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Abstract. A mathematical model for dilute bubble plumes is derived from the two-fluid
model equations. This is coupled to a mass transfer model to get a closed CFD formulation.
The mass transfer equations used are those implemented in the 1D integral model proposed
by Wiiest et al (Water Resources Research, 28:3235-3250, 1992). Integral formulations
are widely used in hydraulics, and it is interesting to build a CFD formulation which is
based on (and fully consistent with) one of them.

The model is tested for typical conditions of isolated aeration plumes in deep wastewater
reservoirs and the results compared to those of the integral model. Good agreement is
observed, especially in the most relevant variables such as gas dissolution rates, gas holdup,
liquid’s velocity and bubbles’ radius. Furthermore, entrainment rates evaluated from the
CFD results are shown to lie within the experimental range. A solid justification for
applying CFD models to aeration plumes, as natural extensions of the popular integral
models, emerges from the investigation.

We then report two additional numerical examples. The first concerns a bubble plume
in an experimental tank, and the aim is to assess the effect of the different forces (lift,
virtual mass and turbulent dispersion in particular). The second is a constrained bubble
plume which spontaneously bifurcates into a quasi-periodic motion and has challenged
several approzimation schemes in the last years.
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1 INTRODUCTION

Air-bubble plumes have numerous applications such as pneumatic breakwaters, antifreeze
measures, silt curtains, and barriers to contain density intrusions or oil spills.' * For deep
water bodies (lakes, reservoirs) injection of air-bubbles is often used for destratification
of the water volume.>” In wastewater treatment aeration with bubble plumes has been
employed for about a century,® however its use in deep reservoirs containing biochemically
active water is an emerging application. The construction of large wastewater reservoirs is
being motivated by environmental concerns. The idea is to provide storage for combined
sewage and stormwater during big storms, so that water treatment plants can operate in
batch mode. This is an important problem in large metropolitan areas such as Chicago,
Tlinois.

Power efficiency in aeration devices for deep water bodies is essential due to the high
injection pressure needed. Design optimization with sound scientific tools is thus in order,
and numerical modeling is without doubt one of the key tools in all fields of engineer-
ing. In plume modeling simulation codes have mostly used the transversally-integrated
equations,® “? 1 based on a self-similarity assumption and the well-known entrainment
hypothesis.!? The problem is thus reduced to just one spatial dimension, at the cost of
introducing some heuristic coefficients that must be obtained from experiments.

A transversally-integrated model (frequently referred to as integral model) that ac-
counts for most of the physical and chemical processes related to aeration of reservoirs
was introduced by Wiiest et al* to help in the design of lake restoration systems. The aim
of the present article is to extend that model in a systematic way to two-fluid flow model-
ing and computational fluid dynamics (CFD). An improved formulation results which has
less empirical coefficients and can deal with arbitrary geometries. Moreover, wastewater
reservoir aeration involves the simultaneous operation of many bubble plumes. While
integral models assume the plume to be isolated, CFD formulations are the appropriate
tool to study plume-plume, plume-boundary and plume-crossflow interactions.

The two-fluid model proposed here is based on the general theory of multiphase flows!?
and has three main components:

e A hydrodynamical component that considers the main physical processes in a free
dilute bubbly flow.

e A mass-transfer component that considers oxygen and nitrogen dissolution from the
bubbles and was taken from Wiiest et al (1992)."

e A liquid chemistry component that incorporates a basic water-quality model taken
from the book by Chapra.'* The variables are dissolved oxygen concentration,
dissolved nitrogen concentration, and the biochemical oxygen demand that encom-
passes all oxygen-consuming processes.

The organization of the paper is as follows: In Section 2 a mathematical model for
dilute bubbly flows is described and justified in which the mass exchange between liquid
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and gas, together with a basic water-quality model, are incorporated. Section 3 describes
the numerical treatment of the model equations in the CFD code. Section 4 contains
several numerical results. We first compare the CFD results with those of an integral
model, obtaining excellent agreement. We then assess the effect of the different forces
(virtual mass, lift, turbulent dispersion). Finally, we show a three-dimensional example
in which the bubble plume exhibits spontaneous oscillations, which has challenged several
numerical schemes in the last years. The most relevant conclusions are drawn in Section

5.

