
An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

A FFT Preconditioning Technique for the

Solution of Incompressible Flow

by M.Storti, S.Costarelli, R.Paz, L.Dalcin, S. Idelsohn

Centro Internacional de Métodos Computacionales
en Ingenierı́a - CIMEC

INTEC, (CONICET-UNL), Santa Fe, Argentina
mario.storti@gmail.com

http://www.cimec.org.ar/mstorti

CIMEC-INTEC-CONICET-UNL 1
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))

http://www.cimec.org.ar/mstorti


An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

Scientific computing on GPU’s

• Graphics Processing Units
(GPU’s) are specialized
hardware desgined to
discharge computation
from the CPU for intensive
graphics applications.
• They have many cores

(thread processors),
currently the Tesla GK110
K20 has 2496 cores at
745 Mhz.
• The raw computing power

is in the order of Teraflops
(3.5 Tflops in SP and
1.17 Tflops in DP for the
GK110).

CIMEC-INTEC-CONICET-UNL 2
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

Scientific computing on GPU’s (cont.)

• Initially scientific researchers developed tricks and magic in order to
convert scientific computations in terms of graphics primitives (OpenGL).
• The companies producing GPU’s (Nvidia and ATI) realized this and

initiated a line of GPU’s for General Purpose (GPGPU’s).
• Today scientific computing is done with tools like CUDA (Nvidia) or

OpenCL (a standard that runs on Nvidia and ATI cards, as standard multi
and many-core processors).
• Nvidia started also a line completely dedicated to scientific computing

named Tesla.
• Tesla cards have ECC memory, whereas the others don’t.
• Initially Tesla cards had a much better DP/SP speed ratio w.r.t. the

standard cards (1:2 vs. 1:8). Today this difference has been reduced. Also
they can have more memory (up to 6GB).
• GPU cards have their own RAM memory (aka device memory) with high

data transfers between the processors and the device memory. 208 GB/s
for the K20. Even so data transfer between the processors and the device
memory is often a bottleneck. Normally cards have 4-8 GB of RAM.

CIMEC-INTEC-CONICET-UNL 3
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

Scientific computing on GPU’s (cont.)

• The difference between the GPU’s
architecture and standard
multicore processors is that GPU’s
have much more computing units
(ALU’s (Arithmetic-Logic Unit) and
SFU’s (Special Function Unit), but
few control units.
• The programming model is SIMD

(Single Instruction Multiple Data).

if (COND) {
   BODY-TRUE;
} else {
   BODY-FALSE;
}

CIMEC-INTEC-CONICET-UNL 4
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

Scientific computing on GPU’s (cont.)

• GPU’s compete with many-core
processors (e.g. Intel’s Larrabee,
Knights-Corner, Xeon-Phi). They
would have 50 cores or more.
• Prices are∼USD 500 for the

GTX-580, or US 1300 for a Tesla
C2075, USD 3200 for a Tesla K20.
• Much higher prices are expected

for the Intel many-core processors.
• Today mainstream cards (like the

GTX-580) are available everywhere.
Tesla cards are hard to find in
Argentina.
• Companies as Microway sell tower

servers with 4 GPU’s.
• Many supercomputers have GPU’s

or Cell processors similar to those
used in videogame consoles.

CIMEC-INTEC-CONICET-UNL 5
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

BUT WAIT... is GPU computing power REAL or a FAIRY TALE?

• Some HPC people are skeptical
about the efficient computing
power of GPU’s for scientific
applications.
• In many works speedup is referred

to available CPU processors, which
is not consistent.
• Delivered speedup w.r.t.

mainstream x86 processors is
often much lower than expected.
• Strict data parallelism is difficult to

achieve on CFD applications.
• Unfortunately, this idea is

reinforced by the fact that GPU’s
come from the videogame special
effects industry, not with scientific
computing.

