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1 Introduction
The present report aims to show the research activities that were carried out during the stay
of three months at the Institut für Konstruktionstechnik (IK) of the Technische Universität at
the city of Braunschweig, from 01/04/14 up to 26/06/14. These activities were developed within
the framework of the International Research Staff Exchange Scheme (IRSES), project "NumSim"
PIRSES - GA2009_246977 Marie Curie Actions, funded under the 7 framework program of the
European Commission. The final goal of this work plan is to use High Performance Computing
(HPC) resources to obtain a parallel multiphysics code by combining the advantages of specialized
codes such as elPaSo [2] and PETSc-FEM [7], in order to deal with the numerical solution of
intrincate Fluid-Structure Interaction (FSI) problems. The activities comprise the colaborative
work between Dr.Ing.Marco Schauer from the German Institute with Dr.Ing.Luciano Garelli and
Dr.Ing.Gustavo Ríos Rodriguez, both researchers at CIMEC-CONICET.

As it was already mentioned, the final aim of the visit is the development and implementation of
a coupling strategy to solve FSI problems using both parallel codes elPaso and PETSc-FEM, which
are developed by the TU Braunschweig and CIMEC respectively. The underlying idea is to combine
both codes using a partitioned scheme to achieve a parallel FSI solver for problems with a weak-
coupling between the fluid dynamics and the structure dynamics. The fluid dynamic equations are
solved using an Arbitrary Lagrangian Eulerian (ALE) scheme and the mesh movement to adapt
the flow domain to the displacement of the structure are computed with PETSc-FEM. Meanwhile,
the structural problem is solved by elPaSo code. Also, the adaptive refinement capabilities of
PETSc-FEM will try to be exploited in the context of FSI problems.

2 Working stages
The work that was carried out during these months consisted of continuing with the activities that
were initiated during the three months visit of Dr.Marco Schauer to the CIMEC in 2013, which
were reported in [4]. Indeed, they can be grouped and described as in the following sections.

2.1 Installation of PETSc-FEM software at the Institut für Konstruk-
tionstechnik computer center

The first activity was to install the PETSc-FEM software in the computer center of the IK. This
activity was carried out by the system administrator of the computer center together with Dr.Ríos
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Rodriguez and took three weeks aproximately, since most of the libraries required by PETSc-FEM
were not installed in the server. Finally, PETSc-FEM software was installed and tested in the
server account of Dr.Ríos Rodriguez, so that it can be used by the researchers of the German
Institute.

2.2 Code development for the information transfer between non match-
ing meshes.

The final goal of the work is the coupling of both codes PETSc-FEM and elPaSo using a partitioned
scheme. It was discussed and finally agreed between the researchers of both institutes that some
kind of strategy was needed to transfer the solution (the loads or pressures) from the fluid to the
structure mesh, but considering that both meshes do not match at their common interface, i.e.
that their vertices do not coincide at the interface. This is a primary requirement since the setup
of the problem (mainly mesh generation) can be greately simplified and the computing time can be
reduced because of the decoupling of the meshes at the interface, which would allow to use different
kind of elements and discretizations for the fluid and the structure. Different discretizations is a
common situation in FSI problems, since the finite element mesh for the fluid domain usually
requires to be much finer than that for the structure one. Also, it was agreed that adaptive
refinement capabilities of PETSc-FEM could not be applied to solve the fluid dynamic equations
unless such a projection strategy were developed and implemented as a software layer between
PETSc-FEM and elPaSo, because of the non-matching meshes at the fluid-structure boundaries
generated by modifications introduced to the fluid mesh.

The strategies for information transfer that were developed during the work follow the ideas
mentioned in [3] and [6], from which they can be classified as: i) direct or geometric interpolation,
ii) conservative projection and iii) monotone conservative projection, ordered these by increasing
complexity, computational cost and numerical accuracy.

The direct or geometric interpolation algorithm was implemented as a first step and the conser-
vative algorithm as the second one. Both codes are written in the C++ language so that they can
be easily integrated within the PETSc-FEM software and also with the aim of taking advantage of
previously developed C++ functions of the adaptive refinement code. By the time of writting this
report, both are test codes in the sense that they are thought for testing the projection strategies
but without focusing on the performance side. Future revisions will aim to improve this aspect.

3 A brief description of the load projection strategies
The following sections briefly introduce both the direct and the conservative projection strategies
that were implemented. A detailed description and analysis of them can be found in [3] and [6].

