A FFT Preconditioning Technique for the

Solution of Incompressible Flow
by M.Storti, S.Costarelli, R.Paz, L.Dalcin, S. Idelsohn ' .,

Centro Internacional de Métodos Computacionales
en Ingenieria - CIMEC

INTEC, (CONICET-UNL), Santa Fe, Argentina
mario.storti@gmail.com
http://www.cimec.org.ar/mstorti

http://www.cimec.org.ar/mstorti

I NTE C
n CONICET

&

Scientific computing on GPU’s I

e Graphics Processing Units
(GPU’s) are specialized
hardware desgined to
discharge computation
from the CPU for intensive
graphics applications.

e They have many cores
(thread processors),
currently the Tesla GK110
K20 has 2496 cores at
745 Mhz.

e The raw computing power

is in the order of Teraflops

(3.5 Tflops in SP and

1.17 Tflops in DP for the

GK110).

I N T E C
An FFT Prec Incomp Flows on GPGPU's por M.Storti et.al. u CONTCET :
Scientific computing on GPU’s (cont.) I

e Initially scientific researchers developed tricks and magic in order to
convert scientific computations in terms of graphics primitives (OpenGL).

e The companies producing GPU’s (Nvidia and ATI) realized this and
initiated a line of GPU’s for General Purpose (GPGPU's).

e Today scientific computing is done with tools like CUDA (Nvidia) or
OpenCL (a standard that runs on Nvidia and ATI cards, as standard multi
and many-core processors).

e Nvidia started also a line completely dedicated to scientific computing
named Tesl/a.

e Tesla cards have ECC memory, whereas the others don't.

e Initially Tesla cards had a much better DP/SP speed ratio w.r.t. the
standard cards (1:2 vs. 1:8). Today this difference has been reduced. Also
they can have more memory (up to 6GB).

e GPU cards have their own RAM memory (aka device memory) with high
data transfers between the processors and the device memory. 208 GB/s
for the K20. Even so data transfer between the processors and the device
memory is often a bottleneck. Normally cards have 4-8 GB of RAM.

CIMEC-INTEC-CONICET-UNL 3

((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))

I NTEC
CONICET

_ O

‘ Scientific computing on GPU’s (cont.) I

if (COND) {
e BODY-TRUE;
. } else {
- BODY-FALSE;
e The difference between the GPU’s }
‘ architecture and standard l

multicore processors is that GPU’s Il """ l 1
have much more computing units
(ALU’s (Arithmetic-Logic Unit) and I I I
SFU'’s (Special Function Unit), but
few control units.

e The programming model is SIMD

(Single Instruction Multiple Data).

I NTE C
u CONICET

&

Scientific computing on GPU’s (cont.) I

e GPU’s compete with many-core
processors (e.g. Intel’s Larrabee,
Knights-Corner, Xeon-Phi). They
would have 50 cores or more.

e Prices are ~USD 500 for the
GTX-580, or US 1300 for a Tesla
C2075, USD 3200 for a Tesla K20.

e Much higher prices are expected
for the Intel many-core processors.

e Today mainstream cards (like the
GTX-580) are available everywhere.
Tesla cards are hard to find in
Argentina.

e Companies as Microway sell tower
servers with 4 GPU’s.

e Many supercomputers have GPU’s
or Cell processors similar to those

used in videogame consoles.

—1

I NTEC
CONICET

&

BUT WAIT... is GPU computing power REAL or a FAIRY TALE? I

e Some HPC people are skeptical
about the efficient computing
power of GPU’s for scientific
applications.

e In many works speedup is referred
to available CPU processors, which
Is not consistent.

e Delivered speedup w.r.t.
mainstream x86 processors is
often much lower than expected.

e Strict data parallelism is difficult to
achieve on CFD applications.

e Unfortunately, this idea is

reinforced by the fact that GPU’s

come from the videogame special
effects industry, not with scientific
computing.