CIMEC-INTEC-CONICET-UNL 6
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

Solution of incompressible Navier-Stokes flows on GPU

• GPU’s are less efficient for algorithms that require access to the card’s
(device) global memory. Shared memory is much faster but usually scarce

(16K per thread block in the Tesla C1060) .
• The best algorithms are those that make computations for one cell

requiring only information on that cell and their neighbors. These
algorithms are classified as cellular automata (CA).
• Lattice-Boltzmann and explicit F?M (FDM/FVM/FEM) fall in this category.
• Structured meshes require less data to exchange between cells (e.g.

neighbor indices are computed, no stored), and so, they require less
shared memory. Also, very fast solvers like FFT-based (Fast Fourier

Transform) or Geometric Multigrid are available .

CIMEC-INTEC-CONICET-UNL 7
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

Fractional Step Method on structured grids with QUICK

Proposed by Molemaker et.al. SCA’08: 2008 ACM SIGGRAPH, Low viscosity
flow simulations for animation.

• Fractional Step Method
(a.k.a. pressure
segregation)
• u, v, w and continuity

cells are staggered
(MAC=Marker And
Cell).
• QUICK advection

scheme is used in the
predictor stage.
• Poisson system is

solved with IOP
(Iterated Orthogonal
Projection) (to be
described later), on top
of Geometric MultiGrid

j

j+1

j+2

i+1 i+2(ih,jh)

Vij

PijUij

x

y

i

y-momentum cell

x-momentum nodes

y-momentum nodes

continuity nodes
x-momentum cell

continuity cell

CIMEC-INTEC-CONICET-UNL 8
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))

http://portal.acm.org/citation.cfm?id=1632592.1632595


An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

Quick advection scheme

1D Scalar advection diffusion: a= advection velocity, φ advected scalar.

∂

∂x
(aφ)

∣∣∣∣
i+1/2

≈ (aφQ)i+1 − (aφQ)i

∆x
,

φQ
i =

3/8φi+1/2
+ 6/8φi−1/2

− 1/8φi−3/2
, if a > 0,

3/8ui−1/2
+ 6/8ui+1/2

− 1/8ui+3/2
, if a < 0,

x

i+1/2 i+3/2 i+5/2i-1/2i-3/2

control volume cell

i+1i

(launch video khinstab), (launch video khinstab-zoom)

CIMEC-INTEC-CONICET-UNL 9
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))

file:/home/scratch/mstorti/BACKUPED/GPUCONF/khinstab.avi
file:/home/scratch/mstorti/BACKUPED/GPUCONF/khinstab-zoom.avi


An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

Solution of the Poisson equation on embedded geometries

• Solution of the Poisson equation is, for large meshes, the more CPU
consuming time stage in Fractional-Step like Navier-Stokes solvers.
• One approach for the solution is the IOP (Iterated Orthogonal Projection)

algorithm.
• It is based on solving iteratively the Poisson eq. on the whole domain

(fluid+solid). Solving in the whole domain is fast, because algorithms like
Geometric Multigrid or FFT can be used. Also, they are very efficient

running on GPU’s .
• However, if we solve in the whole domain, then we can’t enforce the

boundary condition (∂p/∂n) = 0 at the solid boundary which, then
means the violation of the condition of impenetrability at the solid

boundary .

CIMEC-INTEC-CONICET-UNL 10
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

The IOP (Iterated Orthogonal Projection) method

The method is based on succesively solve for the incompressibility condition
(on the whole domain: solid+fluid), and impose the boundary condition.

on the whole
domain (fluid+solid)

violates impenetrability b.c. satisfies impenetrability b.c.

CIMEC-INTEC-CONICET-UNL 11
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

The IOP (Iterated Orthogonal Projection) method (cont.)

wk+1 = ΠbdyΠdivwk.

Projection on the space of
divergence-free velocity fields:

u′ = Πdiv(u)

{
u′ = u−∇P,

∆P = ∇ · u,

Projection on the space of velocity
fields that satisfy the impenetrability
boundary condition

u′′ = Πbdy(u′)

{
u′′ = ubdy, in Ωbdy,

u′′ = u′, in Ωfluid.

