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Abstract. We propose a numerical method for the computer simulation of the forest
impact on aquifers. By this phenomenon it is mean the raising or the lowering of the
groundwater table under the areas felled or recovered by the trees. The mathematical model
of the forest impact includes a boundary-value problem with free and contact boundary
conditions. Numerical results for an illustrative 2D test problem are discussed. The test
shows that even in our model of forest impact, that takes into account only some principal
characteristics of this phenomenon, the water table lowering owing to the forest suction is
significative enough to be considered as an effective means for control of groundwater.
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1 INTRODUCTION

By the forest impact on aquifers we meant the effect of raising or lowering of the ground-
water table under the areas felled or recovered by the trees, see Fig. 1. To study this
phenomenon the use of experimental methods is common

1,2,3
. The experiments consist in

real scaled monitoring of the water table response under a forest area and can take many
years. To predict the groundwater level reduction, water balance models are applied

1
.

In this paper we propose a numerical method to computer simulation of the forest im-
pact on aquifers. Assuming the hydromechanical point of view we treat this phenomenon
as a problem of unconfined flow in porous media with possible fluid discharge (evapora-
tion) through the water table owing to the tree roots suction. The location of the water
table under the forest suction effect, the flow characteristics as well as the region of the
contact of the aquifer with the tree roots system are the unknowns of this problem.

The two dimensional model of the forest impact phenomenon considered here includes
a boundary-value problem with free boundary and contact conditions

4
. This model fur-

nishes all the components necessary to numerical simulation of the forest impact. Having
the information about the forest area (location, depth of the tree roots system, trees plan-
tation density and intensity of the species evaporation) and hydrologic data of the region,
the behavior of the water table under the controlled area can be simulated for different
kind of the natural recharge and the optimal location of the plantation can be defined in
order to minimize (maximize) the forest effect at the controlled area.

The phenomenon of unconfined steady flow through porous media belongs to the cat-
egory of free boundary value problems. The problem is defined over the domain a part
of the contour of which, called free boundary, is unknown a priori and can be found as a
component of the solution.

Amongst the methods to solve the unconfined steady flow problems one can point out
analytical, iterative and transformations methods. The analytical solution can be ob-
tained with the theory of analytical functions for linear ordinary differential equations

5
.

In the iterative method, one of two conditions defined at the free boundary is chosen to
solve at each iteration the direct value problem. Guessing an initial approximation, the
location of the free boundary is adjusted at each iteration to make the other boundary
condition hold, then the direct problem is re-solved, etc

6
. The method of transformation,

known as ”Baiocchi’s transformation”, consists in changing the problem variable to trans-
form the free boundary domain into a fixed domain

7
. The problem on this new domain

takes on the appearance of a variational inequality. All this method were proposed to
solve the classical seepage problem, i.e. the problem of unconfined steady flow without
any infiltration (or vaporization) effect on the water table. Unlikely even for the problem
with a prescribed infiltration zone the analytical solution can be obtained only for some
particular cases

8
. As for the Baiocchi’s like transformation applied to the forest impact

problem, its leads us to a quasivariational inequality
4

that is not easy to be implemented
numerically.
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Figure 1: Water table and tree roots system interaction scheme  
 

 
                                      Figure 2: Unconfined fluid flow with suction 
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Our technique to solve the forest impact problem is based on the shape optimization
approach. We transform our free-contact boundary problem into a least squares like
shape optimization problem. The objective functional contains one of the free boundary
conditions, whereas the state equation together with the rest of the boundary conditions
become the problem constraints. It is sought for the minimum of objective with respect
to the shape of water table. This approach for classical problem was used with finite
elements descretization

9
.