2 MATHEMATICAL MODEL
2.1 Two-fluid model and dynamical equations

The two-fluid model can be obtained by ensemble-averaging the exact conservation equa-
tions for each phase in a multiphase flow.'? Let Xj(xz,t;v) be the component indicator
function, which for a given realization v of the flow takes the value one if phase k is
present at point x at time ¢, and takes the value zero otherwise. The following averaged
quantities are needed to write down the equations:

e y, = Xy, is the so-called volume fraction of phase k but is, in fact, the probability
of phase k.

e The averaged density and velocity of phase k are defined by

Xepu
=— Up = ——. 1
Pk o~ k A ( )

e The pressure, on the other hand, is not mass averaged,

_ kP
= — 2
Py a ()

We neglect pressure differences between the phases (P, = P, V k) and the shear stresses
at the interphase. We denote by T'; the interphase mass transfer rate (3°, 'y, = 0) and
neglect the momentum transfer arising from mass transfer between the phases. One ends
up with the following averaged equations for phase k:

Oy, py, ) -
é)ktpk +div (axpur) = Ty (3)
0 oD, —

where the effective stress T, contains both the averaged deviatoric stresses of phase k
and the fluctuation stress tensor that arises from the inertia term along the averaging
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process.'® Here k is the upwards vertical unit vector and g is the acceleration of gravity.
The interfacial forces such as drag, lift, etc. are contained in Mj, with Y, M; = 0.

The averaged equations implemented in our code consider a liquid phase (k = ¢) and
a gaseous phase (k = g). We will make use of the mizture equations, which are obtained
by adding up the balance equations of the individual phases. Let us define the mixture
quantities as:

pm = Qb+ agp, (®)
PmUm = QP + Qgp g (6)
T, = aTi+a,T, (7)
Pm = P (8)

Then, from (3)-(4) it follows that

Opm | . B
W + div (pmum) =0 (9)
apgtum + div (pmtm @ Up) + Vp, = divT, —pngk

—div [Z Py, (W — Um) @ (T — um)} (10)

Let us define the relative velocity between the phases as u, = u, — U, so that the
summation in the last term of (10) satisfies

o _ _ QgP,
Zakpk (U, — Um) @ (U, — Um) = Qgp, (1 - pg 9) Up @ Uy (11)
k

m

This term is neglected in the following since both ay, and p, /pm are assumed to be much
smaller than unity, while u, and u,, are of the same order.
Notice that

Pm = pé — Qg (ﬁ/ - ﬁg) ) (12)
so that pm, — P, ~ —ayp,. Assuming the liquid phase to be incompressible, we can now
adopt the Boussinesq approximation replacing p,, by p, in all terms but the gravity one.
This approximation is routinely applied in thermal problems with temperature differences
as high as 20° C (in water), so that one can expect it to hold for values of a; leading to
the same magnitude of density change, i.e., @, < 1072 The model as a whole is quite
simple but as shown above follow from the two-fluid model under reasonable hypotheses.
This is further discussed elsewhere.'?
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2.2 Adopted CFD formulation

Assuming in the mixture equations (9)-(10) that the stress tensor T, is dominated by
turbulent stress, adopting a k& — € model for the turbulence closure and modifying the
pressure as P, = Pm + %k the final equations are

div Uy, = fp—l* (aait + Uy, - Vp*) (13)
Oy, . .
p*% + 0" (U V) U, + VP, = div [,uT (Vum + VTum)] — pmgk (14)
k.Z
o= PO (15)

where ), = 0.09 and, to add generality to the formulation, p* may be taken as p, (Boussi-
nesq approximation) or as p,,. The equations for k and ¢, together with the treatment of
wall laws, correspond to the standard model (see, e.g., the book by Wilcox;'® our imple-
mentation is presented by Lew et al'"). No corrections for bubble-induced turbulence are
performed.

This certainly deserves a comment. Several corrections to the k—e equations to account
for the effect of bubbles have been proposed. A popular one is due to Sato et al,'® who
add 1.2pgryag|u,| to the eddy viscosity, where 7, is the bubble radius. Typical values
obtained for uz are above 10 Pa-s, while usual values are r, = 2 x 107 m, |u,| = 0.3 m/s
and a, < 1072. The correction would thus be smaller than 1072 Pa-s, which can clearly
be neglected.