I NTE C
u CONICET

&

Solution of incompressible Navier-Stokes flows on GPU I

e GPU'’s are less efficient for algorithms that require access to the card’s
(device) global memory. Shared memory is much faster but usually scarce

(16K per thread block in the Tesla C1060) .

e The best algorithms are those that make computations for one cell
requiring only information on that cell and their neighbors. These
algorithms are classified as cellular automata (CA).

e Lattice-Boltzmann and explicit F<M (FDM/FVM/FEM) fall in this category.

e Structured meshes require less data to exchange between cells (e.g.
neighbor indices are computed, no stored), and so, they require less
shared memory. Also, very fast solvers like FFT-based (Fast Fourier

o
Transform) or Geometric Multigrid are available .

I NTEC
CONICET

_ O

Fractional Step Method on structured grids with QUICK I

Proposed by Molemaker et.al. SCA’08: 2008 ACM SIGGRAPH, Low viscosity
flow simulations for animation. &

e Fractional Step Method
(a.k.a. pressure
segregation) y

e u,v,w and continuity T '

jr2— —

cells are staggered — —e— — + — @ Xx-momentum nodes
(MAC=Marker And | O y-momentum nodes
Cell). d o |
|
|

»
X

o continuity nodes

e QUICK advection X-momentum cell
scheme is used in the 41

— —e— — —
predictor stage. l’\continuity celzll

e Poisson system is | I
solved with /OP ° ?
(Iterated Orthogonal I l x
Projection) (to be j= g T T I—H2—>

described later), on top
of Geometric MultiGrid

y-momentum cell

http://portal.acm.org/citation.cfm?id=1632592.1632595

I NTEC

CONICET

UNL w

| Quick advection scheme '

1D Scalar advection diffusion: a= advection velocity, ¢ advected scalar.

9
ox

(ad?)it1 — (ag®);

~ 3
i+14 Az

(ag)

Q 3/8¢7L-|-1/2 -+ 6/8¢i_1/2 N 1/8¢7;_3/2, ifa > 0,

@; —
contiol volume cell
1 1 x
—O0 o—>
i-3/2 i-1/2 i+3/2 i+5/2

1
:
I

(launch video khinstab), (launch video khinstab-zoom)

file:/home/scratch/mstorti/BACKUPED/GPUCONF/khinstab.avi
file:/home/scratch/mstorti/BACKUPED/GPUCONF/khinstab-zoom.avi

I NTE C
u CONICET

&

Solution of the Poisson equation on embedded geometries I

e Solution of the Poisson equation is, for large meshes, the more CPU
consuming time stage in Fractional-Step like Navier-Stokes solvers.

e One approach for the solution is the /OP (Iterated Orthogonal Projection)
algorithm.

e It is based on solving iteratively the Poisson eq. on the whole domain
(fluid+solid). Solving in the whole domain is fast, because algorithms like
Geometric Multigrid or FFT can be used. Also, they are very efficient

. .®®
running on GPU’s .

e However, if we solve in the whole domain, then we can’t enforce the
boundary condition (Op/dn) = 0 at the solid boundary which, then
means the violation of the condition of impenetrability at the solid

boundary .

I NTE C
u CONICET

&

The IOP (lterated Orthogonal Projection) method

The method is based on succesively solve for the incompressibility condition

(on the whole domain: solid+fluid), and impose the boundary condition.
u'=u—VP, onthe whole u” = Upqy, in Qpay,

u =11’, in Qquiq.-

u’ = Iy (u) { AP—v.u domain (fluid+solid) u” = Iay (') { 3

I NTEC

CONICET

&

The IOP (lterated Orthogonal Projection) method (cont.)

ket k Saiv N Sbe

1
w — Hbdy]-_-[divw . \

Projection on the space of
divergence-free velocity fields:

/ u =u-VP,
u = Il (u
aiv (W) AP =V -u,
Projection on the space of velocity Sgiv N

fields that satisfy the impenetrability
boundary condition

14 .
U’ = Upgy, inpqay,

u’ = Hbd}’(u/) { 7

u’ =1, in Qguiq.