CIMEC-INTEC-CONICET-UNL 12
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

Convergence of IOP

• Πbdy, Πdiv are orthogonal projection
operators on L2 =⇒ the algorithm
converges, with linear rate of convergence

.
• Rate of convergence is O(1), i.e. NOT

depending on refinement . For
instance for an embedded sphere, the
residual is reduced to a factor of 0.1 in 3
iterations. However, the rate of
convergence degrades when thin surfaces

are present .
• In videogame software, and special effects

animation, 3 iterations are usually enough,
but for engineering purposes this is
insufficient and an algorithm with better
convergence properties is needed.

x

y

A

A'

B

B'

x

y

A'

B

B'

symmetric mode

antisymmetric mode

A

fluid fluidsolid

CIMEC-INTEC-CONICET-UNL 13
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

Using IOP/AGP with the FFT transform

• When solving the projection problem u′ = Πdiv(u) for IOP or the
preconditioning for AGP, we have to solve a Poisson problem on the whole
(fluid+solid) domain. This is normally done with a Geometric Multigrid
solver which has a complexity O(N log ε) (N=nbr of grid cells,
ε=tolerance). It is an iterative solver.
• On the other hand, FFT solves the same problem in O(N logN). It is a

direct solver.

CIMEC-INTEC-CONICET-UNL 14
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

Accelerated Global Preconditioning (AGP)

• The IOP algorithm iterates on the velocity u state.
• A method based on pressure would be more efficient, and in particular in

the GPGPU, due to a better use of the shared memory .
• In addition, IOP is a stationary method (with linear rate of convergence)

. We look for an accelerated Krylov space algorithm (CG) .
• The proposed AGP algorithm is to solve the fluid pressure problem with

PCG (Preconditioned Conjugate Gradient) with the solution on the whole
(fluid+solid) domain.
• It can be shown that the condition number of the preconditioned matrix is

also O(1) .
• It is an accelerated method, so convergence is much better than IOP; for

the sphere with three iterations we have a reduction of 1e-3 in the residual

(while IOP gives a reduction of 0.1) .

• Conditioning degrades also for thin surfaces .

CIMEC-INTEC-CONICET-UNL 15
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

Accelerated Global Preconditioning (AGP) (cont.)

To solve: AFF AFB

ABF ABB

 xF

xB

 =

 bF

bB


AGP Preconditioning:

PAGP xFB = yFB

defined by
AFF AFB 0

ABF ÃBB ABG

0 AGB AGG


 xFB

xG

 =

 yFB

0G

 . solid body

fluid a

b

(F) fluid node
(B) boundary node

(G) ghost node

CIMEC-INTEC-CONICET-UNL 16
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

Accelerated Global Preconditioning (AGP) (cont.)

0

0.5

1

1.5

2

2.5

3

0.8 1 1.2 1.4 1.6 1.8 2

square 

w/preco

cylinder

strip

fluid

solid

fluid

solid

fl
u
id

so
lid

w/o preco

w/preco
w/o preco

w/preco
w/o preco

CIMEC-INTEC-CONICET-UNL 17
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

Spectral decomposition of Stekhlov operators

Stekhlov operator SF for the fluid domain is
defined by: w = SF (v), if

∆φ = 0, in ΩF

φΓ = v

then w = (∂φ/∂n)|Γ

In the same way the Stekhlov operator SS for
the fluid domain can be defined. It turns out to
be that the preconditioned matrix corresponds
to P−1A→ (SF + SS)−1SF .

fluid fluidsolid

CIMEC-INTEC-CONICET-UNL 18
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

Spectral decomposition of Stekhlov operators (cont.)

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

x

y

A

A'

B

B'

symmetric mode

x

y

A'

B

B'

antisymmetric mode

A

λ(k,±, F ) = |k|,

λ(k,+, S) = k tanh(kw/2),

λ(k,−, S) = k coth(kw/2).

λ(k,±, S̃) =
|k|

|k|+ k
{

tanh
coth

}
(kw/2)

,

κ(S̃) = 1/λmin(S̃) = L/(πw)

CIMEC-INTEC-CONICET-UNL 19
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

FFT Solver

• We have to solve a linear system Ax = b
• The Discrete Fourier Transform (DFT) is an orthogonal transformation

x̃ = Ox = fft(x).
• The inverse transformation O−1 = OT is the inverse Fourier Transform

x = OT x̃ = ifft(x̃).
• If the operator matrix A is spatially invariant (i.e. the stencil is the same at

all grid points) and the b.c.’s are periodic, then it can be shown that O
diagonalizes A, i.e. OAO−1 = D.
• So in the transformed basis the system of equations is diagonal

(OAO−1) (Ox) = (Ob),

Dx̃ = b̃,
(1)

• For N = 2p the Fast Fourier Transform (FFT) is an algorithm that
computes the DFT (and its inverse) in O(N log(N)) operations.