Mudde & Simonin!? applied a k& — ¢ model with quite elaborate corrections proposed
by Viollet & Simonin? to simulate the plume-wandering experiments of Becker et al.!
Only after adding virtual-mass effects did they get agreement with the experimental data.
However, the 3D simulations of Sokolichin & Eigenberger?? and of Borchers et al*® with
the standard k — e model (and a constant bubble-slip velocity!) show excellent agreement.
Similar agreement was also obtained by Pfleger et al?* with again the standard model but
a drag law to calculate bubble-slip velocity. Smith,2> on the other hand, concludes that
the corrections of Viollet & Simonin?° do bring some improvement, while those of Malin &
Spalding? lead to incorrect results. We show in Section 4 that for Becker’s experiment our
model correctly predicts the observed spontaneous oscillations, thus validating to some
extent the approach in a dynamical case. Also notice that the standard & — € model has
also been favored by many other authors.?3!

2.3 The basic gas-phase model

The gas-phase model of Wiiest et al'! is quite simple. No bubble coalescence or breakup
is accounted for, so that the (averaged) number of bubbles per unit volume N, satisfies

% + div (Nyuy) = div (D,VN,) (16)
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and the bubbles are assumed to have a unimodal size distribution.
The model also assumes a bubble-slip velocity that only depends on the bubble radius,
ie.,

4474% X Tg'357 if 0<r,<7x10"*m
Ug = Uy, +wy(rp) kK, with w, =< 0232 if 7x 107*m <7, <5.1x 107°m (17)

4.2027 x O3 if > 5.1 x 107°m

where 7y, is expressed in meters. The velocity law is a fit to data presented by Haberman
& Morton.?? A thorough presentation of terminal velocities of bubbles in water can be
found in the book by Clift et al.?

In (16) we have incorporated a dispersion coefficient Dy which as proposed by Carrica
et al®* results from iy

D, = iS5 (18)
with the Schmidt number for the gas Se, taken equal to one. Moraga et al® recommend
0.83 for very small bubbles (small Stokes numbers), but it is expected to increase for
larger ones.

Finally, the gas concentration equations are introduced. We consider the gas to consist
basically of two species, gaseous nitrogen and gaseous oxygen, and we introduce the molar
concentrations Cy and Cp, defined as the number of moles of each gas per unit volume
of mizture. The following relations are elementary (R is the universal gas constant, 8.314
J/mol-K, T}, is the absolute gas temperature, assumed known, My and Mg refer to the
molecular weights of N, 28 kg/kmol, and O, 32 kg/kmol)

o, — RICx+Co) 19)
Pg

p = MM *ColMo (20)
g

The pressure of the gas is assumed to obey pog(H + H, — z), where H is the maximum
depth, H, the atmospheric head, and z the vertical coordinate measured from the point
of maximum depth. Surface tension effects are thus not modeled in the present version,
but could easily be added. Tt is unlikely that non-hydrostatic effects be significant in any
environmental plume, but would not represent a major difficulty either.

Mass balance of each species leads to

ac, . '

87;3 +div (Cou,) = So+ div (p;gchCo> (21)
aCx _ v (1

5 T div (Cyuy) = Sy o+ div (p@ SCQVCN> (22)
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where Sp and Sy are mass source terms that arise from the chemical interaction (disso-
lution) of the gas in the surrounding fluid, to be discussed in the next subsection. Notice
that MoSo + MySy = T'y. From Ny, Cp and Cy the bubble volume v, is readily
obtained,

- (Co +C N)RTQ

23
P (23)

Uy

2.4 Liquid chemistry model

We describe here the water chemistry model used by Wiiest et al,'! slightly modified so as
to account for oxygen demand. The water chemical variables are the molar concentrations
of dissolved oxygen, Cyo, and dissolved nitrogen, Cyy. together with the biochemical
oxygen demand modeled as a scalar field, L. The units of L are kg per cubic meter of
mixture. The balance equations are

ocC, ' -
a:o + uyp - VCdO = SdO + div (piécé VC’do> (24)
oC, )
5ZN +up- VO = Suy + div <pf§cz VC’dN> (25)
O v = (K1 + K3)L + div | P2V (26)
ot ¢ N ! H pgSCg

where uy, the mean liquid velocity, is assumed equal to the mixture velocity u,, and just
one turbulent Schmidt number for the liquid’s chemistry has been used, Sc¢, (usually 0.83).
The constants K; and K are given by Chapra.'* We have taken K; = 3.47 x 1076 s71,
Ky =6.94x 1070 s L,

The source of dissolved oxygen depends on the exchange with gaseous oxygen, Sp, and
on the biochemical demand L following

K
Sio = —So — M—loL (27)

while for nitrogen just the gas-liquid exchange was considered, i.e.,
Sin = =Sy (28)