I NTEC
CONICET

&

Convergence of IOP I

e Il 4y, 114, are orthogonal projection

operators on L., —> the algorithm
converges, with linear rate of convergence

L]

Rate of convergence is O(1), i.e. NOT

depending on refinement . For
instance for an embedded sphere, the
residual is reduced to a factor of 0.1 in 3
iterations. However, the rate of
convergence degrades when thin surfaces

are present & .
e In videogame software, and special effects
animation, 3 iterations are usually enough,~
but for engineering purposes this is ~
insufficient and an algorithm with better = qntig;;,;;metric mode
convergence properties is needed. A 2

I NTEC
CONICET

UNL w

‘ Using IOP/AGP with the FFT transform I

e When solving the projection problem u’ = I1g;, (u) for IOP or the
preconditioning for AGP, we have to solve a Poisson problem on the whole \ R
(fluid+solid) domain. This is normally done with a Geometric Multigrid
solver which has a complexity O (N log €) (N =nbr of grid cells, y
e=tolerance). It is an iterative solver.

e On the other hand, FFT solves the same problem in O(N log V). Itis a

direct solver.

»
X

-

INTEC @
Accelerated Global Preconditioning (AGP) I

e The IOP algorithm iterates on the velocity u state.
e A method based on pressure would be more efficient, and in particular in

‘@@
the GPGPU, due to a better use of the shared memory .
e In addition, IOP is a stationary method (with linear rate of convergence)

. We look for an accelerated Krylov space algorithm (CG) .

e The proposed AGP algorithm is to solve the fluid pressure problem with
PCG (Preconditioned Conjugate Gradient) with the solution on the whole
(fluid+solid) domain.

e It can be shown that the condition number of the preconditioned matrix is

516}
also O(1) .
e ltis an accelerated method, so convergence is much better than IOP; for
the sphere with three iterations we have a reduction of 1e-3 in the residual

0O
(while IOP gives a reduction of 0.1) .

516
Conditioning degrades also for thin surfaces .

I NTEC
CONICET

UNL w

‘ Accelerated Global Preconditioning (AGP) (cont.) I

To solve:

AGP Preconditioning:

PaicpXrp =yrB

defined by

O O

solid Lody
Pbdy
XG 0c " e (F) fluid node
0 Ao Acgca - - - 1 e (B) boundary node
o (G) ghost node

I NTEC
CONICET
UNL

&

Accelerated Global Preconditioning (AGP) (cont.) I

3

N
n

square

w/0 preco ——
w/preco =

N
1
'
'
'
'
'
'
'
'
'
'
'
'
'
Y
'
'
'

cylinder

“| w/o preco=—
w/preco ——

=
(T}

strip

w/0 preco -
w/preco

log,0(cond(A)), logyo(cond(P~1A))

~
\
\

I NTEC

CONICET

_ O

Spectral decomposition of Stekhlov operators I

Stekhlov operator Sy for the fluid domain is A

defined by: w = Sp(v), if
Ap =0, inQp
L
¢r = v

then w = (0¢/0n) |-

In the same way the Stekhlov operator S for Y
the fluid domain can be defined. It turns out to
be that the preconditioned matrix corresponds

toP 1A — (SF + 85)_18F.

I NTEC

CONICET

a O

‘ Spectral decomposition of Stekhlov operators (cont.) I

ol Ak, +S) |

..............................

Lbocdcobooood ik A U L

...............................

...................

............................

