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Abstract

A floating hemisphere under forced harmonic oscillation at very-low and very-high frequencies

is considered. The problem is reduced to an elliptic one, that is, the Laplace operator in

the exterior domain with Dirichlet and Neumann boundary conditions. Asymptotic values

of the added mass are found with an analytic prolongation for the surge mode, and with

a semi-numerical computation with spherical harmonics for the heave mode. The general

procedure is based on the use of spherical harmonics and its derivation is based on a physical

insight rather than a mathematical one. This case can be used to test the accuracy achieved

by numerical codes based on other formulations as finite or boundary elements.

1 Introduction

This work is concerned with a computation of the added mass of a floating hemisphere due to a

forced oscillatory motion of the body in the free surface of an inviscid incompressible fluid. Two

canonical cases are considered, namely those of heave and surge motions, where these nautical

terms are used to describe a vertical or horizontal oscillation of the body.

The present problem has several applications. The oscillation of a floating body implies wave

radiation so that it is of interest to wave energy conversion (e.g. see Falnes19). In seakeeping
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hydrodynamics (e.g. see Ohkusu,24 Huang/Sclavounos36), the hydrodynamic characteristics of

a vessel due to action of surface waves when the wave motion is small enough compared to

the body length can be computed with a linearized theory. Then, the response of a body to

incident waves can be determined from the added-mass and damping coefficients associated

to the forced motions of the body in the absence of waves, such as the heave motions of a

semisubmersible platform due to the influence of ocean waves (see Hulme2). Besides, added

mass effects can be recognized in ship vibrations. Although Lamb13 investigated the accelerated

motion of a submerged cylinder, its relevance in ship vibrations was only properly recognized

from the experimental work of Nicholls12 and the mathematical one (using conformal mapping)

of Lewis10.

From a physical point of view, the added mass effect comes from the inertia of the fluid. For

instance, when a floating ship-like body performs a heave motion and the fluid is assumed as

incompressible, there will be fluid motion between the hull and the free surface on the downbeat

and back again on the upbeat, see Fig. 1. The added mass effects in this case come from the

pressures transmitted to the hull arising from the inertia of the fluid. A similar analysis can be

made for the surge motion, e.g. see Llloyd6 or Jennings3.

The formulation of problems involving floating hemispheres is analogous to that for the corre-

sponding two-dimensional ones involving circular cylinders and perhaps, as Hulme1 says, this is

the reason why they have received rather comparatively little attention in the literature. The

modern history of this subject began with Ursell8, who formulated and solved the boundary

value problem for a semi-immersed heaving circular cylinder, where the velocity potential is

represented as the sum of an infinite set of multipoles, each satisfying linearized free-surface

boundary condition and each being multiplied by a coefficient determined by requiring the se-

ries to satisfy the kinematic boundary condition at a finite number of points on the cylinder.

Grim28 used a variation of the Ursell method to solve the two-parameter Lewis-form cylinders

by conformal mapping onto a circle. Tasai7 and Porter35 solved the added mass and damping

using the Ursell approach for oscillating contours mappable onto a circle by the more general

Theodorsen transformation, whereas Ogilvie31 computed the hydrodynamics forces on a com-
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pletely submerged heaving circular cylinder. Frank34 used an integral formulation where the

velocity potential is represented by a distribution of sources over the submerged cross section;

the density of the sources is an unknown function of the position along the contour to be de-

termined from integral equations found by applying the kinematic boundary condition on the

submerged part of the cylinder.

Havelock33 gives an account of the heaving-hemisphere case, where the solution is found with

a method similar to that used by Ursell for the circular cylinder, that is, the velocity potential

is expressed in spherical polar coordinates as the sum of a wave source at the sphere center

together with an infinite series of wave-free potentials. Then, the velocity potential satisfies all

the boundary conditions except for the body surface, and the latter is used to generate an infinite

linear system of equations for the infinite number of unknowns appearing in the expansion of

the velocity potential. Hulme1 used an essentially equivalent approach to Havelock’s but with

several modifications and more rigorous justification, where the solution is found by means of

an expansion for the velocity potential in terms of an infinity series of spherical harmonics from

which the relevant forces may be computed.