CIMEC-INTEC-CONICET-UNL 20
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

FFT Solver (cont.)

• So the following algorithm computes the solution of the system in
O(N log(N)) ops.

. b̃ = fft(b), (transform r.h.s)

. x̃ = D−1b̃, (solve diagonal system O(N))

. x = ifft(x̃), (anti-transform to get the sol. vector)
• Total cost: 2 FFT’s, plus one element-by-element vector multiply (the

reciprocals of the values of the diagonal of D are precomputed)
• In order to precompute the diagonal values of D,
. We take any vector z and compute y = Az,
. then transform z̃ = fft(z), ỹ = fft(y),
. Djj = ỹj/z̃j .

CIMEC-INTEC-CONICET-UNL 21
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

Implementation details on the GPU

• We use the CUFFT
library.
• Per iteration: 2 FFT’s

and Poisson residual
evaluation. The FFT on
the GPU Tesla C1060
performs at 27 Gflops,
(in double precision)
where the operations
are counted as
5N log2(N).

0

5

10

15

20

25

30

10^{3} 10^{4} 10^{5} 10^{6} 10^{7} 10^{8}

F
F

T
 c

o
m

p
u

ti
n

g
 r

at
e 

[G
fl

o
p

s]

Vector size

CIMEC-INTEC-CONICET-UNL 22
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

FFT computing rates in GPGPU. GTX-580

0

50

100

150

200

250

105 106 107

F
F

T
 p

ro
c.

 r
at

e 
[G

fl
o

p
s/

se
c]

Ncell

64x64x64

128x64x64

128x128x64

128x128x128

256x128x128 256x256x128

double precision

simple precision

CIMEC-INTEC-CONICET-UNL 23
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

FFTW on i7-3820@3.60Ghz (Sandy Bridge)

0

5000

10000

15000

20000

25000

103 104 105 106 107 108 109

F
F

T
 p

ro
c.

 r
at

e 
[M

fl
o

p
s]

nthreads=1

nthreads=2

nthreads=4

Ncell

CIMEC-INTEC-CONICET-UNL 24
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

FFTW on W3690@3.47Ghz (Nehalem)

0

2000

4000

6000

8000

10000

12000

14000

103 104 105 106 107 108 109

F
F

T
 p

ro
c.

 r
at

e 
[M

fl
o

p
s]

Ncell

1
2
3
4
5
6

nthreads

nthreads=1
nthreads=2

nthreads=3
nthreads=4
nthreads=5
nthreads=6

CIMEC-INTEC-CONICET-UNL 25
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

NSFVM Computing rates in GPGPU. Scaling

20

40

60

80

100

120

140

160

10-1 100 101 102# of cells [Mcell]

ra
te

 [
M

ce
ll/

se
c]

GTX-580 SP

GTX-580 DP

C2050-SP

C2050-DP

64
x6

4x
64

12
8x

64
x6

4

12
8x

12
8x

64

12
8x

12
8x

12
8

25
6x

12
8x

12
8

25
6x

25
6x

12
8

25
6x

25
6x

25
6

CIMEC-INTEC-CONICET-UNL 26
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

NSFVM Computing rates in CPU

• i7-3820@3.60Ghz (Sandy Bridge), 1 core (sequential): 1.7 Mcell/sec
• i7-950@3.07 (Nehalem), 1 core (sequential): 1.51 Mcell/sec
• Cellrates with nthreads>1, and W3690@3.47Ghz not available at this time.
• BUT, we expect at most 7 to 10 Mcell/secs, so there is speedup factor of 8

to 10, with respect to the GPGPU (GTX-580, DP).