The gaseous exchange is here discussed for oxygen, the case of nitrogen being analogous.
It is clear that the net exchange is Sp = AyFp, where A, is the interfacial area density
and Fp the mean molar surface flux of oxygen, defined positive when flowing from liquid
to gas. A typical model for Fp is Fo = hy,(Cao — Cyo.1), where hy, is the mass transfer
coefficient and Cqo s is the concentration of dissolved oxygen at the gas-liquid interface.
Assuming local thermodynamic equilibrium at the interface, Cyo 1 = Kopo, with Ko
the Henry’s constant and po the partial pressure of oxygen inside the bubble, po =
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psCo/(Co + Cn). The assumption that the gas inside the bubble has uniform oxygen
concentration is implicit in the previous model.

Assuming bubbles to be spherical and of uniform size at each point, A, = (36#)%1)5 Ny,
and from (23) N, = (Co + Cn)RT,/(pgw), so that A, = (367/v,)3RT,(Co + Cy)/py.
The identity, again for spheres, (367/ vb)% = 3/ry leads to the final expressions, for oxygen
and nitrogen,

3RTQ(CO + CN)hm Co
= — K - 2
So DaTs Cio 0 Dg Co+ On (29)
3RT,(Co + Cn)hm ( Cy )
S g Cin — K T 30
N Pt dN N Py Co+Cx ( )

where the mass transfer coefficient h,, is assumed to be the same for both species. It is
expressed as a function of the bubble radius, varying linearly between zero (for r, = 0)
and 4 x 10~* m/s (for r, = 6.67 x 1074 m) and leveling off at that value for larger bubbles.
We refer to Witest et al (1992) for further details. Values for Henry’s constant at 20°C
are taken as Ko = 1.3516 mol m— bar™! and Ky = 0.6788 mol m~ bar™'.

2.5 Variants of the gas-phase model

The main variant we discuss here with respect to the basic gas-phase model is to replace
the algebraic equation (17) with the gas momentum equation (4). Rearranging the terms
50 as to get an equation for the relative velocity u, = u, — u,, using the mass conserva-
tion equation and neglecting the diffusive term and the momentum transfer due to mass
transfer one gets

ou,
(pg + Compr) {W + uyg - Vur} +ou, = —=Vp+ (pr— py)gk
D,
turbulent dispersion — quag
Qg
lift — —Cr peu, X (V X uy)
811,@

remainder of inertia — — Clym pe ty - Vg (31)

N
where the first term on the left is one part of the inertia term, accounting for vir-
tual mass through the coefficient C,,,, while the second term is due to drag, with
o = 3peCplu,|/(8ry), Cp being the drag coefficient obtained from

24

it 0.75
Cp = (1+0.1Re"™) (32)

On the right we find first the pressure and buoyancy terms, and we have also identified the
terms corresponding to turbulent dispersion forces and lift forces. One thus has two alter-
natives for incorporating turbulent dispersion, either in the gas mass equation through D,
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or in the gas momentum equation through D,. We also define a bubble Schmidt number
by

HT
D, = 33
b= S (33)

3 NUMERICAL IMPLEMENTATION

The numerical implementation of the CFD model is performed with finite elements. Bi-
linear interpolation is used in the simulations discussed here. The equations are advanced
in time decomposing the time step into several substeps, as follows:

1. Pressure gradient projection: We are using an equal order formulation stabilized
by pressure gradient projection.’*3° The first step is the orthogonal projection of
the pressure gradient onto the velocity interpolation space. This is accomplished
using the lumped mass matrix.

2. Navier-Stokes system: With the calculated projected pressure gradient and the
turbulent viscosity and effective density from the previous time step, the system
(13)-(14) is solved with a backward-Euler scheme. The convection term is linearized
in the usual way, p**(u” -V)u"1. The SUPG method is used as upwinding technique
for the convection terms in all substeps.

3. k — € system: The standard equations for k and e are solved using the already
computed velocity field. The specific implementation, in particular concerning the
treatment of spurious negative values of the variables, can be found in the article
by Lew et al.*”

4. Bubbles’ slip velocity evaluation: Using (23), with Co, Cy and N, from the
previous time step, the bubble radius is calculated and the bubbles’ slip velocity
wy, evaluated at all nodes of the mesh. On the other hand, if the gas-momentum
equation is used, at this step (31) is solved for the relative velocity u,..

ot

Gaseous concentrations variables: Computing the gas velocity as ug = up,+kws
(or alternatively u, = u; + u,), the equations for Ny, (16), Co (21) and Cy (22) are
advanced in time, with the source terms evaluated at the previous time step. The
remaining terms are treated implicitly in time, with one exception: Let f be a gas
variable, then, since u, is not necessarily solenoidal, there appears a term f div u,.
This term is treated either implicitly or explicitly depending on whether div ugy is
positive or negative, respectively; and the condition is applied pointwise through
the Gaussian-points do-loop. Significant stability and robustness was gained with
this simple trick.

