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1 ABSTRACT

A Lagrangian-type panel method, in the time domain, is proposed for potential flows with a
moving free surface. After a spatial semi-discretization, with a low-order scheme, the instanta-
neous velocity-potential and normal displacement on the moving free surface, are obtained by
means of a time-marching scheme. The kinematic and dynamic boundary conditions, at the
free surface, are non-lineal restrictions over the related Ordinary Differential Equation system
and, for handle them, an alternative Steklov-Poincaré operator technique is proposed. The

method is applied to sloshing like flow problems.

KEY WORDS: computational fluid dynamics, free surface flows, Lagrangian panel method, slosh-

ing flow, Steklov-Poincaré operator

2 INTRODUCTION

Applications of inviscid free surface flows include a wide variety of phenomena such as, for
example, wave-resistance, seakeeping, wave-washing, drift and tidal currents, storm surge, wave
propagation and sloshing. The engineering projects require several types of predictive flow
models, where the acceptance of a predictive simulation is related to its price to performance
ratio, i.e. the computational effort for a simulation run in comparison with the physical relevance
of its results and, in general, this price increases with the level of its sophistication. It is well
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Figure 1: A 2D-flow domain with a free surface discretized by domain-like schemes: FEuler-type

(left) and Lagrangian-type (right) methods.

known the great variety of scales involved in fluid dynamic phenomena playing a basic role in
the applications of scientific and industrial interest.

The panel (boundary element) method is a member of the CFD family which can be used in
preliminary design stages, e.g. see Faltinsen (1998). It is based in the discretization of boundary
integral equations, which are closely related with the Green function theory, e.g. see Brebbia
(1984). As it is well known, this method assumes a potential flow model and it is a practical tool
for predicting the pressure field over rather complicated geometries, e.g. see Mueller and Kinnas
(1999), or when a parametric study involves an extensive set of numerical test cases, as the
transfer functions plots (Response Amplitude Operators RAQO), e.g. see Lloyd (1989). Then, it
is also possible to shift to another fluid dynamics description level, e.g. Euler and Navier-Stokes
solvers, or use mixed strategies, as the viscous-inviscid interaction techniques, e.g. see Williams
(1985).

The case of transient free surface flow problems remains as challenging, as is remarked by
Khayat et al. (2001). Typically, a boundary-value problem of moving type involves geometrical
non-linearities. In contrast to CFD conventional problems, the computational flow domain is
partially bounded by a free surface, which is not known a priori, since its shape itself must be
computed as part of the solution. In steady-flow the free surface is obtained by an iterative
process, but the problem is more difficult when the free surface evolves with time, generating
large distortions in the computational flow domain.

Several numerical techniques have been developed for the solution of free surface flows as
initial value problems. These techniques are roughly classified by Shy et al. (1996) as Eulerian,
Lagrangian and mixed Eulerian-Lagrangian. In Eulerian-like (volume-tracking) approaches, see
figure 1, the mesh remains stationary or moves in predetermined manner, the free surface is not

explicitly tracked, so it is reconstructed from other field properties, such as the fluid fractions,



Figure 2: Schematic diagram of a sloshing-like problem: flow domain €2, rigid surface I' and free

surface I'p.

and the fluid moves in/out of the computational flow domain. It can handle large displacements
without loss of accuracy, but is rather difficult to impose the free boundary conditions, since a
lack of a sharp definition, e.g. see Nickell et al. (1974), Siliman and Scriven (1980), Ruschak
(1980) and Kawahara and Miwa (1984). In Lagrangian-like (surface-tracking) approaches, the
mesh is configured to conform the shape of the free surface and, thus, it adapts continually
to it. The free surface is a discontinuity and explicitly we track its evolution, as an (n — 1)
dimensional entity in an n-dimensional space. No modeling is necessary to define the free
surface or its effects on the flow field. The grid points move with the local fluid particles, so the
free surface is sharply defined but, however, mesh refinement or remeshing usually is necessary
for large deformations, e.g. see Bach and Hassager (1985), Ramaswamy and Kawahara (1987).
In mixed Eulerian Lagrangian-like approaches, the advantages of both methods are taken into
account, e.g. see Chiapada et al. (1996). Also, another mixed approaches are proposed. For
example, the “Emplicit” method uses an explicit-implicit time integration oriented to seakeeping
ship motions, e.g. see Huang and Sclavounos (1998), while the “Material Point” method uses
unconnected Lagrangian points and a background Eulerian mesh for solving fluid-membrane
interaction, e.g. see York et al. (2000).