3.1 Direct interpolation

This is the simplest and less expensive of both strategies, being its main drawback that it is not
conservative [6]. This means that from an integral point of view, not all the load from the fluid side
is transferred to the structure side. Considering that u is the quantity or variable to be projected,
let p be a vertex of the mesh structure with coordinates xp. The value of variable u at point p can
be computed by direct interpolation with the shape functions of the nodal values corresponding
to the vertices of the fluid element which “contains” vertex p. For doing this, it is necessary to
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Figure 3.1: Direct projection scheme in 2-D

identify the element on the fluid domain boundary where the projection of vertex p falls within.
This problem is efficiently resolved in this work by using the ANN library [1], which allows to
solve the Approximate Nearest Neighbour search problem. In this case, a list is built with the
nearest fluid elements to vertex p by considering the distance from this vertex to the centroids of
the fluid elements. Subsequent iteration is performed on this list in order to effectively determine
the fluid element which contains vertex p by solving, in 2-D the intersection problem between the
straight line that passes through both vertices of the current iteration element (or the plane that
passes through all the vertices of the element for the 3-D case) and the straight line normal to the
structure domain boundary at vertex p. If intersection exists, then it has to be checked that it
falls within the current fluid element by applying the following condition,

min(N i(pf), 1−N i(pf)) ≥ 0, ∀i (3.1)

where N i(pf) is the shape function associated to local i -vertex of the fluid element evaluated at
the normal projection of point p, which is denoted as pf (see figure 3.1). The normals to the
structure boundary mesh vertices are computed as the average of the normals to the boundary
mesh elements that share each vertex. If it is finally found that pf is within the current fluid
element, the corresponding shape functions are used to interpolate the variable u,

u(p) =
nbe∑
i

N i(pf)ui (3.2)

being ui the nodal values of variable u at the vertices of the fluid element and nbe is the number
of vertices per element.

3.2 Conservative projection

The conservative strategy propose that the integral of the variable of interest (e.g. the pressure)
along the fluid domain boundary pf be equal to the integral along the structure domain boundary
ps. Assuming a Finite Element Method (FEM) approximation for pressure the p and a weigthed
residual approach on the fluid-structure boundary interface Γfs, and particularly a Galerkin method
for the weighted residual approach, it can be stated that
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Figure 3.2: Conservative projection scheme in 2-D
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whereN j
s is the shape function at vertex-j of the structure boundary mesh, N j

f is the shape function
at vertex-j on the fluid boundary, p̂fj is the pressure at vertex-j of the fluid mesh computed with
FEM, p̂sj is the pressure at vertex-j of the structure boundary mesh computed by projection (the
unknown of the projection problem) and nsis the number of vertices on the structure boundary
mesh. On the left-hand side of eq.(3.3) there appears the mass matrix of the structure boundary
elements and on the right-hand side there is an integral with the product of shape functions
from both the structure and the fluid discretizations. Such integral is approximated in this work
by using a Gauss numerical quadrature, introducing the Gauss points on the fluid elements and
projecting them by their corresponding normals onto the structure elements [3]. The linear system
of equations that is finally solved can be written as,

Mcsps = r (3.4)

where Mcs is the global mass matrix for the elements on the structure boundary, psis the solu-
tion vector with the projected pressures and r is the right-hand side vector in which the entry-i
associated with vertex-i of the structure is evaluated as follows,

ri =

Nefl∑
e=1

Nptg∑
g=1

N i
s(xg)Af

(e) W (g) p̂f (xg) (3.5)

being Nefl the number of elements at the fluid mesh on the interface of both domains for which the
summation over the Gauss points is not identically null, Nptg is the number of Gauss points for the
current fluid element, A(e)

f is the area (or length) of the current fluid element, W (g) is the weight
at the Gauss point g with coordinates xg, p̂f (xg) is the fluid pressure evaluated at the Gauss point
g and N i

s(xg) is the value of the shape function associated with vertex-i on the structure boundary
mesh, evaluated at Gauss point g. Solving the linear system of equations (3.4) allows to find the
pressures on the structure side. Figure (3.2) depicts the elements previously mentioned.
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4 Numerical Tests
The following section present the results of two basic numerical tests which were solved with both
projection strategies in order to check their correct implementation and to compare the results
obtained in each case. To this end, the projected solution is compared to the fluid solution in a
vertex to vertex fashion as well as in its integral value. In all the tests, the solution to project
is imposed on the fluid boundary side and it is chosen before hand to show the differences of the
solution projected on the structure side. In both tests, only one Gauss point per fluid element is
used for the conservative strategy.

4.1 Test 1

The solution on the fluid boundary side is defined by the function

f(x) = 1/ exp(4x) (4.1)

while the integration interval (the common boundary) is given by 0 ≤ x ≤ 1. The value of the
exact integral of f(x) in this interval is equal to I1 = 0.2454211.

Next, the interval on the fluid side is equally partitioned into 20 sub-intervals. On the structure
side, the interval is subdivided into three elements as follows: the first element is n1n2 = [0, 0.3], the
second n2n3 = [0.3, 0.7] and the third one n3n4 = [0.7, 1.0]. The nodal values computed by using
the conservative strategy are:u1 = 0.914290, u2 = 0.256954, u3 = 0.046125 and u4 = 0.020117.
Applying the composite trapezoidal rule to compute the integral on the structure boundary, the
result is equal to I2 = 0.24624 and the corresponding relative error is eC = 0.00333.