As it is usual in seakeeping flow problems, the forces exerted on oscillating bodies are given as

the added mass and damping coefficients, which measure the components of the wave force in

phase with the acceleration and velocity of the body respectively. In this work only the former

case is considered. The proposed method is almost exact in the sense that the solution can be

done with very high precision, and the results can be used to determine the accuracy achieved

by other methods, e.g. finite or boundary elements, which can be used to treat more general

body geometries, e.g. see Nigro25 et al.. Storti26,27 et al., D’Eĺıa17,18,16 et al..

In this work, the heave and surge modes at very low and very high frequencies of the unit

hemisphere are reformulated as boundary value problems extended to all the space, they are

solved by orthogonal expansion by means of spherical harmonics. In Hulme’s work, the derivation

of the asymptotic form for the surge-mass coefficient at very high frequencies (ω → ∞) is, as

Hulme says, suggestive rather than conclusive, so an alternative derivation is given here for the

same coefficient where the present estimation is closely related to Hulme’s estimate.
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2 The oscillating unity hemisphere

An oscillating unity hemisphere in a forced motion is considered. The unit hemisphere is the

open surface r = 1, 0 ≤ θ ≤ π/2, 0 ≤ ϕ ≤ 2π, where r is the radius, θ is the azimuthal angle and

ϕ is the circumferential one. Its edge is on the free surface of an irrotational and incompressible

fluid without a mean flow, the fluid depth is assumed as infinity, the z-axis positive downward

and the hydrostatic equilibrium plane is z = 0, see Figs. 2 and 3. Due to the symmetry, the

spherical coordinates (r, θ, ϕ) are employed. In this work a whole linearized analysis is performed

and for this reason the linearized surface boundary condition at z = 0 is only used. As it is well

known (e.g. see Newman21, Ogilvie32, Ohkusu24, Stoker20), the standard free surface boundary

condition of linearized water-wave theory for sinusoidal time dependence is given by

φ,n =
ω2

g
φ at z = 0; (1)

where φ is the velocity potential, φ,n ≡ ∂φ/∂n is the normal velocity, n is the unit normal, z = 0

is the hydrostatic free surface, ω is the circular frequency of the sinusoidal oscillation, and g is

the gravity acceleration.

2.1 Limits at very-low and very-high frequencies

In both limit processes ω → 0 and ω → ∞ for the linearized free-surface boundary condition

given by Eq. 1, it will be assumed that the velocity potential φ, the normal velocity φ,n and the

gravity acceleration g remain finite and bounded. Then, on the one hand, at very-low frequencies

(ω → 0) the free-surface boundary Eq. 1 shrinks to the homogeneous Neumann one φ,n = 0 at

z = 0, that is,

ω → 0 :



∆φ = 0 in Ω;

φ,n = 0 at z = 0;

φ,n = h at Γb;

|φ| → 0 for |x| → ∞.

(2)
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On the other hand, at very-high frequencies (ω → ∞) the free-surface boundary Eq. 1 shrinks

to the homogeneous Dirichlet one φ = 0 at z = 0, then

ω →∞ :



∆φ = 0 in Ω;

φ = 0 at z = 0;

φ,n = h at Γb;

|φ| → 0 for |x| → ∞.

(3)

In Eq. 2-3, ∆ is the Laplace operator, h = h(θ, ϕ) is the load given by the normal displacement

of the mode under consideration, and the last condition is the radiation boundary condition at

infinity. For simplicity, it is assumed that the load h = h(θ, φ) is real, that is, the body motion

is in phase with the fluid velocity. It should be noted that the original linearized flow problem

is defined only in the lower region z ≤ 0 but the analysis performed for the two limit processes

of the linearized surface boundary condition at z = 0, that is, for ω → 0 [Very Low Frequencies

(VLF)] and for ω →∞ [Very High Frequencies (VHF)], suggests that the boundary conditions

φ,n = 0 at VLF and φ = 0 at VHF respectively could be taken into account at the plane z = 0.