Sometimes, Lagrangian-like approaches can become difficult to implement for three dimen-
sional (3D) flow problems, when domain-based discretizations (as finite elements) are used, while
with boundary-based ones (as boundary elements) could be more easy to formulate, together
with a more easy adaptive surface remeshing. For potential flows, a typical panel strategy relates
the velocity-potential and its normal derivative on points over the boundary surface, so it could
be an ideal method for moving-boundary flow problems, where the position and velocity of the
free surface is a prime interest quantity.

On the other hand, the “sloshing” flow problems, e.g. see Morand and Ohayon (1995),
describe the motion of a liquid enclosed in a rigid and partly filled vessel. There is an interface

between the liquid and the gas that fills up the rest of the vessel, see figure 2. This interface
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Figure 3: A sloshing oscillation mode, on the free surface of liquid enclosed in a rigid and partly

filled vessel.

is a free surface and represents a moving boundary of the enclosed liquid, and has a strong
influence on the liquid motion. As it is known, a body enclosing a cavity completely filled with
an inviscid, irrotational and incompressible flow, is dinamically equivalent to some other solid
body, and whose solution can be found using the Stokes-Jukowski potentials. But, when the
liquid has a free surface, there is not such equivalent solid body, since the free surface introduces
new degrees of freedom. Nevertheless, for a stable equilibrium position is sufficient that exist
other equivalent solid bodies whose equilibrium positions should be also stable. As all enclosed
moving system, the liquid motion has discrete natural frequencies and oscillation modes, see
figure 3, depending upon of the shape and size of the vessel and amount of the enclosed liquid.
When the vessel is subjected to a forced oscillation at a frequency close to a natural “slosh”
frequency resonance, we have large displacements of the free surface, for example, holds of crude-
oil carrying tankers, large water reservoirs excited by seismic activity or fuel tanks of rocket
engines with liquid-propeller. A review of the classical theory is given by Moiseev (1964). For
a survey of the related eigenvalue problem, application of the Ritz method and semi-numerical
methods, e.g. see Moiseev and Petrov (1966), where eigenfunction expansions for some simple
geometries (as parallepiped, circular and annular cylinders) are also given.

Wall pressure estimation for a structural design, has been often based in the Housner (1957)
method, where the hydrodynamic pressure is decomposed as the sum of two parts: an impulsive
pressure of the liquid moving together with the rigid tank, and a convected pressure of the liquid
under sloshing motion at the fundamental sloshing frequency. For the fuel motion for air-plane
dynamics by an equivalent spring-mass system, e.g. see Graham and Rodriguez (1952). In
liquid-propeller rocket engines, radially compartmented cylindrical fuel tanks are often used,
in order to increase the first natural sloshing frequency and reduces the related sloshing liquid
mass, e.g. see Bauer (1963). For experimental tests of free and forced vibrations on partially
filled spherical tanks, e.g. see Abramson et al. (1963). For the dynamic of flexible liquid storage
tanks by finite elements, e.g. see Balendra et al. (1982), Haroun (1983), and by boundary
elements, e.g. see Dutta and Laha (2000), Hwang and Ting (1987), while Koh et al. (1998) show
a coupled FEM-BEM code for a 3D rectangular liquid storage with flexible walls. In the Dutta

and Laha work, a linearized analysis in the frequency domain for a rigid container of arbitrary



shape is done, and it is solved with a low-order boundary element method, where the oscillation
amplitude is assumed to be small enough to allow linearization of the boundary condition at the
free surface.

The strategy in this work is to solve the sloshing flow problem, with an adaptive Lagrangian-
like panel method in the time domain. After a spatial semi-discretization, with a low-order
scheme, the instantaneous velocity-potential and normal displacement on the moving free sur-
face, are obtained by means of a time-marching scheme. The boundary conditions at the free
surface, are non-lineal restrictions over the related Ordinary Differential Equation system so
that, for handle them, an alternative Steklov-Poincaré operator technique is developed. The
position of the moving free surface is updated at each time-step, but only small distortions are

permited, so remeshing is not considered in this work.