In most cases the methods to solve numerically the shape optimization problem use an
optimality system. The state variable is considered as a function of the design variable
that defines the shape of domain. This involves the following procedure, known as shape
sensitivity analysis

10
: for a fixed shape of the domain at each iteration we calculate the

derivative of the state variable with respect to design variable.
The method we use in this paper for solving the shape optimization problem is based

on the mathematical programming technique
11

. In contrast to methods involving sensi-
tivity analysis, we consider the state of the system and the design variable as independent
variables. Performing the boundary elements discretization, we get a mathematical pro-
gramming problem: find the minimum of a objective function subject to some equality
and (or) inequality constraints. The equality constraints arise from the discretization of
the state equation and define the relationship between design and state variables. To solve
this nonlinear mathematical program we use Herskovits’ interior point algorithm

12
. The

numerical example of the forest impact problem is shown and compared with different
situations including the classical seepage problem.

2 FOREST IMPACT PROBLEM FORMULATION

The difference between the forest impact problem
4

and the classical seepage problem
5

is
in the possibility of the flow flux through the water table, which can appear when the
aquifer attains the tree roots system. Let R be an open and, for the sake of convenience,
rectangular domain occupied by the porous media and S the tree roots system of the
deepness d > 0, see Fig. 2. The fluid is assumed to be ideal, the porous media is
homogeneous and isotropic with the permeability coefficient equal to 1. We suppose that
at the part of the water table that reaches the tree roots system bottom S◦ there is the
suction flux with given rate ε(x). The left wall Γw of S is assumed impermeable. The
contact area between the aquifer and tree roots system is a priori unknown and can be
defined together with the location of the rest of the water table Γλ, seepage Γσ and the
velocity potential u in Ω. We suppose also that the function ϕ(x) that defines the portion
Γλ \ S◦ of the water table, Fig. 2, is decreasing and denote h◦ ≡ h1 − d.

For the forest impact problem we define at the parts Γ1,Γ2,Γ◦ and Γσ of the boundary
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∂Ω the same conditions as for the seepage problem
5
, i.e.




u = h1 on Γ1,
u = h2 on Γ2,
u = y on Γσ,
q = 0 on Γ◦.

The part of the water table that does not contact S remains to be the free boundary
and we put here conditions u = y and q = 0. When Γλ ∩ S◦ �= 0 we have the flow with
given rate ε(x) through this part of the water table Γλ toward the interior of S. Thus, we

obtain the following mathematical formulation for the forest impact problem
4
:

(P)




Find ϕ(x)and u(x, y) such that:




∆u = 0 in Ω,
u = h1 on Γ1,
u = h2 on Γ2,
u = y on Γσ ∪ (Γλ \ S◦),
q = 0 on Γ◦ ∪ (Γλ \ S◦),
q = −ε(x) on Γλ ∩ S◦,

where q ≡ ∂u/∂n and n is the outward normal to Γ◦ ∪ Γλ.
At the water table we have conditions that take the form of free or contact boundary

conditions. We call its ”free-contact” boundary conditions. While for the classical seepage
problem there exists an equivalent formulation as a variational inequality, that can be
used to solve its numerically, we have a quasivariational inequality in the case of the
forest impact problem

4
.

In fact, let us consider the transformation:

w(x, y) =

∫ ψ(x)

y

(u(x, t) − t)dt+ w◦(x) in Ω, (1)

where ψ(x) a function that describe the whole water table Γλ and the function w◦(x) is
defined in the following form:

w◦ ∈ C1[0, l], w◦(0) = d2/2, w◦(l) = 0,

w′′
◦(x) = −ε(x) on [0, l◦], w′′

◦(x) = 0 on (l◦, l].
(2)

Here the interval [0, l◦) corresponds to the contact part of the water table and (l◦, l] to
the free one. Let g(x, y) be a function of class C1(R) such that g = w on ∂R and K a
nonempty, convex and closed subset of H1(R):

K = {v ∈ H1(R) | v ≥ w◦ in R and v = g on ∂R}. (3)
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Then, we have the following result:

Theorem 1. Let {ϕ, u} be a solution of problem (P), ϕ(x) is smooth, u ∈ H1(Ω)∩C◦(Ω),
w is given by formula (1), w◦(x) is defined by conditions (2), w◦(x, y) ≡ w◦(x) for (x, y) ∈
R and

w(x, y) =

{
w(x, y), (x, y) ∈ Ω,
w◦(x, y), (x, y) ∈ R \ Ω.