2.2 The heave and surge modes

The heave-mode excitation of the body (vertical oscillation) produces a symmetrical displace-

ment around the vertical axis z and it can be written as h = cos θ, with 0 ≤ θ ≤ π/2, see

Fig. 4. Analogously, the surge-mode excitation (horizontal oscillation) produces an antisym-

metrical displacement with respect to the plane x = 0 and it can be written as h = sin ϕ, with

0 ≤ ϕ < 2π, see Fig. 5. Once the velocity potential φ is solved for each mode (i.e. the surge φ1

and the heave φ3 ones), the added mass Aij in the i degree of freedom due to a harmonic unity

excitation on the j-direction is computed as the surface integral

Aij = −ρ

∫
Γb

dΓφiφj
,n ; (4)

over the body surface Γb, where i = j = 1 for the surge mode and i = j = 3 for the heave one,

e.g. see Ohkusu,24 Newman.21 Then, the added mass coefficient is obtained as A′
ij = Aij/(ρV ),

where V = (2/3)πR3 is the body volume of the hemisphere and ρ is the fluid density.
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3 The extended flow problems

By symmetry, Eqn. 2-3 can be reproduced extending the flow problem to upper region z < 0

by means of a reflection with respect to the plane z = 0 and extending the load h = h(θ, φ) in

an appropriate way. For instance, the homogeneous Neumann boundary condition is obtained

when the load h is extended in a symmetrical way, i.e. h(x, y, z) = h(x, y,−z), while the

homogeneous Dirichlet one is obtained when the load h is extended in an anti-symmetrical way,

i.e. h(x, y, z) = −h(x, y,−z). It should be noted that the plane z = 0 is not really necessary

in the subsequent analysis since the surface load extension automatically satisfied the suggested

linearized boundary conditions φ,n = 0 at VLF and φ = 0 at VHF, respectively.

3.1 The extended heave-modes at VLF and VHF

The extended heave loads at Very Low Frequencies (VLF) and Very High Frequencies (VHF)

are obtained from the sphere ones as
h = | cos θ| for low frequencies (ω → 0);

h = cos θ for high frequencies (ω →∞);
(5)

where now 0 ≤ θ ≤ π due to the extension to upper region z < 0. Then, the boundary value

problem of the heave-mode at very-low frequencies (ω → 0) is written as

extended heave-mode at VLF (ω → 0) :



∆φ = 0 in Ω′;

φ,n = | cos θ| at Γ ′
b;

φ,n = 0 at z = 0;

|φ| → 0 for |x| → ∞;

(6)

see Fig. 6, where Ω′ = Ωe ∪ Ω′
e is the extended flow domain, Ωe and Ω′

e are the flow domain

exterior to the hemisphere and its extension through the reflection plane z = 0, respectively,

and Γ ′
b is extended hemisphere surface through the same plane. In general, due to the module

on source term | cos θ|, this case does not have a closed solution. Therefore it must be found

with other resources like spherical harmonics, as considered in this work.
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Analogously, the boundary value problem of the heave-mode at very-high frequencies (ω →∞)

is written as

extended heave-mode at VHF (ω →∞) :



∆φ = 0 in Ω′ ;

φ,n = cos θ at Γ ′
b;

φ = 0 at z = 0;

|φ| → 0 for |x| → ∞;

(7)

see Fig. 7 where, since the free surface boundary condition for VHF is φ = 0, its right hand

side term has been extended in an anti-symmetric way and, then, it is equivalent to a sphere in

infinite medium.