3 MATHEMATICAL FORMULATION

3.1 The sloshing flow problem

We consider a free surface performing small oscillations around its hydrostatic equilibrium posi-
tion, on the free surface of a potential incompressible flow, as sketched in figure 2. An hydrody-
namic standard analysis in space x = (z,y,2) and time ¢ domains gives: the Laplace equation
for the velocity-potential ¢(x,t) in the instantaneous flow domain €(¢), no-slip boundary condi-
tion at the rigid boundary I'g(t), and the kinematic and dynamic boundary conditions, on the

instantaneous free surface I'r(t), for the wave-height n(x,t) and flux ¢, = o(x,1), that is,

V2¢ =0 in Q(t);
¢, =0 at FB;
" (1
—ni+n, o =0 at T'p(t);

o+ %V¢|2 +gn =0 at T'p(t);

where n is the unit normal of the free surface, n, is its projection on the z-axis, positive upwards,

and g is the gravity acceleration.

3.2 Spatial semi-discretization by a panel method

For a numerical solution in the time-domain ¢, we choose a low-order panel method. First, a
semi-discretization in the spatial variable x is done for an instantaneous geometry, which has a
free surface, some fixed surfaces (e.g. the bottom in a ship-like case or the vessel in a sloshing-

like one). In this way, we arrive to a system of Ordinary Differential Equations (ODE) for the



time t. Neglecting the gradient term in Eqn. (1.c), the implicit form

H(ng)u1 + G(ng)uz =0;
—Ns;tnggos =0 (2)
st 9Ns =0;
is obtained, where ngg = diaggg(n,) is a diagonal matrix with the z-component of the panel

normals, and uj,uy are the mixed vectors

u; = % N E (3)

os bg
while the influence matrices H, G are obtained by means of a standard panel discretization
for the Laplace equation with Neumann and Dirichlet boundary conditions, the Morino mixed
formulation, e.g. see Maitre (1988), Morino (1985), Kuo and Morino (1974), which leads the

sub-matrices

H H G G
H=— BB BS : G— BB BS : (4)
HSB Hss GSB GSS

where the sub-indices B, S denote free and body surface, respectively, and also refer the involved
matrix dimensions, that is, B panels on the body and S panels on the free surface. This system,
in this form, has a drawback that it is not really an ODE’ system, but a Differential and Algebraic
Equation (DAE) one, in the sense that we have 2S5 + B equations with the unknowns Mgt ¢S,t
and ¢ g, that is, of the type

N e S AR (5)

y
where A has a N x N size, and the vectors x, y have the N;, N, lengths, respectively, with
N = N; + Ny. Then, the vector y of the last N, equations can be eliminated and replaced on
the first IV, equations, and an ODE system in x; could be obtained, but we have developed

another strategy based on a Steklov-Poincaré like operator technique in conjunction with a

Crank-Nicholson like scheme.

3.3 The Steklov-Poincaré operator for the Laplace equation

The Steklov-Poincaré operator technique frequently is used, for example, in DtN absorbing
boundary conditions, e.g. see Givoli and Keller (1990), Huan and Thompson (2000), and domain
decomposition techniques, e.g. see Quarteroni (1995). For instance, for the Laplace equation in
a domain €, under Dirichlet boundary conditions at its boundary I':

Ap= 0 in Q;

¢p= 0 at Ty (6)

¢ = qAS at T'g;



where I' = T'g UT'y. In the most simple fashion, a one-valued relation between the Dirichlet
data ¢ (over the boundary T') and the solution ¢ (in the domain €) is postulated. A similar
assumption is postulated for the flux (normal derivative to the boundary surface) ¢, so these

are written as

¢ =Ho ;

. (7)
¢,n :S¢ 5

where #,S remark that are non-local operators. For all harmonic functions V?(...) = 0 in
the domain €2, it can been shown that this Steklov-Poincaré operator is linear, symmetric, and
positive definite. In effect,

.59 = [

PS¢ dl = P dl’
Ty Ty

:/ (zpv¢)-ﬁdrz/[v¢-v¢+zpv2¢] dQ:/Vz/)-V¢>dQ. (8)
Ty Q Q

Repiting again Eqn. (8) but interchanging the functions, and taking into account V2¢ = 0 in
the domain (2,