On the other hand, if the direct projection strategy is applied, the corresponding nodal values
are: u1 = 1.0, u2 = 0.301194,u3 = 0.060810 and u4 = 0.018316, so that the integral computed
with the composite trapezoidal rule gives the result I3 = 0.27945 with a relative error value of
eD = .13865. Figure (4.1) shows the function to be projected on the fluid side (blue line) and
on the structure side obtained with the conservative scheme (red line). The direct projection, as
expected, is exact if it is compared on a vertex to vertex basis.

Figure 4.1: Test 1: Solutions on the fluid side (blue) and structure side (red) computed with the
conservative scheme.
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Figure 4.2: Test 2: Solutions on the fluid side (blue) and structure side computed with the
conservative (red) and direct (green) scheme.

4.2 Test 2

In this test the solution to be projected is a step function defined in the interval 0 ≤ x ≤ 1,
which has the jump at coordinate x = 0.4. On the fluid boundary, the interval is uniformly
divided into 50 sub-intervals and on the structure side it is used the same subdivision as in Test
1. The exact value of the integral on the fluid side is equal to I1 = 0.60. Next, the conservative
projection strategy is applied and the nodal values for the solution on the structure side are:
u1 = −0.0770856, u2 = 0.154171, u3 = 1.20947 and u4 = 0.895267. With these values and applying
the composite trapezoidal rule, the integral on the structure side is equal to I2 = 0.60000156 and
the corresponding relative error is eC = 2.6e− 6.

On the other hand, if the direct projection scheme is applied, the corresponding nodal values on
the structure side are: u1 = 0, u2 = 0, u3 = 1 and u4 = 1. Applying the composite trapezoidal rule,
the value of the integral is equal to I3 = 0.5 and the corresponding relative error is eD = 0.16667.
Figure (4.2) shows the solution on the fluid side (blue line) as well as the solutions projected on
the structure side with both the conservative (red line) and the direct (green line) strategies.

4.3 Test 3

In this test the fluid domain is a square of side length L = 2 with a hole of radius R = 0.3 in its
center, which will be considered the fluid-structure interface. The fluid domain is discretized with
an unstructured mesh of 4176 triangles which was generated with Gmsh [5]. The fluid-structure
interface is divided into 40 line segments of equal length. The function sin(2θ) is imposed on the
interval θ = [0, π] of the interface and the function sin(θ) is imposed on the interval θ = [π, 2π],
where θ is considered positive in the counterclockwise direction, being zero on the positive x -axis.
The structure domain is the circle of radius R = 0.3 which is discretized with an unstructured mesh
of 76 triangles, also generated with Gmsh. Its boundary is divided into 20 line segments of equal
length. Both meshes have non-matching vertices at the fluid-structure interface as it can be seen
in figure (4.3). Figure(4.4) depicts the solution on the fluid (imposed) and on the structure, this
latter computed with the conservative projection strategy. On the other hand, figure (4.5) shows
the solutions along the interface for the fluid (blue) and for the structure computed both with the
direct strategy (red) and conservative (green) strategies. The exact integral value of the solution
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Figure 4.3: Test 3: Detail of non-matching meshes at the fluid - structure interface.

Figure 4.4: Test 3: Solution at the fluid - structure interface computed with the conservative
scheme.

along the boundary is I1 = −2. On the other hand, the integral values on the structure side
computed with the solution obtained with the direct projection scheme is equal to I2 = −2.0777
and with the conservative scheme is I3 = −2.0851, so that the relative errors are eD = 0.038827
and eC = 0.042529, correspondingly.

4.4 Conclusions

Based on the results obtained in the numerical tests it can be concluded that the conservative
scheme is much more accurate than the direct projection scheme if what matters is to preserve the
total load transfer from the fluid boundary mesh to the structure boundary mesh. This behaviour
is even more notorious when the solution on the fluid boundary exhibits jumps or sudden changes.
The meshes used in the tests are very simple but all of them are non-matching at the interface so
that the software developed provides a great advantage in computing the solution of FSI problems
if compared to the solution schemes that require matching meshes.
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Figure 4.5: Test 3: Comparison of the computed solutions along the boundary.

5 Future works
The researchers of the IK and CIMEC agreed that future collaborative work should continue
because of common interests between both institutes. A list of future works were discussed and
here are reported by following a chronological order,

• Continue with the development and testing of the projection schemes to integrate the software
into the PETSc-FEM package in order to automate the procedure of load transfer from the
fluid to the structure mesh.

• Extend the projection software to solve the solution projection in 3-D problems.

• Include some kind of monotone conservative projection strategy.

• Development and implementation of a surface tracking scheme that allows the fluid mesh to
follow the movement of the structure mesh. In most of the methods, the mesh deformation of
the structure at some points is interpolated to the fluid mesh points by fitting some function
through the control points on the structure boundary[3].
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