Then w satisfies:

w ∈ K,
∫

R

(wx(v − w)x + wy(v − w)y)dxdy ≥ −
∫

R

(v − w)dxdy, ∀v ∈ K, (4)

where K is defined by (3). �

By the definition of function w◦, the subset K depends implicitly on the flow through
the contact part of Γλ. This part is unknown a priori and is defined by the function
w. Hence, inequality (4) is a quasivariational one. The next theorem shows that if the
solution w of quasivariational inequality (4) exists then the function u = y −wy together
with the curve ϕ(x) that separates two regions of R where w = w◦ and w > w◦, satisfy
problem (P). Let ϕ(x) be defined as

ϕ(x) = inf{y | (x, y) ∈ R \ Ω} for l◦ < x < l,

ϕ(l◦) = lim
x→l+◦

ϕ(x), ϕ(l) = lim
x→l−

ϕ(x).
(5)

Theorem 2. Let w ∈ W 2,p(R)∩C1(R) with 1 ≤ p <∞ be a solution of quasivariational
inequality (4). Let be Ω = {(x, y) ∈ R | w(x, y) > w◦(x, y)}, u := y − wy in Ω and
vertical discharge corresponding to the velocity potential u in Ω is non negative. Assume
ε′(x) ≥ 0 and define ϕ(x) by formula (5). Then the pair {u, ϕ} is the solution of problem
(P). �

3 AN EQUIVALENT SHAPE OPTIMIZATION PROBLEM

An equivalent formulation of (P) can be given in terms of shape optimization for the
system governed by the Laplace equation. Let Φ be a set of all feasible shapes of the
water table, formed by smooth curves. The optimization problem consists in finding
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ψ ∈ Φ and u such that:

(P1)




min
ψ∈Φ

∫
(q)2

Γλ\S◦

where q = ∂u/∂n and u(x, y) is a solution of problem:




∆u = 0 in Ω,
u = h1 on Γ1,
u = h2 on Γ2,
u = y on Γσ ∪ (Γλ \ S◦),
q = 0 on Γ◦,
q = −ε(x) on Γλ ∩ S◦,

(6)

The objective functional contains the square of the flux along the free part of the water
table. The choice of the optimal water table location forces the objective to be zero and
vice versa. Another alternative optimization formulation uses as optimality criterion the
condition on the potential along Γλ \ S◦, see Leontiev & Huacasi

11
.

This shape optimization formulation of problem (P) interprets the water table Γλ as
an optimal boundary. The concept of the optimal boundary includes the values at the
contour of the domain only. Thus, it is not necessary to solve the problem in the whole
domain Ω to find the optimal boundary. On the other hand, finding Γλ, we can obtain
u(x, y) in Ω solving value-boundary problem (1). For this reason, below we will be looking
for the location of the water table only.

In two-dimensional case for the problem governed by the Laplace equation the values
of flux and potential verify on the frontier Γ ≡ ∂Ω the integral equation

13
:

0.5u(ξ) +

∫
Γ

q∗(ξ, χ)u(χ)dΓ =

∫
Γ

u∗(ξ, χ)q(χ)dΓ (7)

where χ ≡ (x, y) ∈ Γ, u∗(ξ, χ) is the fundamental solution of the Laplace equation,
q∗(ξ, χ) its normal derivative, and ξ ∈ Γ is the collocation point.

In this way, to define the location of the water table we have the problem:

(P2)




min
ψ∈Φ

F (u, q),

where q and u verify at Γ the integral equation:

0.5u(ξ) +

∫
Γ

q∗(ξ, χ)u(χ)dΓ =

∫
Γ

u∗(ξ, χ)q(χ)dΓ

where F (u, q) =

∫
(q)2

Γλ\S◦
and the boundary values are defined as in the problems (6).
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4 DISCRETIZATION AND MATHEMATICAL PROGRAM

The formulation (P2) furnishes an opportunity to use the boundary elements discretiza-

tion. We introduce E (geometrical) nodes and divide Γ into E elements Γ =
E∑

j=1

Γj.