(6.5¢) = [ V%62 = (.59)  (symmetric) (9
and when, in particular, 1 = ¢, we have
(¢,S¢) = / V|2 d2 >0 (positive definite) ; (10)
Q

where we have been assumed that ||V¢|| is squared integrable. Also, it is bijective. In effect, if
we suppose that we have S¢1 = S and ¢’ = ¢1 — ¢o, then S¢' = 0 and (¢',S¢’') = 0, so that,
from Eqgn. (10),

o=@%sw>=zﬂvwwdﬂ; (11)

but, in such case, ¢’ = cnst and then it is sufficient that there are some portion of the boundary
with Dirichlet condition for arrive to ¢’ = 0. A standard FEM-like discretization for this operator
gives a (full) symmetric and positive defined system matrix H, obtaining ¢ = H(Ab but, on the
other hand, a standard BEM-like one gives a near (full) symmetric and positive defined one. In
the context of domain decomposition techniques, H is often called the Schur complement, e.g.
see Cottle (1974), whose functional counterpart is, precisely, the Steklov-Poincaré operator, e.g.
see Quarteroni (1995), Serén and Sabadell (2000).

An engineering application of the Steklov-Poincaré operator, is the time-domain evolution

of a potential flow with a moving free surface by a Lagrangian-type panel method. In such case,



it is immediate to show that such problem always will gives a wave-like equation. In effect, the

system (l.c-d) on the free surface, at first order, is

ni— n,'9g¢n =0  at [p;
¢t+gn =0 at I'r;

(12)

while (1.a-b)

Vi =0 in Q(t);
¢,n =0 at I'p;

(13)

are working as “restrictions” for the dynamics of the moving free surface. Eliminating the

wave-height 7, we obtain the (reduced) second order differential equation

bu—n; ' gpn=0  at T'p; (14)
introducing the Steklov-Poincaré operator for the normal derivative ¢, = S¢, we have

b+ MPp=0; at I'p; (15)

where M? = n;lg S, which have wave-like solutions ¢ = Ae*!. TFor a linearized boundary
problem, a standard Fourier analysis can be done and gives an Helmholtz-like equation, whose
numerical solution has a rather expensive computational cost. For this reason, we discard
second-order approaches and work with a first-order system, for a time-marching scheme of the

moving free-surface.

3.4 Numerical implementation

A standard discretization of Eqn. (2) by finite differences between the times n,n + 1, present

and next, respectively, we have

Frntt ] aR7% + BRY 0
| _ oRZ + SR _|o ' 16)
| N —hIngs(N¥ — i) + ao? + Bot! 0 ’

P L h g N (@ET — 9%) + o + Bt [ 0 |

where h is the temporal step, @ and § = 1 — « are the weights of the integration scheme, e.g.
a = 1 for backward-Euler and o = 0 for Crank-Nicholson. The residues, on the body Rp and

on the free surface Rg, are given by

Rp =Hppopy+Hpsos+ Gppop+ Gpspg

(17)
Rs =Hgsp¢p + Hssos + Gspop + Gsspg

We see that the Eqn. (16) represents a non-lineal equation like

Frotl = F(UT, UM =0 (18)



with the state vector U = (¢g, ¢g,Mg,0s). In the spirit of the semi-implicit schemes, we

perform a Taylor expansion of Eqn. (18), near the point (U™, U"t1), that is,

F(U"M U") = F(U",U") 4+ J"AU" =0 ; (19)
where
OF
JV= —— ; 20
8Un+1 Un’Un ' ( )
is the Jacobian and AU” = U”*t! — U". Then
J* AU" = —F(U",U") ; (21)

is a system whose solution will give the increments for the wave-height and the (perturbation)

velocity-potential. A straightforward computation gives the lineal system (omitting the supra-

index n):
Hpp GBgs Xps  Hpsp Adpg -F;
Hgsp Gss Xss  Hgp Agg | | —F2 (22)
0 0 N Ang —F; |
0 hilgfllsg alggs 0 Acog —Fy
where
X =0F,/0 ;
BB 1/0ng (23)
XBS :6F2/6n5 ;

Iss is the identity matrix, and F = [F; Fo F3 F4]7 is a source vector with the components

F, =¢Rp;
Fy =¢Rs; (24)
F; =+70s;
Fi =-—mg;

and its the first term in the Taylor expansion (19), vy = a+ 8, withe =y/aif a #0,and e =1
otherwise. The X gp and X gg matrices are related with the derivatives of the influence matrices
and, in this work, these are neglected, so only small distortions on the moving free surface are
allowed. The Eqn. (22) has 2(B + S) equations and, from a computational cost view-point, we

do a partial reduction in the number of unknowns. From the sub-system (22, c-d) we obtain