3.2 The extended surge-mode

On the other hand, the extended surge loads at the VLF and VHF, e.g. see Fig. 8 and 9, are
h = sinϕ sin θ for low frequencies (ω → 0);

h = sinϕ sin θ sign{cos θ} for high frequencies (ω →∞).
(8)

Then, the boundary value problem of the surge-mode at very-low frequencies (ω → 0) is written

as

extended surge-mode at VLF (ω → 0) :



∆φ = 0 in Ω′;

φ,n = sinϕ sin θ at Γ ′
e;

φ,n = 0 at z = 0;

|φ| → 0 for |x| → ∞;

(9)

and the boundary value problem at very-high frequencies (ω →∞) is written as

extended surge-mode at VHF (ω →∞) :



∆φ = 0 in Ω′ ;

φ,n = sinϕ sin θ sign{cos θ} at Γ ′
e;

φ = 0 at z = 0;

|φ| → 0 for |x| → ∞.

(10)
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4 Solution of the extended flow problems

The extended flow problems can be solved in an analytical way or by series. The solutions for

the extended flow problems corresponding to the heave-mode at VHF (ω →∞) and surge-mode

at VLF (ω → 0), are the same of a sphere in an infinity medium and uniform velocity, so the

additional mass is half the displaced mass, that is,
A33(ω →∞) =

π

3
ρR3 ;

A11(ω → 0) =
π

3
ρR3 .

(11)

In the other two cases, the heave-mode at VLF (ω → 0) and the surge-mode at VHF (ω →∞),

are not that easy to obtain, so the solutions are found expanding the sources by means of

spherical harmonics.

5 Spherical harmonics

The exterior potential problem 
∆φ = 0 for r > 1;

φ = f(θ, ϕ) at r = 1;
(12)

where φ = φ(θ, ϕ) is solved expanding the function f(θ, ϕ) in terms of the harmonics

f(θ, ϕ) =
∞∑

n=0

an0 Pn(cos θ)

+
∞∑

n=0

n∑
m=1

[anm cos(mϕ) + bnm sin(mϕ)] Pm
n (cos θ) ;

(13)

where Pn(u) are the Legendre polynomials, with u = cos θ, Pm
n (u) = (1− u2)m/2dmPn/dum are

the associated ones, while the coefficients are given by

an0 =
2n + 1

4π

∫
r=1

dΓf(θ, ϕ)Pn(cos θ) ; (14)

anm =
2n + 1

2π

(n−m)!
(n + m)!

∫
r=1

dΓf(θ, ϕ)Pm
n (cos θ) cos mϕ ; (15)

bnm =
2n + 1

2π

(n−m)!
(n + m)!

∫
r=1

dΓf(θ, ϕ)Pm
n (cos θ) sinmϕ ; (16)
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where dΓ = sin θ dϕ dθ is the differential of the solid angle in spherical coordinates. Once this

expansion is computed, the exterior potential can be written as

φ (r, θ, ϕ) =
∞∑

n=0

Yn(θ, ϕ) r−(n+1) ; (17)

where

Yn(θ, ϕ) = an0Pn(cos θ)+
n∑

m=1

[
anm cos(mϕ) + bnm sin(mϕ)

]
Pm

n (cos θ) . (18)

Then, the Neumann problem can be solved taking derivatives with respect to r and evaluating

at r = 1, that is, h ≡ φ,r|r=1, obtaining the expression

h(θ, ϕ) = −
∞∑

n=0

(n + 1) Yn(θ, ϕ) ; (19)

from which analogous relations are obtained

an0 =
2n + 1

4π(n + 1)

∫
r=1

dΓ h(θ, ϕ) Pn(cos θ) ; (20)

anm =
2n + 1

2π(n + 1)
(n−m)!
(n + m)!

∫
r=1

dΓ h(θ, ϕ) Pm
n (cos θ) cos(mϕ) ; (21)

bnm =
2n + 1

2π(n + 1)
(n−m)!
(n + m)!