Considering constant functional approximation of the flux and the potential for each
Γj, j = 1, ..., E, we perform the following discretization of the integral equation (7):

0.5ui +
E∑

j=1

(∫
Γj

q∗i dΓj

)
uj =

E∑
j=1

(∫
Γj

u∗i dΓj

)
qj, i = 1, ..., E,

where ui = u(ξi), u
∗
i = u∗(ξi, χ), q∗i = q∗(ξi, χ), ξi ∈ Γi and u(χ) ≡ uj, q(χ) ≡ qj,

χ ∈ Γj, j = 1, ..., E. Using notations Hij =

∫
Γj

q∗i dΓj for i �= j, Hii = 0.5 and

Gij =

∫
Γj

u∗i dΓj, we can rewrite this equation in the matrix form:

[H]u = [G]q.

Let (xi, yi) be the coordinates of the nodes i = 1, ..., E and xE+1 = x1, yE+1 = y1.
Then, we can obtain explicit formulas for the coefficients of G and H:

∀i, j = 1, ..., E, i �= j :

Gij = −
4∑

k=1

0.5ωk

(
a2

x + a2
y

)1/2
ln

(
(xc − axγk − bx)

2 + (yc − ayγk − by)
2
)
, (8)

Hij = −
4∑

k=1

ωk

(
ay(axγk + bx − xc) − ax(ayγk + by − yc)

)
(
xc − axγk − bx

)2

+
(
yc − ayγk − by

)2 , (9)

∀i, j = 1, ..., E, i = j :

Gii = 2
(
a2

x + a2
y

)(
1 − ln

(
a2

x + a2
y

)1/2)
, (10)

Hii = π, (11)

where ax = 0.5
(
xj+1−xj

)
, bx = 0.5

(
xj+1 +xj

)
, ay = 0.5

(
yj+1−yj

)
, by = 0.5

(
yj+1 +yj

)
,
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xc = 0.5
(
xi + xi+1

)
, yc = 0.5

(
yi + yi+1

)
, and γk, ωk are the abscissa and weight of the

Gauss quadrature.
Let n,m, l, r and k be the numbers of the boundary elements located at the segments

Γσ,Γλ,Γ1,Γ◦, and Γ2, respectively. We put m1 elements at the part Γλ \ S◦ and m2

elements at the contact part Γ ∪ S◦ of the water table, that is m1 +m2 = m. We assume
that the x-coordinates of the nodes at Γλ \ S◦ and the y-coordinates of the nodes at
Γ ∪ S◦ are fixed. Thus only the y-coordinates define the location of the nodes belonging
to seepage and free part of the water table and x-coordinates define the nodes of the
contact part of the water table. We also use the following notations: L ≡ l, R ≡ L + r,
K ≡ R + k, N ≡ K + n, hence N +m ≡ E.

For the discrete analog of problem (P2) we consider as independent variables the flux
at the boundary elements of Γ1: X1...XL, the potential at the boundary elements of
Γ◦: XL+1...XR, the flux at the boundary elements of Γ2, Γσ and Γλ \ S◦: XR+1...XK ,
XK+1...XN and XN+1...XE−m2 respectively, the the potential at the boundary elements of
Γλ∪S◦: XE−m2+1...XE, y-coordinates of the seepage surface nodes (if n ≥ 2): XE+1...XE+n−1,
y- and x-coordinates of the water table nodes: XE+n...XE+n+m1−1 andXE+n+m1 ...XE+n+m−1

respectively.
Let be

X = (X1...XE+n+m−1),
U = (u1...uL, XL+1...XR, uR+1...uK , UK+1...UN , UN+1...UE−m2 , XE−m2+1...XE),
Q = (X1...XL, qL+1...qR, XR+1...XK , XK+1...XN , XN+1...XE−m2 , qE−m2+1...qE),

where the values of potential at the segments Γσ and Γλ \ S◦ are defined corresponding
to the boundary conditions of problem (6):