A’I”S = —hngé(—Fg — OéAO's') ; (25)
A¢pg = +hg(—F4—alng) ;
opening parenthesis in Eqn. (25), we have
Ang = +hngoFs + ahngsAos (26)
Apg = —ahzgngéFg, — hgFy — athgngéAO'S ;



and replacing in Eqn. (22, a-b), results the reduced system

Hpp Hps Agp | | -B:

~ = I (27)
Hsp Hgs Ao -By
with the source vectors
B; = -F; - Ggs(aMgssF3 + LssF4) + XpsNgsF3  ; (28)
By =-F2— Ggs(aMgsF3 + LssF4) — XssNgsF3
and the modified sub-matrices
Hps =Hps— a’GpsMss +aXpsNgs (29)
Hgs =Hgs — a’GgsMgs +aXgsNgs
where
Mgs = h?gngs ;
NSS’ = hngé ; (30)
Lss = hglss
Introducing the auxiliary vectors
0 0
u3 = N ;ug = b ; (31)
aMgsF3 LssFy
the block diagonal matrices,
Us = diag[ 0 o’Mgs ] ; Ug = diag[ 0 aNgg ] (32)
and the intermediary vectors
A¢p Op Op OB
s = B ;v = | Vo = | V3 = ; (33)
AO’S Og ¢S N55F3
we can re-write the reduced system (27-29) in a more compact fashion as
(H — GU5 + XUG)S = —HU1 — G(u2 — ug — u4) — XV3 . (34)

So, first we computate Eqns. (24, 31-33), then we solve the system (34) and, finally, advance to

next time, that is,
P =P+ AdY
T = Pl + AQY (35)
g =g+ AN
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Figure 4: Left: a vertical U-tube of mean radius r,,, = (r1 +72)/2 and aspect relation p = ry,/d,
and partially filled with a liquid, with a small sloshing motion. Right: vertical xzz-view of a 3D

panel mesh, with r,,, & 3 and p =~ 4.

4 NUMERICAL EXAMPLES

The position of the moving free surfaces in the following numerical examples are updated at each
time-step but only small distortions are permited, so remeshing is not necessary. The infinity
depth case will be assumed for the dispersion relation in all cases, that is, K = w?/g, where K

is the wave-number, w is the angular frequency and g is the gravity acceleration.

4.1 Vertical sloshing in a U-tube

A rigid U-tube partially filled with a liquid is considered. On its free surface, a small perturbation
in its hydrostatic equilibrium height is introduced, in such way that vertical oscillations will
develop. As the dissipation effects are neglected, this natural mode state remains in time without
attenuation. For a geometrical description, we choose a vertical semi-toroidal domain, with
internal and external radius r1, r2, respectively, where the (circular) flow section S has a diameter
d = r9 — r1, see figure 4 (left). The mean radius and aspect relation are r,, = (r1 + 72)/2 and
g = T /d, respectively. At the initial time ¢ = 0 we impose a vertical displacement on each free
surface, small enough, and in opposite phase, that is, 17, = +¢cz at the left free surface, and
N = —¢cz at the right one, where 0 < € < 1, and z is the vertical, see figure 4, left. The natural
sloshing wave-number and period can be estimated as K; = 2/Ls and Ts = 27 (gK,)~1/2, where
L, = 7ry is a mean perimeter from some radius r, between r; and 7s.

We choose a mean radius r,, = 3, an aspect relation y =~ 4 and a gravity acceleration

g = 1/2. We have considered 3 meshes of 240, 832 and 1408 panels, see figure 4, right, for a
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Figure 5: Computed sloshing natural periods for an U-tube from the plots of the wave-height
nL(t),nr(t), at left and right free surface of the U-tube, respectively, as a function of time ¢: the
first period (at the left); the first 15 periods (at the right). Numerical dissipative effects are not

perceived.
computation with | sloshing natural period T [s.]

the internal radius r; 18.07

240 panels 17.09

832 panels 18.48

1408 panels 18.87

the mean radius 7, 19.87

the external radius 7o 20.47

Table 1: Natural sloshing periods on an U-tube: minimum 77, mean 7, and maximum 75 ones
(computed with the internal 71, mean r,, and external ro radii, respectively), compared with

those obtained from a panel computation.

vertical zz-view. In figure 5 (left), we shown a period of the wave-height 7(¢) plot in the middle
sector of each free surface and obtained with the 3 meshes. In figure 5, right, 15 periods are
plotted, where numerical dissipative effects are not perceived. The natural sloshing periods:
minimum 77, mean 7, and maximum 7% ones (computed with the internal 7y, mean r,, and
external r9 radii, respectively), and those obtained from a panel computation are compared in
Table 1 where, except for the first mesh, the panel estimations are between the mimimum and

mean periods.