∫
r=1

dΓ h(θ, ϕ) Pm
n (cos θ) sin(mϕ) . (22)

Once the coefficients of the expansion are obtained, the added mass can be found from

Ajj = −ρ

∫
r=1

dΓ φ φ,r = −ρ

∫ 2π

0
G(ϕ)dϕ

∫ π

0
H(θ)dθ ; (23)

where G(ϕ) = {1, sin2 ϕ} for the heave and surge motions, respectively, and

H(θ) =
∞∑

n=0

{
2a2

n0 [Pn(cos θ)]2 +
n∑

m=1

(
a2

nm + b2
nm

)
× [Pm

n (cos θ)]2
}

; (24)

where the orthogonality property of the spherical harmonics was taken into account. Finally,

using properties of the Legendre polynomials

Ajj = ρα
∞∑

n=1

n + 1
2n + 1

[
2a2

n0 +
n∑

m=1

(a2
nm + b2

nm)
(n + m)!
(n−m)!

]
; (25)

where α = {2π, π}, for the heave and surge motions, respectively.
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6 Hemisphere in heave-mode at very-low frequencies

The load in the heave-mode at VLF is h(θ, ϕ) = | cos θ|, so

an0 =
2n + 1

4π(n + 1)

∫ 1

−1
|µ| Pn(µ)dµ

∫ 2π

0
dϕ ; (26)

where µ = cos θ. As the Pn(µ) are even (odd) for n even (odd), only remains its even terms and

then

an0 =
2n + 1
n + 1

∫ 1

0
µPn(µ)dµ ; (27)

for n even. For computing this integral, the Pn terms are generated in a recursive way with the

initial conditions P0 = 1, P1 = µ, and the next terms P2, ..., Pn are obtained by solving

(n + 1) Pn+1 − (2n + 1) µ Pn(µ) + n Pn−1(µ) = 0 . (28)

The coefficients of the polynomials µPn(µ) are obtained from the Pn(µ) ones, and the integral

is made in a semi-analytical way. The final result for the added mass in the heave-mode at VLF

for the sphere is

A33(ω → 0) = 1.740 335 785 143 ρ R3 ; (29)

corresponding to A′
33(ω → 0) = 0.830 949 128 536, that is, the non-dimensional coefficient with

respect to the hemisphere mass 2/3πρR3.

7 Hemisphere in surge-mode at very-high frequencies

In this case, due to the load h = sinϕ sin θsign{cos θ}, the only no-null coefficients are the bn1

terms. For obtaining them an integral from µ = −1 to µ = 1 must be made, with a function

which includes the P 1
n(µ) terms. These terms have a factor

√
1− µ2, so it is more convenient

to perform a semi-numerical integration (e.g. see Appendix). The final result is

A11(ω →∞) = 0.570 136 261 149 ρR3 ; (30)

corresponding to A′
11(ω →∞) = 0.272 220 012 593, that is, the non-dimensional coefficient with

respect to the hemisphere mass (2/3)πρR3.
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8 Discussion

As it can be seen, the solutions to these problems have somewhat different properties according

to whether the body oscillates in heave (vertically) or in surge (horizontally). On the one hand,

at Very Low Frequencies (VLF), if the body oscillates in heave its image moves oppositely (see

Fig. 6) so that the two act together somewhat as a pulsating source, while if the body oscillates

in surge its image moves in the same direction (see Fig. 8) and the total effect on the pressure

load is the same as for a horizontal dipole in an infinite fluid. On the other hand, at Very High

Frequencies (VHF), if the body oscillates in heave its image moves in the same direction (see

Fig. 7) so that the two act together somewhat as a vertical dipole, while if the body oscillates

in surge its image moves oppositely (see Fig. 9) and the total effect on the pressure load is the

same as a pair of horizontal dipoles oriented in opposite directions. Furthermore, the intensity of

the velocity potentials φj , with j = 1 (surge) and j = 3 (heave), are proportional to the source

terms of the corresponding governing differential equations which, in turn, are fixed by these

pressures loads. As the added mass is proportional to the integral of the fluid velocity at the

surface of the extended body, then the resulting added mass can be expected to be greater for

heave motion at Very Low Frequencies (VLF) (since its pressure load is always positive on the

extended surface) than for the surge one at Very High Frequencies (VHF) (since its pressure load

has both positive and negative values). In any case, the added mass at any frequency in heave

motion is always greater than in the surge one (since the displaced fluid is greater in heave than

in surge), as it is well known from the corresponding plots as functions of the frequency obtained,

for instance, by numerical computations, e.g. see Papanikolau4 or D’Eĺıa15. A comprehensive

analysis of relations between added masses and sources and doublets are given, for example, by

Ogilvie32 and Landweber22.

