
����

���������	�
�����

���������������
�����

�����������������������������������
�� �
�����!����"

#�������� �$%&��������������''���%%���()(��((*

FAIPA_MDO – A Feasible Arc Interior Point Algorithm for 
Multidisciplinary Design Optimization 

 
José Herskovits,* Paulo Mappa*, and Anatoli Leontiev+

 
 
 
 

*COPPE / Federal University of Rio de Janeiro, Mechanical Engineering Program, 
Caixa Postal 68503, 21945 970 Rio de Janeiro, Brazil. 

e-mail: jose @ com.ufrj.br, Web page: http:// www.pem.ufrj.br/prof/jose 
 

+Instituto de Matemática, Universidade Federal do Rio de Janeiro, 21945 970, 
Rio de Janeiro, RJ, Brazil 
e-mail: anatoli@im.ufrj.br 

 
 

Key words: Multidisciplinary optimization 

 
Abstract. We present a new Numerical Optimization Algorithm for MDO based on FAIPA. 
FAIPA_MDO employs a Mathematical Programming Model that works with linking variables and 
equality constraints to introduce the interaction between disciplines. The state variables of each 
discipline are considered unknowns of the Mathematical Program and the state equations are included 
as additional equality constraints. Then, the state equations are solved at the same time as the 
optimization problem. FAIPA_MDO interacts with the Simulation Codes corresponding to each 
discipline at each of the iterations of the optimization process. 

 
 



����

#� �#����������
�����&��+
$�
����� ���
������� �$%&���������#�������������������������������������������������������������������������

 

1 INTRODUCTION 

Multidisciplinary Design Optimization, MDO, “can be described as a methodology for design of 
complex engineering systems that are governed by mutually interacting physical phenomena and made 
up of distinct interacting subsystems”1. 
 
Modern design techniques require numerical models of each of the parts of the system and each of the 
interacting physical phenomena. These models were generally developed independently, as well as the 
simulation codes based on them. From a practical point of view, to be successful, MDO must be based 
on existing codes, as they are. It is not reasonable to ask engineers and scientists working in the 
different disciplines to modify their mathematical and numerical models and the corresponding 
computer codes to adapt them to MDO.  
 
MDO problems are naturally very large. They normally deal with a large number of design variables 
and include the state variables and constraints coming from all disciplines as well as the interaction 
between disciplines. Several techniques were developed to overcome this difficulty. Most of them try 
to decompose the problem into smaller sub problems or to work with reduced models for analysis 
and/or optimization.  
 
FAIPA_MDO is a numerical optimization algorithm for MDO that works with a model that considers 
the complete problem without reductions, decompositions or simplifications. This goal is very 
ambitious due to the size and complexity of the problems, but it can be a way to obtain strong and 
efficient tools for MDO. 
 
This model works with linking variables and equality constraints to introduce the interaction between 
disciplines. That is, the objective function and the constraints depend exclusively of the design 
variables. In the classical approach for Design Optimization, the state equations that represent the 
systems to be designed are solved at each of the iterations of the optimization process. Our approach 
also admits the Simultaneous Analysis and Optimal Design technique (SAND), which consists on 
adding the state variables to the design variables and including the state equation as additional equality 
constraints. Then, the state equation is solved at the same time as the optimization problem. 
 
FAIPA_MDO is based on FAIPA, the Feasible Arc Interior Point Algorithm2,3. It takes advantage of 
the particular structure of MDO problems and allows classical or SAND optimization. The present 
algorithm includes several techniques for very large size problems as an extension for constrained 
optimization of Limited Memory quasi–Newton method and iterative numerical techniques for the 
solution of the internal systems of FAIPA. In the case of SAND Optimization the size of the problem 
is reduced by a formulation that requires the solution of the tangent equilibrium equation. The internal 
solvers of Engineering Analysis codes can be employed to do these computations.   
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2 A MODEL FOR MULTIDISCIPLINARY OPTIMIZATION 

Let us consider the Optimal Design of Engineering Systems represented by a State Equation 
, where .  The equation depends on the parameters , that we call design 

variables, being  the state variables.  In most applications of Structural Optimization, the State 
Variables are the nodal displacements and the State Equation is given by the Equilibrium.  

0)u,x(e rRe
rR

nRx

u

 
The classical model for this problem can be represented by the Nonlinear Program 
 

                                     subject to     (1) 
  ,0))x(u,x(h     and         
 0))x(u,x(g     

))x(u,x(f   Minimize
x

 
where  solves the state equation for ,  f  is the Objective Function, g  R)x(u x m  and  h  Rp   are the 
sets of inequality and equality constraints respectively.  We assume that f, g and h are continuous, as 
well as their first derivatives. 
 