CIMEC-INTEC-CONICET-UNL 27
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

NSFVM and “Real Time” computing

• For a 128x128x128 mesh (≈ 2Mcell), we have a computing time of
2 Mcell/(140 Mcell/sec) = 0.014 secs/time step.
• That means 70 steps/sec.
• A von Neumann stability analysis shows that the QUICK stabilization

scheme is inconditionally stable if advanced in time with Forward Euler.
• With a second order Adams-Bashfort scheme the critical CFL is 0.588.
• For NS eqs. the critical CFL has been found to be somewhat lower (≈ 0.5).
• If L = 1, u = 1, h = 1/128, ∆t = 0.5h/u = 0.004 [sec], so that we can

compute in 1 sec, 0.28 secs of simulation time. We say ST/RT=0.28.

(launch video nsfvm-bodies-all), (launch video NSFVM-64-64-64-Simple), (launch video

NSFVM-2-128-128-Simple).

CIMEC-INTEC-CONICET-UNL 28
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))

file:/home/scratch/mstorti/BACKUPED/GPUCONF/nsfvm-bodies-all.avi
file:/home/scratch/mstorti/BACKUPED/GPUCONF/NSFVM-64-64-64-Simple.ogv
file:/home/scratch/mstorti/BACKUPED/GPUCONF/NSFVM-2-128-128-Simple.ogv
file:/home/scratch/mstorti/BACKUPED/GPUCONF/NSFVM-2-128-128-Simple.ogv


An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

NSFVM and “Real Time” computing (cont.)

CIMEC-INTEC-CONICET-UNL 29
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

Computing times in GPGPU. Fractional Step components

0

10

20

30

40

50

correctorCG-FFT-solvercomp-divpredictor

ti
m

e 
p

ar
ti

ci
p

at
io

n
 in

 t
o

ta
l c

o
m

p
u

ti
n

g
 t

im
e 

[%
]

128x128x128 mesh

256x256x128 mesh

GTX 580 (Simple precision)

CIMEC-INTEC-CONICET-UNL 30
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

LBM and FVM

• This algorithm competes with the popular Lattice Boltzmann Method.
• Both are CA (Cellular Automata) algorithms
• Both are fast (measured in cellrates) on GPGPU’s with structured meshes.
• LBM doesn’t solve a Poisson equation, so it’s partially compressible, and

then there is a CFL penalization factor (CFL∝ Machart).
• Both can be nested refined near surfaces, or other interest zones.
• Higher order treatment of BC’s on body surfaces may be better improved

in FVM.

CIMEC-INTEC-CONICET-UNL 31
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

Current work

Current work is done in two main directions

• Improving performance by replacing the QUICK advection scheme by
MOC+BFECC (which could be more GPU-friendly).
• Implementing a CPU-based renormalization algorithm for free surface

(level-set) flows.
• Another important issue is improving the representation (accuracy) of the

solid body surface by using an immersed boundary technique (see
Peskin, Acta numerica 11.0 (2002): 479-517)

CIMEC-INTEC-CONICET-UNL 32
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))

http://dx.doi.org/10.1017/S0962492902000077


An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

MOC+BFECC

• QUICK has a stencil that extends more than one cell in the upwind
direction. This increases shared memory usage and data transfer. We
seek for another low disipation scheme with a more compact stencil.
• The Method Of Characteritics (MOC) is a method that has a null disipation

for a constant velocity field and integer CFL number.
• Disipation is non-null for non-integer CFL and maximum for semi-integer

CFL.
• Combination of MOC with the BFECC reduces dissipation and gives a

compact stencil.

CIMEC-INTEC-CONICET-UNL 33
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

MOC+BFECC (cont.)

• Assume we have a low order (dissipative) operator (may be SUPG, MOC,
or any other) Φt+∆t = L(Φt,∆t).
• The Back and Forth Error Compensation and Correction (BFECC) is as

follows:
. Advance forward the state Φt+∆t,∗ = L(Φt,∆t).
. Advance backwards the state Φt,∗ = L(Φt+∆t,∗,−∆t).
. If L introduces some dissipative error ε, then Φt,∗ 6= Φt, in fact

Φt,∗ = Φt + 2ε.
. So that we can compensate for the error:

Φt+∆t = L(Φt,∆t)− ε,

= Φt+∆t,∗ − 1/2(Φ
t,∗ − Φt)

(2)

CIMEC-INTEC-CONICET-UNL 34
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

MOC+BFECC (cont.)