4.2 Annular sloshing in a circular cylinder

A circular cylinder of radius R and depth H enough for neglecting the bottom effects, is con-
sidered, see figure 6, left. The cylinder is assumed to be rigid and it is partially filled. When a

perturbation is introduced at the center of its free surface, annular surface waves are generated.
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Figure 6: Left: sketch for annular sloshing waves on the free surface of a depth circular cylinder.
Right: sloshing mode 7(r,t), as a function of the radius r and the time ¢, in the first natural
sloshing mode, computed by the present method. The analytic ones are proportionals to the

Bessel function of first kind and zero-order Jy(KT).

Exciting one natural sloshing mode, a standing wave will be obtained. The initial boundary
condition imposed at t = 0 is a natural sloshing mode with radial symmetry. This is a 3D case
which can be solved by an analytic calculation, e.g. see Appendix for a re-derivation, leads the

eigen-functions
Do (r,0,2,t) = AJy(Kqr)eXee™t :  for 2<0; (36)

where Jo(Kr) is the Bessel function of first kind and zero order, A is the amplitude of the
oscillation, x = Kr is the non-dimensional radial coordinate, x, are the zeros of the Bessel
function of first kind and first order Ji(z), for instance, z, = {3.832,7.016,10.173,13.324, ...}.
The natural sloshing wave-numbers and frequencies are given by K, = z,/R and w, = \/m,
respectively. Simple annular sloshing waves with null radial velocity at r = R and —H < 2 <0
are obtained, when the wall is localized at the zeros of Ji(x), so there is not necessary to use a
superposition principle. A radius R = 1 and a depth H = 5 are adopted here.

In figure 7 we show an horizontal zy and vertical zz-views of a typical panel mesh. The
first sloshing mode 7(r,t), as a function of the radius r and the time ¢, and obtained with the
proposed method, is shown in figure 6, right, which are well-compared with the analytical ones.
In figure 8, 1 and 4 periods of the wave-height 7(t), in the middle zone of the free surface, are
included. The natural sloshing period estimated by the panel code is Tpry = 4.2943 sec., while

the analytic one is Ty ~ 4.5394 sec., with a relative error of e, ~ —5%.

4.3 Azimuthal and radial sloshing in an annular cylinder

A vertical cylinder with an annular base and depth H enough for neglecting the bottom effects,

is considered, see figure 9. The internal and external radii of the annular circular base are r;
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Figure 7: Views of a 3D panel mesh for computing sloshing flow in a circular cylinder.
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Figure 8: Natural sloshing periods from the plot of the wave-height 7(¢) on a circular cylinder:

left: the first period; right: the first 4 ones. Numerical dissipative effects are not perceived.

and 7y, respectively. The cylinder is assumed to be rigid and it is partially filled. The initial

boundary condition imposed at ¢ = 0, is a natural sloshing mode (azimuthal or radial) so, without

physical or numerical dissipation, standing waves will be obtained. A quasi-2d description can

be obtained when we consider a thin radial fete, of mean thickness 7, df, small enough, and

Ar/ry < 1, where 7y, = (r1 +72)/2 and Ar = r9 — 1 are the mean radius and radial thickness

of the annular base, respectively.

The azimuthal-sloshing mode is interesanting due to its simplicity, since it is a stationary

wave along the circunferential perimeter, there is not discontinuities in its propagation path, so

Figure 9: Sketch for a vertical annular cylinder partially filled with a liquid.
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Figure 10: Azimuthal natural sloshing mode in a vertical annular cylinder when, as initial dis-
placement 7, the natural first azimuthal sloshing mode is imposed: velocity-potential ¢(r,,0),
flux o(r;,,0) and wave-height 7(r,,,0) at the moving free surface, as a function of the azimuthal

angle 0, at the mean radius r,, = (r1 + r2)/2.

there is not necessary to implement special tricks for mesh border effects, e.g. “artificial-beaches”
or some kind of absorbing boundary conditions. In Fig. 10 we show the time evolution of the
first azimuthal-sloshing mode obtained with the proposed method for the velocity-potential, flux
and wave-height on the moving free surface.