The present estimates for the added mass coefficients with respect to the hemisphere mass

2/3πρR3, for the surge mode (i = 1, longitudinal oscillation) and for the heave one (i = 3,

vertical oscillation), at VLF (ω → 0) and VHF (ω →∞) limits, are summarized in Table 1 and

compared to some literature values found (i) for the surge/sway mode, e.g. see Sierevogel23,

Prins14 (where only the intervals [0.25, 1.50] and [0.6, 1.5] are respectively considered and so the
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extrapolations are rather doubtful); (ii) for the heave one, e.g. see Korsmeyer11 and Liapis30;

and (iii) Hulme1. The Sierevogel, Prins and Liapis results are obtained with a panel method and

Kelvin source; Korsmeyer used a panel method with Fourier transform and complex impedance

extended to very-low frequencies, while Hulme’s numerical results are obtained by spherical

harmonics but with a rather different derivation and implementation.

In Hulme’s work, the solution for each mode is expressed in terms of infinite series of spherical

harmonics and then it is found solving truncated infinite linear system of equations. Hulme notes

that its procedure is successful for slow oscillations of the body, i.e. small Ka, where a is the

hemi-sphere radius (here Hulme’s notation is employed) but, for high frequencies Ka the system

is ill-conditioned so, for such cases, the problems are re-formulated as integral equations whose

kernels become small as Ka →∞. This same procedure is also used by Ursell9 and Davis5 but,

as a rigorous treatment of the surge case involves a significant amount of mathematical labour,

Hulme gives a plausible procedure from which the surge-added mass coefficient is approximated

as

A(1) ∼ C1 −
C2

Ka
as Ka →∞; (31)

with

C1 = −3
2

∞∑
n=1

αnI{2n, 1; 1} ; C2 = +
3
2

∞∑
n=1

βnI{2n, 1; 1} ; (32)

(Eq. 5.14 to 5.16, p.460, op. cit.) where the terms in the series for C1 and C2 decay as 1/n3 and

log(n)/n2, respectively, so the C2 coefficient is neglected by Hulme and, then, the surge-mass

coefficient at VHF is assumed equal to A(1) ≈ C1 ≈ 0.273 239... which is closely related to the

present estimate.

As conclusion, an alternative derivation of the added mass coefficients for the heave and surge

motions of the unit floating hemisphere at very-low and very-high frequencies was shown. As

a particular case, the numerical value obtained by the present procedure for the surge-mass

coefficient at very high frequencies (ω →∞) is closely related to Hulme’s suggestive one. Other

modeling efforts would be focused on its extension to other analytic body shapes which can be

extended to the upper region as spheroids or ellipsoids. These simpler geometries can be used
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as test cases for validation of related numerical codes, as those used in ship-hydrodynamics or

fluid-solid interaction.
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Appendix

The load in the surge-mode at VHF is h = sinϕ sin θ sign{cos θ}. The only no-null coefficients

are the bn1 terms, that is,

bn1 =
2n + 1

2π

1
n(n + 1)2

∫ 2π

0
sin2 ϕdϕ

∫ π

0
sin θ sign{cos θ}P 1

n(cos θ) sin θdθ ; (33)

introducing µ = cos θ and integrating in ϕ,

bn1 =
2n + 1

2
1

n(n + 1)2

∫ 1

−1

√
1− µ2 sign{µ}P 1

n(µ)dµ ; (34)

only the even terms are no-nulls, so

bn1 =
2n + 1

n(n + 1)2

∫ 1

0
(1− µ2)

dPn

dµ
dµ ; (35)

integrating by parts,

bn1 =
2n + 1

n(n + 1)2

[∣∣(1− µ2)Pn(µ)
∣∣1
0
+ 2

∫ 1

0
µPn(µ)dµ

]
; (36)

or

bn1 =
2n + 1

n(n + 1)2

[
−Pn(0) + 2

∫ 1

0
µPn(µ)dµ

]
; (37)

which is computed with a semi-numerical procedure, for instance, with Octave29.
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[2] Hulme A. The heave added-mass and damping coefficients of a submerged torus. J. Fluid Mechanics,