UK+i = 0.5(XE+i +XE+i−1), i = 2, ..., n+m1 − 2,

UK+1 = 0.5(XE+1 + h2), UE−m2 = 0.5(h◦ +XE+n+m1−1),

as well as the remaining values of u and q.
If there are nodes at the seepage surface (what means n ≥ 2), the following linear

constraints for the y-coordinates of these nodes appear: Xi −Xi+1 ≤ 0, i = E+1, ..., E+
n− 1. The restrictions of the same kind we have for the x-coordinates of the nodes at the
contact part of the water table ifm2 ≥ 2: Xi−Xi−1 ≤ 0, i = E+n+m1+1, ..., E+n+m−1.

The objective function is F (X) =
E−m2∑
i=N+1

X2
i . Following formulas (8)-(11), the coeffi-

cients of H and G are functions of X, more precisely, of the y-coordinates of seepage and
water table free part nodes and of the x-coordinates of the water table contact part nodes:

H(X) ≡ H(XE+1...XE+n+m−1), G(X) ≡ G(XE+1...XE+n+m−1).
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Figure 3: B.E.M. discretization 

 

 
Figure 4: Unconfined fluid flow. Classical case 
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Performing this kind of discretization for problem (P1), we obtain a nonlinear mathe-
matical programming problem:

(P3)




min
X

F (X)

H(X)U −G(X)Q = 0,

Xi −Xi+1 ≤ 0, i = E + 1, ..., E + n− 1, (if n ≥ 2),

Xi −Xi−1 ≤ 0, i = E + n+m1 + 1, ..., E + n+m− 1, (if m2 ≥ 2),

LOW ≤ Xi ≤ UP, i = E + 1, E + n, ..., E + n+m1 − 1,

LEFT ≤ XE+n+m−1, XE+n+m1 ≤ RIGHT.

The problem has E+m+n− 1 variables, E nonlinear equality constraints, n+m2 − 2
linear inequality constraints and m1 + 1 ”box” constrains, where LOW and UP define
the limits for the unknown y-coordinates, and LEFT and RIGHT for the unknown x-
coordinates of the water table nodes. We note that the flux and the potential X1...XE at
the boundary elements and the design variables XE+1...XE+n+m+1 are independent vari-
ables of the mathematical program (P3). Thus, the objective function F (X) is quadratic
with respect to the problem variables.

To solve nonlinear mathematical program (P3) we use Herskovits’ interior point algo-

rithm
12

. We find the y-coordinates of free part of the water table and seepage surface
nodes as well as x-coordinates of the contact part of the water table and values of potential
and flux at the corresponding segments of the boundary.

5 NUMERICAL TESTS

For the test problem we choose: h1 = 6.3014, h2 = 1.2359, 2 = 6.1592 and d = 1.3014
(h◦ = 5.0). This data is taken in order to compare the solution of the forest impact

problem with the seepage one, considered in Leontiev & Huacasi
11

. The suction flux is
taken as ε = 1.

The discretization includes 26 boundary elements (l = 5, r = 4, k = 3, n = 1,
m1 = 10, m2 = 3), see Fig. 3. We are looking for the y-coordinates of ten nodes
at the free part of the water table W − M and the x-coordinates of three nodes at
the contact part of the water table B − W . The position of the node 24 defines the
location of the contact point of the water table (point W ). The coordinates of the rest
of the nodes are fixed. The water table initial position, used at the first iteration of the
algorithm, is given by the line B −W◦ −M◦ in Fig.3. For the ”box” constraints we take:
UP = h◦, LOW = h2, LEFT = 0.0, RIGHT = 2.0.
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Figure 5: Unconfined fluid flow with vertical wall 

 