6. Liquid chemistry variables: Finally, equations (24)-(26) are advanced in time.
Though updated values of Cp, Cy and N, are available, the sources (29)-(30) are
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computed with values frozen at the previous time step, so that they are consistent
with those used at the previous substep and (27)-(28) hold exactly. This makes the
algorithm globally conservative.

4 NUMERICAL RESULTS
4.1 Description of the wastewater-reservoir tests

The simulations reported here are performed at prototype scale, for the case of McCook
Reservoir in Chicago, with a water depth of 77 m. Atmospheric air is injected at the
bottom through a circle of diameter 65 cm, with a molar composition of 21 % oxygen and
79 % nitrogen, at a volumetric rate (), (at the bottom pressure). Ambient concentrations
are 1 mg/liter of dissolved oxygen and 0.28 mg/liter of dissolved nitrogen. The biochemical
oxygen demand is taken as 30 mg/liter. Typical conditions are ), = 1.2 liter/s, with a
bubble radius of 2.5 mm, but simulations under other conditions have also been performed.

The CFD simulations consider axisymmetric conditions, so that a 2D mesh of 8000
bilinear quadrilaterals is adopted. This mesh is called COARSE mesh, the minimum
element sizes are Ar = 14 mm and Az = 32 mm (see Fig. 1). The FINE mesh used in
the convergence study is obtained by dividing each quadrilateral into four, so that the
grid size is halved.

Figure 1: Mesh used in calculations at reservoir’s scale.

The domain extends horizontally up to a radius of 100 m, which is large enough for
finite-size effects to be negligible (the downwards counterflow at the exterior boundary
has a velocity of 0.4 mm/s, less than 0.3 % of the plume’s velocity). Symmetry conditions
were imposed at the artificial vertical boundary. The same was done at the top boundary
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for the liquid phase, while for the gas phase the top surface is an outflow boundary. The
logarithmic smooth-wall law was imposed at the bottom. Since we are analyzing processes
in the plume’s vicinity, simulations were run for about 3000 seconds of simulated time
(time steps used were in the range 1-4 s), for which all the near-plume variables are stable.
The full establishment of the far-field flow for this geometry takes more than ten times
that value, but the plume’s quantities discussed here are not affected.

4.2 CFD results

Let us overview some sample CFD results at nominal conditions @), = 1.2 liter/s, inlet
bubble radius of 2.5 mm. In Fig. 2 the velocity field is depicted. The conical shape of the
plume is evident, up to a depth of about 15 m (z = 52 m) where the effect of the surface
becomes significant and lateral spreading begins. This surface-affected depth (about 25
% of total depth) is in agreement with observations by Ditmars & Cederwall.?

0.04 .
' 0.02

0.20

(a) (b)
Figure 2: Velocity field u,, obtained with the CFD code. Q, = 1.2 liter/s and 7, = 2.5 mm at the inlet.

(a) Velocity vectors and a few selected streamlines. (b) Equispaced velocity-modulus contours, contour
interval is 0.02 m/s. The maximum of |uy,| over the domain is 0.425 m/s.

Figure 3 depicts some CFD results concerning the gaseous phase. In part (a) of the
figure the volume fraction a, is shown. Practically all the plume has o, < 1072 Part
(b) shows the bubble radius. In part (c¢) the molar fraction of oxygen in the bubbles’
gas is shown. The simulation predicts that the gas leaving from the surface (which in
fact is only 11% of the injected gas) is largely oxygen-depleted to about 6%. Notice also
the horizontal gradients in the gas composition; this affects the partial pressure of each
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species inside the bubbles and thus the mass transfer at the interface (see Eqgs. 29 and
30).

28 7.
\ o 6%
25|’
1.0E-05
8%| .
23— )
3.0E-05 10%
7
1.0E-04 12%|
g
14%]| -}
3
H
7 16%|
3.0e-04 i
2.5 = 18%| |
1.0e-03

(a) (b) (©)

Figure 3: Results of the CFD code for the gaseous phase variables. (a) Volume fraction ag. (b) Bubble
radius in mm (only calculated where N, > 10 bubbles/m?). (c) Molar fraction of oxygen in the gas.