155:511–530, 1985.

[3] Jennings A. Added mass for fluid-structure vibration problems. Int. J. for Num. Meth. in Engng.,

5:817–830, 1985.

[4] Papanikolau A. On the integral-equation-methods for the evaluation of motions and loads of arbitrary

bodies in waves. Ingenieur-Archiv, 55:17–29, 1985.

[5] Davis A.M. Short surface waves due to an oscillating half-inmersed sphere. Mathematika, 18:20–39,

1971.

[6] Lloyd A.R.J.M. Seakeeping. Ship Behavior in Rough Weather. Ellis Horwood Limited (Chichester),

1989.

[7] Tasai F. On the damping force and added mass of ships heaving and pitching. Journal of Zosen

Kiokai, 105:47–56, 1959.

[8] Ursell F. On the heave motion of a circular cylinder on the surface of a fluid. Quarterly Journal of

Mechanics and Applied Mathematics, 2:218–231, 1949.

[9] Ursell F. Short surface waves due to an oscillatin inmersed body. Proc. R. Soc. Lond. A, 220:90–103,

1953.

[10] Lewis F.M. The inertia of the water surrounding a vibrating ship. In Trans. Soc. Nav. Arch., 37,

pages 1–20, 1929.

[11] Korsmeyer F.T. and Sclavounos P.D. The large-time asymptotic expansion of the impulse response

function for a floating body. Applied Ocean Research, 11(2):75–88, 1989.

[12] Nicholls F.W. Vibration of ships. In Trans RINA, 66, pages 141–163, 1924.

[13] Lamb H. Hydrodynamics. Dover Pubns, 6th edition, 1993.

[14] Prins H.J. Time-domain Calculations of Drift Forces and Moments. PhD thesis, Technische Uni-

versiteit Delft, 1995.
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Figure 1: Sketch of the movement of an incompressible fluid in ship-like vibration due to a heave
motion.
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Figure 4: The heave load h(θ, ϕ) = cos θ, with 0 ≤ θ ≤ π/2.
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Figure 5: The surge load h(θ, ϕ) = sin ϕ sin θ, with 0 ≤ ϕ < 2π and 0 ≤ θ < π/2.
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Figure 6: Symmetrical load extension h = | cos θ| for the heave-mode at very-low frequencies
ω → 0.
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Figure 7: Antisymmetrical load extension h = cos θ for the heave-mode at very-high frequencies
ω →∞.
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Figure 8: The load extension h = sinϕ sin θ for the surge-mode at Very Low Frequencies (VLF)
(ω → 0).
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Figure 9: The load extension h = sinϕ sin θ sign{cos θ} for the surge-mode at Very High Fre-
quencies (VHF) (ω →∞).
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VLF (ω → 0) VHF (ω →∞)
surge heave surge heave
A′

11 A′
33 A′

11 A′
33 reference

0.5 0.8 0.20 0.40 Sierevogel23, Prins14

0.5 0.8 0.25 0.45 Korsmeyer11, Liapis30

0.5 0.830 951 0.273 239 0.50 Hulme1

0.5 0.830 930 0.272 220 0.50 present work

Table 1: Added mass at Very-Low Frequencies (VLF) (ω → 0) and Very-High Frequencies
(VHF) (ω → ∞) for the surge mode i = 1 (longitudinal oscillation) and the heave one i = 3
(vertical oscillation) on the unit hemisphere.
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