 
Figure 6: Water table location. Numerical results 
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Table 1: WATER TABLE COORDINATES AND BOUNDARY VALUES

node x y q

∗fixed value ∗fixed value �value of u

14 6.1592∗ 2.2192 -1.17240E-07

15 5.7500∗ 2.8368 -2.82183E-08

16 5.2500∗ 3.3175 2.23091E-07

17 4.5000∗ 3.8532 5.45910E-07

18 4.0000∗ 4.1583 -1.23321E-07

19 3.5000∗ 4.4158 -2.90582E-07

20 3.2500∗ 4.5345 2.36618E-07

21 2.8000∗ 4.7249 -2.24024E-07

22 2.4000∗ 4.8467 -2.45834E-07

23 2.0500∗ 4.9553 3.35504E-07

24 1.4643 5.0000∗ 4.88110�

25 0.9270 5.0000∗ 5.14453�

26 0.4977 5.0000∗ 5.72835�
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Table 2: ITERATIVE HISTORY

ITER. (q)2Γλ\S◦ EQUALITY CNSTR.

1 1.02936E-00 3.12027E-00

2 1.14977E-00 2.35687E-00

3 8.44161E-01 1.71197E-00

4 6.31515E-01 7.37943E-01

5 5.66052E-01 2.76270E-01

6 3.66079E-01 1.96013E-01

7 2.59572E-01 8.91051E-02

8 1.18700E-01 4.82199E-02

9 7.08363E-03 2.72489E-02

10 3.35875E-03 7.91583E-03

11 3.72563E-03 2.48889E-03

12 5.91536E-04 1.15717E-03

13 5.95424E-05 2.52348E-04

14 3.31008E-06 7.45031E-05

15 2.94575E-07 2.25893E-05

16 5.04176E-09 6.79022E-06

17 2.09812E-10 8.67709E-07

18 2.63430E-11 8.59921E-09

19 6.91086E-13 4.60299E-10
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The mathematical program have 39 variables, 26 nonlinear equality constraints, 12
”box” constraints and 2 linear inequality constrains. We adopt the algorithm stopping
criterion with precision 10E−6 (see Herskovits

12
for details). With the different initial

data, the convergence of the algorithm was obtained in no more than 20 iterations.
The coordinates of the water table nodes and the value of flux and potential calculated

at the corresponding boundary elements of the water table are given in Table 1. In
this Table the first column indicates the node number, second and third present x and
y coordinates of the water table nodes obtained numerically, fourth column shows the
value of the flux (potential) calculated at the corresponding boundary elements.Table 2
shows the history of iterations: first column gives the number of iteration, second shows
the objective function value, third presents the maximal error in the equality constrains
that corresponds to the residual error of the discrete boundary integral equation. Fig. 3
shows the location of the water table (continuous line B −W −M) and corresponding
nodes (14-26) positions calculated numerically as well as boundary data, i.e. flux at the
segments A−B, D − T and T −M and potential for the segments A−D and B −W .

We compare the location of the water table in the forest impact problem with the solu-
tion of another unconfined problems, considered for the same geometrical and piezometric
parameters. The first one is the classical seepage problem, Fig. 4. We consider also the
situation then only the vertical impermeable wall Γw is present, Fig. 5. Finally, we solve
the forest impact problem assuming that the bottom S◦ is impermeable i.e. the suction
rate ε = 0. The results are presented in Fig. 6. Here line (1) defines the location of
the water table for the classical seepage problem, line (2) gives the location of the water
table for the unconfined problem with vertical impermeable wall, line (3) is the water
table in the case of impermeable bottom S◦, line (4) is the solution of the forest impact
problem with constant suction rate ε = 1. We can observe in these examples that the
forest suction provides sufficiently lowering of the groundwater table.

6 CONCLUSIONS

The approach proposed in this paper for numerical simulation of the unconfined steady
flow in porous media with possible discharge through the water table combines three
principal aspects: the original problem transformation to a shape optimization problem,
boundary elements discretization and mathematical programming technique to solve the
discrete problem. The state and free boundary variables are considered as independent
variables of the mathematical program. Thus, there is no need to perform any kind of
sensitivity analysis and the objective function we have is quadratic with respect to the
problem variables. The method is simple to be applied and can be used for 3D problems.
The numerical simulation shows that even for our model of forest impact on aquifers,
that takes into account only some principal characteristics of this phenomenon, the water
table lowering owing to the forest suction is significative enough to be considered as an
effective means for the control of groundwater.
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