The problem (1) is solved iteratively. At each of the iterations, the state equation must be solved and 
the sensitivity of the state variables must be computed. If the solution of the state is iterative, the 
whole process can be very painful. This is the case of  Nonlinear Structures Optimization. 
 
 The Simultaneous Analysis and Optimal Design (SAND) method consists on adding the state 
variables to the design variables and including the state equation as additional equality constraints. 
Then, the state equation is solved at the same time as the optimization problem. This is very 
advantageous in the case of nonlinear systems but, on the other hand, the size of the Mathematical 
Program is greatly increased. The Nonlinear Program for SAND Optimization is stated as follows: 
 

                                                    (2) 

 .0e(x,u)              and
0)u,x(h                   
0)u,x(g     subject to

)u,x(f   Minimize
ux,

 
 
We consider now the MDO of an Engineering System integrated by “ne” subsystems and/or 
disciplines. The State Variables of the subsystems are u=(u1, u2,…,une).. We define a vector of linking 
variables “z” that represent the physical interactions between all the disciplines. The State Equations 
of the disciplines can then be represented by e1(x,z,u1), e2(x,z,u2), e3(x,z,u3),…, ene(x,z,une). We 
introduce the equality constraints h(x,z,u)=0 that impose compatibility of the interactions between 
disciplines.  
 
As an example, we consider the case of Structural and Aerodynamics Multidisciplinary Optimization 
of airplanes and their components. The aerodynamics efforts acting on the structure can be included in 
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“z” as linking variables. These efforts are computed by the aerodynamic analysis code as functions of 
the aerodynamics state variables “uad” that represent velocities. In the present model, the equality 
constraints h(x,z,u)=0  impose that at the Optimal Design the efforts computed by the aerodynamic 
analysis are the same as the efforts, included in “z”, employed as input of the structural analysis 
 
Then, the MDO problem can be formulated as follows: 
 

                                                        (3) 

 .0u),(x,ze              and
.....................                   
0)u,z,x(e                   
0)u,z,x(e                   

0)u,z,x(h                   
0)u,z,x(g     subject to

)u,z,x(f   Minimize

ne

2

1

uz,x,

 
FAIPA_MDO solves Muldisciplinary Optimization Problems formulated as in (3). In the next section 
a view on FAIPA is given. 

. 

3 FAIPA – THE FEASIBLE ARC INTERIOR POINT ALGORITHM 

FAIPA makes iterations on the primal and dual variables of the optimization problem to solve Karush 
- Kuhn - Tucker optimality conditions. Given an initial interior point, it defines a sequence of interior 
points with the objective monotonically reduced. At each point, a feasible descent arc is obtained and 
an inexact line search is done along this one. 
 
At each of these iterations, to compute a feasible arc, FAIPA solves three linear systems with the same 
matrix. There is classical a quasi-Newton version of FAIPA and also a Limited Memory quasi-Newton 
algorithm4. FAIPA_SAND is an algorithm for Simultaneous Analysis and Optimization that solves the 
problem in a very efficient way and takes advantage of numerical tools normally included in 
Engineering Analysis software. 
 
To describe the computations of FAIPA, we consider the basic nonlinear optimization problem with 
equality and inequality constraints: 
 

  ,0)x(h     and         
 0)x(g     subject to

)x(f   Minimize
x

     (4) 

with f, g and h defined as above. 
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FAIPA computes at each of the iterations a descent direction d0 by solving 
 
 

                                      (5) 
)x(h

0
)x(fd

00)x(h
0)x(G)x(g

)x(h)x(gB

0

0

0

 
 
where is a quasi-Newton matrix, and are estimates of the Lagrange multipliers and 
G(x)=diag[g(x)] and are diagonal matrices. The linear systems come from a primal dual 
iteration so solve Karush-Kuhn-Tucker optimality conditions. 

nxnRB 0 0

)diag(

The following system with the same matrix gives a “Centering Direction” d1: 
 

                                           (6) 
0d

00)x(h
0)x(G)x(g

)x(h)x(gB

1

1

1

 
In Herskovits(1998)3  it was proved than taking , with then 

 is a “Feasible Descent Direction”. 

