ized, Total Relative Displacement Response. It Includes the Free Vibration Response for N
Time 

rce and its Derivatives
(b) Respons erivatives. 

(c) Normal ormalized 
1dt t Tη = > . 
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Figure 3:  Displacement Response for Oscillator with 0.5Ω =  and 0.1ζ = . 
(a) Response Contributions due to the Force and its Derivatives. 

(b) Response Contributions Due to the Initial Conditions of the Force and its Derivatives. 
(c) Normalized, Total Relative Displacement Response. It Includes the Free Vibration Response for Normalized 

Time 1dt t Tη = > . 
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Figure 4:  Displacement Response for Oscillator with 2Ω =  and 0.1ζ = . 
(a) Response Contributions due to the Force and its Derivatives. 

(b) Response Contributions Due to the Initial Conditions of the Force and its Derivatives. 
(c) Normalized, Total Relative Displacement Response. It Includes the Free Vibration Response for Normalized 

Time 1dt t Tη = > . 
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4    CONCLUSIONS 
 

This conference article presents closed-form expressions corresponding to  integrations 
by parts of Duhamel’s integral and to the response of SDF linear oscillators with subcritical 
damping. Due to lack of space, only final expressions are presented. However, their derivation 
process is explained. Complete derivations are presented in a Journal article that is being 
submitted for possible publication. 

thN

The first proposed expression corresponds to  integrations by parts of Duhamel’s 
integral. It is based on the use of recursive coefficients that can be written in closed form. It 
requires that the forcing function be continuous and -times continuously differentiable. It is 
not necessarily given in closed form. However, if the  derivative of the forcing function is 
zero, the proposed expression is a closed-form solution of Duhamel’s integral. Since 
polynomial forcing functions of (  degree satisfy the above conditions, they are used to 
obtain closed-form expressions for Duhamel’s integral and for the response of SDF, linear 
oscillators. 

thN

N
thN

)1 thN −

The characteristics of the proposed expression are such that they allow for proper 
identification of the different components contributing to the oscillator response. These 
components are identified as force-derivative and as initial-force-derivative terms. It is shown 
that the first ones are due to the forcing function and its derivatives. They transfer their shapes 
to the oscillator response. For polynomial forcing functions, the force-derivative terms are 
also polynomials. The initial-force-derivative terms are due to the initial values of the force 
and its derivatives at time zero. They always possess sinusoidal shapes. 

The use of the proposed expressions is presented in an example. It employs a quartic 
polynomial pulse as a forcing function. The pulse and its induced closed-form responses are 
completely defined. All response components, for relative displacement and velocity, are 
identified in tables. Also, for comparison purposes, three figures show normalized time 
histories of displacement responses for several oscillators subjected to the quartic pulse. 

Since the proposed expressions are in closed form, they constitute a ready and fast 
alternative to the classical methodologies used to solve second order, linear differential 
equations, with constant coefficients, and polynomial forcing functions. 
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