To check grid-independence of the results a run with the same nominal conditions
was run with mesh FINE, which has 200 x 160 quadrilaterals and half the mesh size
of the previous run. In Fig. 4 we show comparisons of the results obtained with both
meshes along the centerline. Not only good agreement is found in the velocity and oxygen
concentration, but also in the turbulent variables (k and €). In the same figure the results
at t = 2000 s are shown, proving the steadiness of the flow variables at the plume.

4.3 Comparison of results of CFD and 1D codes

Most important concerning aeration plumes are global parameters such as the fraction
of the injected air that dissolves in the water and the so-called gas holdup, defined as
the amount of gas present in the water column at each given instant. For plumes with
inlet bubble radius of 2.5 mm these quantities are plotted as functions of @, in Fig. 5.
In part (a) we compare the fraction of air dissolved (FAD) as calculated with the CFD
code to that obtained with the 1D model described elsewhere.!® A quite good agreement
is observed over the whole range 0.1 3 liter/s. The decrease in FAD with @, is due to
the smaller residence time of each bubble in the water column, due to the increase in the
liquid’s velocity with @,. This is coherently predicted by both models. For @, > 2 the
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Figure 4: A comparison of the numerical results obtained using meshes FINE and COARSE, for instants
t = 2000 s and t = 3000 s, so as to check grid-independence and steadiness of the solution. We plot, as
functions of z, the following variables along the centerline: (a) Vertical liquid velocity, (b) gaseous oxygen
concentration, (c¢) k, (d) e.
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FAD in the CFD results tends to level off, while the 1D results keep decreasing with Qg,
but both results differ by less than a few percents so that this discrepancy was not further
studied. In part (b) a similar comparison is shown for oxygen and nitrogen holdups, with
good agreement.

80.98 T T S100 T T T
% |+ CFD —— | E 90 - —— Oxygen, CFD i
m096 . o .
0 2 80 - -+-- Oxygen, 1D I
0.4 S --g-- Nitrogen, CFD
® 70 x - Nitrogen, 1D oA
] A
£0.92 60 L T i
g 09 50 - e 1
T B g3 i
0.88 40 o
30 el b
0.86
20 - JEi B
0.84 - — 10k
| | | | | 0 |
0.82 0 05 1 15 2 25 3 0 05 1 15 2 25 3
Qg [liter/s] Qg [liter/s]
(a) (b)

Figure 5: Comparison of global parameters obtained from the CFD and 1D results. (a) Fraction of the
injected gas that dissolves in the plume. (b) Gas holdup, discriminated by species. Both as functions of

Q-

We compare the mean vertical liquid velocity in the plume as calculated from the CFD
results to those predicted by the 1D model in Fig. 6 (a), for @, = 0.3, 1.2 and 3.0 liter/s.
The agreement is quite good except in two regions: The first few meters and near the
surface. The latter is natural, since the free-surface condition is not accounted for in the
1D model. The discrepancies in the first few meters, on the other hand, are explained by
the different flow geometries near the diffuser assumed by the two models.

In Fig. 6 (b) we compare predictions of the CFD and 1D models for bubbles’ radius
variations with z. The CFD result shown is the bubble-flux-weighted horizontal mean

_( ) fS(z) TbNb(um ‘n+ wb)dS
To(2) =
l Jsizy No(m -1+ wy)dS

One observes that the r, predicted by the CFD model is larger than that from the 1D
model. This difference must be regarded as a discrepancy between the models. However,
it is not observed to be larger than 5-10 % for the cases analyzed.
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Figure 6: Comparison of vertical profiles of (a) mean liquid velocity (denoted by w in the text) and (b)
mean bubble radius, for several values of Q.

4.4 Entrainment coefficient

The entrainment coefficient was evaluated from the plume’s volumetric flux, momentum
flux, width and velocity. This is shown for a particular case (Q, = 1.2 liter/s) in Fig. 7,
but the behavior is quite the same in all the runs made. The values are of the order of 0.1,
decreasing from the diffuser upwards. Notice that the analysis was carried out between
z = 15 m and z = 45 m, where no effects of the bottom wall or of the free surface is
noticeable.