Comparing computing
rates with QUICK and
MOC-BFECC:

• NSFVM+QUICK
7 ms/Mcell
• Predictor step

(QUICK):
3 ms/Mcell
• MOC-BFECC

(Scalar) 5 ms/Mcell

BUT: NSFVM+QUICK
advances at CFL=0.5,
while MOC-BFECC
could advance at
CFL=4.9.

0

50

100

150

200

250

103 104 105Ncell

co
m

p
u

ti
n

g
 r

at
e 

[M
ce

ll/
se

c]

50x50

100x100

200x200

DP

SP

Zalezak’s disk. Computing rates for the MOC-BFECC
on a GPGPU Nvidia GTX580. CFL=4.9. Scalar
advection.

CIMEC-INTEC-CONICET-UNL 35
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

Renormalization

Even with a high precision, low dissipative algorithm for transporting the level
set function Φ we have to renormalize Φ→ Φ′ with a certain frequency the
level set function.

• Requirements on the renormalization
algorithm are:
. Φ′ must preserve as much as posible

the 0 level set function (interface) Γ.
. Φ′ must be as regular as possible near

the interface.
. Φ′ must have a high slope near the

interface.
. Usually the signed distance function is

used, i.e.

Φ′(x) = sign(Φ(x)) min
y∈Γ
||y − x|| xΦ

Γ

Φ (renormalized)

Γ Γ

CIMEC-INTEC-CONICET-UNL 36
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

Renormalization (cont.)

• Computing plainly the distance
function is O(NNΓ) where NΓ is the
number of points on the interface. This
scales typically∝ N1+(nd−1)/nd

(N
5/3 in 3D).

• Many variants are based in solving the
Eikonal equation

|∇Φ| = 1,

• As it is an hyperbolic equation it can
be solved by a marching technique.
The algorithm traverses the domain
with an advancing front starting from
the level set.
• However, it can develop caustics

(shocks), and rarefaction waves. So,
an entropy condition must be enforced.

caustic

expansion fan

CIMEC-INTEC-CONICET-UNL 37
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

Renormalization (cont.)

• The Fast Marching algorithm
proposed by Sethian (Proc Nat
Acad Sci 93(4):1591-1595 (1996)) ,
is a fast (near optimal) algorithm
based on Dijkstra’s algorithm for
computing minimum distances in
graphs from a source set. (Note:
the original Dijkstra’s algorithm is
O(N2), not fast. The fast version
using a priority queue is due to
Fredman and Tarjan (ACM Journal
24(3):596-615, 1987), and the
complexity is
O(N log(|Q|)) ∼ O(N log(N))).

Q=advancing front F=far-away

Level set

CIMEC-INTEC-CONICET-UNL 38
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))

http://www.pnas.org/content/93/4/1591.short
http://www.pnas.org/content/93/4/1591.short
http://dx.doi.org/10.1145/28869.28874
http://dx.doi.org/10.1145/28869.28874


An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

The Fast Marching algorithm

• We explain for the positive part Φ > 0.
Then the algorithm is reversed for Φ < 0.
• All nodes are in either: Q=advancing front,
F=far-away , I=frozen/inactive. The
advancing front sweeps the domain
starting at the level set and converts F
nodes to I .
• Initially Q = {nodes that are in contact

with the level set}. Their distance to the
interface is computed for each cut-cell.
The rest is in F =far-away.
• loop: Take the node X in Q closest to the

interface. Move it from Q→ I .
• Update all distances from neighbors to X

and move them from F → Q.
• Go to loop.
• Algorithm ends when Q = ∅. Q=advancing front F=far-away

Level set

I= frozen/inactive

X

CIMEC-INTEC-CONICET-UNL 39
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

FastMarch: error and regularity of the distance function

• Numerical example shows
regularity of computed distance
function in a mesh of 100x100.
• We have a LS consisting of a circle
R = 0.2 inside a square of L = 1.
• Φ is shown along the x = 0.6 cut

of the geometry, also we show the
first and second derivatives.
• Φ deviates less than 10−3 from the

analytical distance.
• Small spikes are observed in the

second derivative.
• The error Φ− Φex shows the

discontinuity in the slope at the LS.