On the other hand, the radial-sloshing mode is a bit more complicated due the effects caused
by the vertical walls at r; and at r9. Nevertheless, as the initial displacement is one of the
stationary radial sloshing modes, with null radial-velocity at the vertical walls, then, there is not
necessary to impose radiation-like boundary conditions. In Fig. 11 we show the time evolution
of the first radial-sloshing mode obtained with the proposed method for the velocity-potential,

flux and wave-height on the moving free surface.

5 CONCLUSIONS

This paper has shown a Steklov-Poincaré technique for solving a Lagrangian-type panel method,
for potential flows with a moving free surface. As a special case, the “sloshing” flow problem

has been considered. It have been found good agreement with analytic solutions for the natural
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Figure 11: Radial natural sloshing mode in a vertical annular cylinder when, as initial dis-
placement 7, the natural first radial sloshing mode is imposed: velocity-potential ¢(r, 8y ), flux
o(r,0;) and wave-height n(r,0;) at the moving free surface, as a function of the radius r, at a

fixed azimuthal angle 6.

sloshing frequencies and shape modes. Next stages in the development should include: radia-
tion boundary conditions, for seakeeping-like flow problems, and a remeshing strategy for large

distortions on the evolving free surface of non-steady flows.
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7 APPENDIX: Annular surface waves

Choosing cylindrical coordinates (r, 8, z), the linearized boundary value problem for the velocity-

potential function & = &(r, 0, z,t), is written as

Vo =0 in Q;

ou®+¢90,2=0 at z=0;

tt g z (37)
0,®=0 at r =R ;

lim, , o, ®=0 infinite depth ;

where ¢ is the gravity acceleration, n the normal to the vertical wall of the circular basis, and
Q is the fluid domain. Performing, as Koshlyakov et al. (1964), a standard variable separation

®(r,0,2,t) = $(r,0,2)e™", where w is the angular frequency, we have the spatial problem

V=0 in Q;

0,0 —Kop=0 tz=0;
¢$—K¢ at z (38)
o =0 at r =R ;

lim, , oop=0 infinite depth;

where K = w?/g is the wave-number. Employing cylindrical operators in Eqns. (38,a-b) we

have
12 (r3)+ 558 +5%=0 mQ; )
% K¢=0 at z = 0;



but for annular waves dgg¢p = 0. Then, doing a variable separation ¢(r,z) = 1(r)x(z) in Equ.
(39,a-b), we have

1 1dy 1d%x _ : .
E(W‘FF—T‘F)‘{'%E)QQ—O IDQ, (40)
d
zp(—’z‘—KX =0 at z=0.
Eqgn. (40,a) is satisfy when
d*y 1d 2.
W—I_Fdr +’)’ ’lﬁ 0 ; (41)
2
F-rx=0 ;

where 7y is the separation constant but, from the free surface boundary condition, Eqn. (40,b),

isy=K, so
CX _K%=0; (42)

with solutions xy = Ae*X#, but due the boundary condition Eqn. (38,d), we retain

x(z) = Aef* ;  for 2 <0. (43)
But eqn. (41,a) is a Bessel one
&y dy
2 K22 _ —0- 44
Tdr2+rdr+( 7" —0))=0; (44)

doing the variable change x = Kr, we have
$7+x—+($2—0)¢:0; (45)

Its solution is ¥(z) = C1Jo(z) + CoYy(z), where Jy, Yy are the Bessel functions of zero order, of
first and second class, respectively. The only finite solution at the origin is 1(r) = AJy(x) so,

the spatial solution is
P(r,0,z) = AJy(Kr)eX? ;  for 2 <0. (46)

The allowed wave-numbers K are found from the Neumann boundary condition at the vertical

wall, Eqn. (38,c), which imposes

& d
_— = K— = M = N 4
= I 0 ; atr=R; (47)
but dJy/dx = —J;(z) and then
Ji(ze) =0 5 a=1,2,...; (48)

where z, = {3.832, 7.016, 10.173, 13.324, 16.471..} are the zeros of Ji(z), that is, for radial
sloshing modes with null radial velocity at the vertical wall, the radius of the circular cylinder
must be located at one of the zeros of the Bessel function Ji(z), of first order and first class

and, then, the sloshing modes (eigensolutions) are given by Eqn. (36).