Milgram!® obtained quite similar values in his experiments in a 50-m deep reservoir
with Q, = 4.1 liter/s (o =~ 0.085, after multiplying his values by v/2 because of a difference
in the definition of ). Milgram measured entrainments coefficients that increased with z,
contrary to our CFD results, but most of his data are at extremely high gas flow rates. The
data of Fannelop & Sjoen as analyzed by Milgram!® also exhibit entrainment coefficients
that agree with our CFD results. For @, = 2.5 liter/s they obtained a =~ 0.1, increasing up
to a = 0.14 for @), = 12 liter/s. Remarkably, their data also show entrainment coefficients
that decrease with z, particularly for the lower flow rates. Other available values of v also
fall in the range 0.07-0.12.%%° Entrainment coefficients obtained from the CFD code are
thus in reasonable agreement with experimental data, notwithstanding the simplicity of
the turbulent model employed.

Since the radial profiles of a, and of the vertical component of u,, are almost exactly
Gaussian, it is easy to evaluate the ratio of the two widths, denoted by A(z), from the
CFD results. As shown in Fig. 7, a fairly constant A of approximately 0.7 is obtained.
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Figure 7: Values of a and A as obtained from the CFD results, as functions of z, for the simulation with
Qg = 1.2 liter/s.

This is in agreement with the values reported by Milgram!® and by Tekeli & Maxwell.*

4.5 Simulation of an experimental tank. Assessment of forces

The purpose of this section is to compare the performance of different alternatives to
represent the turbulent dispersion and to assess the relative influence of the forces in (31).
A tank with the geometry shown in Fig. 8 was adopted. Experiments are being carried
out in this tank and comparisons with the simulations will be reported in the future. The
gas inflow takes place through a diffuser of 0.42 m in diameter. An airflow rate of 1.3
scfm was considered, together with a bubble size of 2.5 mm. A mesh of 4900 quadrilateral
elements was used (see Fig. 8).

Let’s begin comparing the performance of the model which computes the gas velocity
from (17), which we denote as Test 1 in Table 1, with that which solves the gas momentum
equation (31), but including only the forces of drag and buoyancy (Test 2 in Table 1). This
allows us to address any discrepancy in the prediction of the gas velocity and its relation
with the liquid mean flow field. In that regard, the vertical velocity, turbulent kinetic
energy and void fraction were chosen as representative variables to base the comparison,
for two heights above the diffuser (3 and 6 m). Figure 9 shows that the liquid’s velocities
computed in Test 1 are larger than those of Test 2. A similar trend is observed in terms
of the turbulent kinetic energy (Figure 10). For the void fraction the larger differences are
located far from the centerline (Figure 11). The reason of the discrepancies is that the
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6.89m
Figure 8: Geometry and mesh for the simulation of the experimental tank.
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gas slip velocities in the bubble core predicted in Test 2 (not shown herein) are about 0.4
m/s, much larger than the 0.23 m/s predicted in Test 1. This is not surprising, since the
relation (32) is valid for small bubbles*+42 but may underestimate Cp for intermediate
ones.?® With all, it is fair to recognize that the differences in the predictions of the main
flow variables are well below 15 %, which is of the order of the empirical errors involved.

Next step consisted in investigating to what extent it is equivalent to add turbulent
dispersion via the coefficients Dy, which enters the mass-conservation equation, or D,
which enters the momentum equation in the turbulent-dispersion force. For this, we fixed
the total effective Schmidt number,

1\
Ser = (ch + Scb>
to 0.83 so as to make things comparable. Several tests were done covering a wide range
of cases, but only one representative result is presented as Test 3. Test 2 represents the
test in which all the dispersion is undertaken by D,, while in Test 3 D, only accounts for
1/4 of the dispersion and D, for the remaining 3/4. In Figs. 9-11 it is observed that for
this case practically no differences arise. Turbulent dispersion can thus be treated within
the gas mass conservation equation, which is numerically more stable.

The third step consisted in comparing the results of the model activating one force
(other than the drag force) at a time. Since the lift force points in a direction perpendicular
to the local mean flow, changes are expected. Also, changes could be expected when
introducing the virtual mass force, as pointed out by Smith.?®

Two tests were undertaken: Test 4 includes only the lift force whereas Test 5 considers
only the virtual mass force. The values adopted for the coeflicients included in the lift and
virtual mass forces were 0.1 and 0.5, respectively. Figures 9-11 show that the differences
between Tests 4 and 5, and Test 2 are relatively small.