-0.4

-0.3

-0.2

-0.1

0

0.1

0 0.2 0.4 0.6 0.8 1

X

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

dΦ/dx

-20

-15

-10

-5

0

0 0.2 0.4 0.6 0.8 1

d2Φ/dx2

-0.001

-0.0008

-0.0006

-0.0004

-0.0002

0

0 0.2 0.4 0.6 0.8 1

|Φ-Φex|

L=1

R=0.2

Φ

CIMEC-INTEC-CONICET-UNL 40
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

FastMarch: implementation details

• Complexity is O(N)× the cost of finding the node in Q closest to the
level set.
• This can be implemented in a very efficient way with a priority queue

implemented in top of a heap. In this way finding the closest node is
O(log |Q|). So the total cost is

O(N log |Q|) ≤ O(N log(N
(nd−1)/nd)) = O(N logN2/3) (in 3D).

• The standard C++ class priority_queue<> is not appropriate because
don’t give access to the elements in the queue.
• We implemented the heap structure on top of a vector<> and an
unordered_map<> (hash-table based) that tracks the Q-nodes in the
structure. The hash function used is very simple.

CIMEC-INTEC-CONICET-UNL 41
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

FastMarch renorm: Efficiency

• The Fast Marching algorithm is
O(N log |Q|) where N is the
number of cells and |Q| the size of
the advancing front.
• Rates were evaluated in an Intel

i7-950@3.07 (Nehalem).
• Computing rate is practically

constant and even decreases with
high N .
• Since the rate for the NS-FVM

algorithm is >100 [Mcell/s],
renormalization at a frequency
greater than 1/200 steps would be
too expensive.
• Cost of renormalization step is

reduced with band renormalization
and parallelism (SMP).

N (Nbr of cells per side)

p
ro

ce
ss

in
g

 r
at

e 
[M

ce
lls

/s
]

20
48

x2
04

8

10
24

x1
02

4

51
2x

51
2

25
6x

25
6

12
8x

12
8

64
x6

4

32
x3

2

0

0.1

0.2

0.3

0.4

0.5

0.6

103 104 105 106 107

CIMEC-INTEC-CONICET-UNL 42
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

FastMarch renorm: band renormalization

• The renormalization algorithm
doesn’t need to cover the whole
domain. Only a band around the
level set (interface) is needed.
• The algorithm is modified simply:

set distance in far-away nodes to
d = dmax.
• Cost is proportional to the volume

of the band, i.e.:
Vband = Sband × 2dmax ∝ dmax.
• Low dmax reduces cost, but

increases the probability of forcing
a new renormalization, and thus
increasing the renormalization
frequency.

xΦold

Φ (renormalized w/o dmax)

dmax

dmax

Φ (renormalized w/ dmax)

width of renormalization 
band = 2 dmax

CIMEC-INTEC-CONICET-UNL 43
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

FastMarch renorm: Parallelization

How to parallelize FastMarch? We can
do speculative parallelism that is while
processing a node X at the top of the
heap, we can process in parallel the
following node Y , speculating that
most of the time node Y will be far
from X and then can be processed
independently. This can be checked
afterwards, using time-stamps for
instance.

Level set

0

1

2

3

4 6

57

8

17

2215111820

13

9

14

23 16 10 19 21

12

All nodes of the same color can be
processed at the same time.

X

Y

CIMEC-INTEC-CONICET-UNL 44
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

FastMarch renorm: Parallelization (cont.)