)x(fd/)x(fd)1( t
1

t
o ),1,0(

1d ddd
Another centering direction that compensates the curvature of the constraints is given by 
 
 

                                             (7) 
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~
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00)x(h
0)x(G)x(g

)x(h)x(gB

 
where 

d)x(h)x(h)tdx(h

,d)x(g)x(g)dx(g

t
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are estimates of the second derivatives of the constraints on the direction d. 

Once computed , dd 0 and  a line search is performed along the Feasible Arc: 
~
d

 
~

2 dttdx)t(x  
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to find a new feasible point with a lower cost. . The Feasible Arc is represented in Fig. 1. 
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Fig.1- The Feasible Arc 
 
 
Solving the linear systems (5-7), even if their matrix is the same, require the heaviest internal 
computations of FAIPA. The size of these systems is equal to the number of variables plus the total 
number of constraints. FAIPA includes several techniques to solve them5. When the classical quasi – 
Newton method is employed, B is a full matrix. However FAIPA can work with limited memory 
quasi – Newton method avoiding the storage of B. In this the number of equations are equal to the 
number of constraints only. 
 
In the case when FAIPA is applied to solve the SAND Problem (2), the size of the internal linear 
systems is much increased since the number of degrees of freedom of the state equation is generally 
much more larger that the number of design variables.  
FAIPA_SAND reduces the size of the systems by eliminating the state variables and the state 
equations. This elimination requires the solution of linear systems obtained by derivation of the state 
equation. The complete formulation of FAIPA_SAND can be found in Herskovits(2001)6. 
 
 

4 THE FAIPA_MDO ALGORITHM 

FAIPA_MDO extends FAIPA_SAND to the case of the MDO Problem (3) when several state 
equations corresponding to the subsystems are solved simultaneously with the optimal design 
problem.   
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Given initial values for the Design Variables “x”, the State Variables “ui” corresponding to all the 
subsystems and the Linking Variables “z”, FAIPA_MDO generates a sequence converging to an 
optimal point that verifies the State Equations and the Compatibility Equations. The initial point only 
needs to verify the inequality constraints. 

FAIPA_MDO solves at each iteration linear systems with the matrix 
 

(

8) 

00]Du)u,z,x(h)u,z,x(h[
0)u,z,x(G]Du)u,z,x(g)u,z,x(g[

)]u,z,x(hDu)u,z,x(h[ )]u,z,x(gDu)u,z,x(g[B
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where is a reduced quasi – Newton matrix computed as in Herskovits(1996)nn
_

RB 7 , 
       

                                                       (9) )u,z,x(e)u,z,x(eu 1t
u

 and 
 

                                               .    (10) )u,z,x(e)u,z,x(eDu t
z,x

1t
u

 
Since the State Equations are uncoupled, to compute and Du the following systems have to be 
solved: 

u

 
ne,...,2,1ifor   )u,z,x(eu )u,z,x(e iii

t
ui

   (11) 
and 
 

   .ne,...,2,1ifor    )u,z,x(eDu )u,z,x(e i
t

z,xii
t
ui

   (12) 
 
The systems (11) and (12) can be solved by employing the Engineering Analysis code corresponding 
to each discipline. We remark that )u,z,x(e i

t
u  is the so-called Tangent Matrix and that the size of 

the reduced matrix M is the same as the matrix of system (5), corresponding to Problem (2).  
 
A simplified flow diagram of FAIPA_MDO is represented in Figure 2. The step-length is defined by 
an inexact line search iterative procedure7. Each of the iterations requires the calculus of all the 
functions and derivatives of equality constraints.  
 
The stopping criterion of the main algorithm includes verification, with a given tolerance, of Karush – 
Kuhn – Tucker optimality conditions and state equations of all the subsystems. 
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s.t.  0)u,x,x(g
 

 
           Fig. 2 – Flowchart of FAIPA_MDO 

5 CONCLUSIONS 

FAIPA_MDO is based on the Mathematical Program (3) that represents exactly the aim of 
Multidisciplinary Design Optimization and it is proved global and superlinear convergence of FAIPA 
for this kind of Nonlinear Optimization Problems. The required computer effort is very competitive. 
When the state equations are not linear, it is not necessary to solve them at each of the iterations, but 
merely a linear system with the tangent matrix. 
 
FAIPA_MDO interacts very easily with existing Engineering Analysis techniques and codes. In 
consequence, with FAIPA_MDO is very easy to integrate the Engineering Teams working in the 
Analysis and Design of the interacting disciplines and subsystems. 
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