All the above tests were done taking p* = p,, in (13)-(14). Test 6 is equivalent to Test
2 but taking p* = p,. Again, no significant changes appear.

Summarizing, the simulations show that the basic gas-phase model discussed in the
previous sections has no major differences with more “mechanistic” models such as (31).
We expect this to be true for large and dilute plumes, as discussed in Section 2 (see also'®).

4.6 Simulation of spontaneous plume wandering

The last numerical example we discuss here is that of a flat bubble column with a mod-
erate gas throughflow, which is thoroughly detailed by Becker et al.?! The importance of
this flow setup is that it spontaneously bifurcates to a quasi-periodic motion with large-
scale vortices continuously changing location in time at low frequencies.?? It constitutes
a stringent test to numerical methods because overdiffusive schemes do not capture the
bifurcation and yield steady-state solutions that are just numerical artifacts.?? The ge-
ometry consists of a rectangular prism with width 50 cm, depth 8 cm and height 150 cm.
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Figure 9: Comparison of profiles, at z = 3 and 6 m above the diffuser, of the liquid vertical velocity for
the different tests. All tests except 1 and 3 are practically superposed.
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Figure 10: Comparison of profiles, at z = 3 and 6 m above the diffuser, of the turbulent kinetic energy
for the different tests. All tests except 1 and 3 are practically superposed.
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Figure 11: Comparison of profiles, at z = 3 and 6 m above the diffuser, of the void fraction for the
different tests. All tests except 1 and 3 are practically superposed.

Tests 1 2 3 4 5 6
Seq 0.83 10.83 | 3.32 | 0.83 | 0.83 | 0.83
Sy NA | oo | 1.107| oo o0 00

Lift force NA | NO | NO | YES| NO | NO

Virtual mass force NA | NO | NO | NO | YES | NO
Gas velocity equation | (17) | (31) | (31) | (31) | (31) | (31)

pr= P | Pm | Pm | Pm | Pm | pr
Time step (s) 04 01 01 [01] 01701

Table 1: Summary of the tests performed
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A gas distributor is mounted at the bottom at a distance of 15 ¢cm from the left side of
the column, and injects 0.0264 liters of gas per second.

In Fig. 12 we show the successive snapshots of the gas concentration field on the mid-
plane, with a time interval of 5 seconds. The phenomenon of “plume wandering” is well
captured by the proposed methodology.

5 CONCLUSIONS

In this article we have derived a multidimensional mathematical model for dilute bubbly
two-phase plumes from the two-fluid model equations. The necessary approximations
were discussed and later shown to hold in some cases of interest. The closure relations,
in particular concerning Reynolds stresses and turbulent dispersion of the bubbles, were
taken from simple models that are reasonable in view of the present knowledge on the
subject.

Further on, a mass transfer model was presented that coincides with that of the integral
model proposed by Witest et al (1992).! By coupling this model to the aforementioned
two-phase flow model a CFD version of the 1D model was obtained.

A set of runs was performed for the conditions of a deep, biochemically active reservoir
with a single, isolated plume using both a 1D model and the proposed CFD code. By
direct comparison good agreement, between both models is observed for the most relevant,
variables such as gas dissolution rates, gas holdup, liquid’s velocity and bubbles’ radius.
In addition, the entrainment coefficient derived from the CFD results was shown to be
consistent with available experimental results. The same was shown for the ratio of the
bubbly core width to the plume width.

Our objective has been to present a fully consistent picture of 1D and CFD models for
bubble plumes through both mathematical derivation and direct comparison of numerical
results. From the good agreement, CFD models can be seen as natural extensions of
integral models which have been developed and experimentally verified by the environ-
mental fluid dynamics community over the years. This extension of 1D models to CFD
ones is obviously necessary to address many technologically relevant phenomena, such as
plume-plume interactions and plumes confined within complex boundaries or immersed
in complex crossflows.

In these more complex conditions more elaborate models may prove necessary. One
such model, with a complete momentum equation for the gas phase has also been pre-
sented, and the effect of the different forces on the behavior of a large-scale bubble plume
has been assessed. It has been confirmed that the two alternative methods of treating
turbulent dispersion yield undistinguishable results for the cases considered, that the lift
and virtual mass forces are negligible, and that the proposed method is able to capture
the experimentally-observed spontaneous bifurcation to a quasi-periodic flow in a confined
bubble plume.
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Figure 12: Successive snapshots of the gas concentration field on the mid-plane of the confined bubble
plume. Time interval between snapshots is 5 seconds.
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