• How much nodes can be
processed concurrently? It
turns out that the
simultaneity (number of
nodes that can be
processed simultaneously)
grows linearly with
refinement.
• Average simultaneity is

16x16: 11.358
32x32: 20.507
• Percentage of times

simultaneity is≥4:
16x16: 93.0%
32x32: 98.0%

0

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1

n
u

m
e
r 

o
f 

in
d

e
p

e
n

d
e
n

t 
p

o
in

ts

% advance front

0

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1
% front nodes

n
u

m
e
r 

o
f 

in
d

e
p

e
n

d
e
n

t 
p

o
in

ts

CIMEC-INTEC-CONICET-UNL 45
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

FastMarching: computational budget

• With band renormalization and SMP parallelization we expect a rate of
20 Mcell/s.
• That means that a 1283 mesh (2 Mcell) can be done in 100 ms.
• This is 7x times the time required for one time step (14 ms).
• Renormalization will be amortized if the renormalization frequency is more

than 1/20 time steps.
• Transfer of the data to and from the processor through the PCI Express 2.0

x 16 channel (∼4 GB/s transfer rate) is in the order of 10 ms.
• BTW: note that transfers from the CPU to/from the card are amortized if

they are performed each 1:10 steps or so. Such transfers can’t be done all
time steps.

CIMEC-INTEC-CONICET-UNL 46
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

Conclusions

The Accelerated Global Preconditioning (AGP) algorithm for the solution of
the Poisson equation specially oriented to the solution of Navier-Stokes
equations on GPU hardware was presented. It shares some features with the
well known IOP iteration scheme. As a summary of the comparison between
both methods, the following issues may be mentioned

• Both solvers are based on the fact that an efficient preconditioning that
consists in solving the Poisson problem on the global domain
(fluid+solid). Of course, this represents more computational work than
solving the problem only in the fluid, but this can be faster in a structured
mesh with some fast solvers as Multigrid or FFT.
• Both solvers have their convergence governed by the spectrum of the
S−1SF , however

CIMEC-INTEC-CONICET-UNL 47
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

. IOP is a stationary method and its limit rate of convergence is given by

‖rn+1‖ ≤ γIOP‖rn‖

γIOP = 1− λmin,

λmin = min(eig(S−1SF )).

(3)

. AGP is a preconditioned Krylov space method and its convergence is
governed by the condition number of S−1SF , i.e.

κ(A−1AF ) =
1

min(eig(S−1SF ))
=

1
λmin

, (4)

• It has been shown that λmin = O(1), i.e. it does not degrade with
refinement, so that IOP has a linear convergence with limit rate O(1).
• By the same reason, the condition number for AGP does not degrade with

refinement.
• IOP iterates over both the velocity and pressure fields, whereas AGP

iterates only on the pressure vector (which is better for implementation on
GPU’s).
• The MOC+BFECC scheme is an efficient solver for the advection equation.

CIMEC-INTEC-CONICET-UNL 48
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

It gives high computing rates with large CFL numbers.
• The Fast-Marching renormalization technique is a good candidate for

doing renormalization on the CPU and having times competitive with
those of NS-FVM on the GPU.

CIMEC-INTEC-CONICET-UNL 49
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))



An FFT Prec Incomp Flows on GPGPU’s por M.Storti et.al.

Acknowledgments

This work has received financial support from

• Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET,
Argentina, PIP 5271/05),
• Universidad Nacional del Litoral (UNL, Argentina, grant CAI+D

2009-65/334),
• Agencia Nacional de Promoción Cientı́fica y Tecnológica (ANPCyT,

Argentina, grants PICT-1506/2006, PICT-1141/2007, PICT-0270/2008), and
• European Research Council (ERC) Advanced Grant, Real Time

Computational Mechanics Techniques for Multi-Fluid Problems
(REALTIME, Reference: ERC-2009-AdG, Dir: Dr. Sergio Idelsohn).

The authors made extensive use of Free Software as GNU/Linux OS, GCC/G++
compilers, Octave, and Open Source software as VTK among many others. In
addition, many ideas from these packages have been inspiring to them.

CIMEC-INTEC-CONICET-UNL 50
((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))

http://www.conicet.gov.ar
http://www.unl.edu.ar
http://www.agencia.gov.ar
http://erc.europa.eu
http://erc.europa.eu/index.cfm?fuseaction=page.display&topicID=518
http://erc.europa.eu/index.cfm?fuseaction=page.display&topicID=518
http://www.gnu.org