¥ - R PYCRo—
..... p _:_____:__A(k,—,S)— -
' v [Ak, +,S)

ozk- -/ - R R I,
L} L} -

L
4

Mk, £, F) = |k|, Lo i
Ak, +,S) = ktanh(kw/2),]+ B{MY (kuw /2)
Mk, —.8) = keoth(kw/2). K(S) = 1/Auin(S) = L/ (mw)

I NTEC
CONICET
UNL

&

FFT Solver '

e We have to solve a linear system Ax = b

e The Discrete Fourier Transform (DFT) is an orthogonal transformation
x = Ox = fft(x).

e The inverse transformation O ! = O is the inverse Fourier Transform
x = OTx = ifft(x).

e If the operator matrix A is spatially invariant (i.e. the stencil is the same at
all grid points) and the b.c.’s are periodic, then it can be shown that O
diagonalizes A, i.e. OAO~! = D.

e So in the transformed basis the system of equations is diagonal

(OAO™) (Ox) = (Ob),

Dx = b,

For N = 2P the Fast Fourier Transform (FFT) is an algorithm that
computes the DFT (and its inverse) in O(N log(N)) operations.

I NTEC
CONICET

_ O

‘ FFT Solver (cont.) I

e So the following algorithm computes the solution of the system in
O(N log(N)) ops.
> b = fft(b), (transform r.h.s)
> x = D~ b, (solve diagonal system O(V))
> x = ifft(x), (anti-transform to get the sol. vector)
e Total cost: 2 FFT’s, plus one element-by-element vector multiply (the
reciprocals of the values of the diagonal of D are precomputed)
¢ In order to precompute the diagonal values of D,
> We take any vector z and compute y = Az,
> then transform z = fft(z), y = fft(y),

> Djs = 45/ 2.

I NTEC

CONICET

_ O

‘ Implementation details on the GPU I

30

N
&]

e We use the CUFFT
library.

e Per iteration: 2 FFT’s
and Poisson residual
evaluation. The FFT on
the GPU Tesla C1060
performs at 27 Gflops, - 1o
(in double precision)
where the operations

are counted as
5N log,(N).

N
o

»
X

~
)

FT computing rate [Gflops]

Vector size
1
léL{3} 10" {4} 10"~ {5} 10" {6} 10"~ {7} 10" {8}

I NTEC

CONICET

UNL O —_

‘ FFT computing rates in GPGPU. GTX-580 I

250 T T T T T T T T T T T = T T T T T
128x128x128 simple precision
|
128x128x64 !
|

N
o
o

128x64x64

64x64x64 |
150

FFT proc. rate [Gflops/sec]

({P@—e—(é_é_? double precision
i I !

1
! : 256x128x128 256Xx256x128

o)

FFT proc. rate [Mflops]

I NTEC

UNL

C>»

‘ FFTW on i7-3820@3.60Ghz (Sandy Bridge) I

25000

15000

10000

nthreads=+

nthreads=+

nthreads=

0
103

7 5 6 u 8 ?
10 10 10 10 10° Ncen 10

14000

I NTEC

‘ FFTW on W3690@3.47Ghz (Nehalem) I

nthreads

_1

FFT proc. rate [Mflops]

~itnthreads=5
- nthreads=4

 —

0

nthreads=3

nthreads=1

103

10* 10° 10° 10’

=
@) aA
M|z
| S
Z o
[e-— = - =
] 15
- P -
& 118
- g
..u -
() o
H

952X95¢X95¢

C2050-SP
GTX-580 DP
C2050-DP

10!

82TX8ZTX8ZT

79X82TX8CT

10°

V9Xy9X8eT

V9Xy79Xv9

NSFVM Computing rates in GPGPU. Scaling

1

o
o o o o o o o o
© < ~N o © © < N
— — i —

[09s/11901n] 914

.\ .

I NTEC
CONICET

UNL w

‘ NSFVM Computing rates in CPU I

i7-3820@3.60Ghz (Sandy Bridge), 1 core (sequential): 1.7 Mcell/sec \ k.
i7-950@3.07 (Nehalem), 1 core (sequential): 1.51 Mcell/sec
Cellrates with nthreads>1, and W3690@3.47Ghz not available at this time. P
BUT, we expect at most 7 to 10 Mcell/secs, so there is speedup factor of 8
to 10, with respect to the GPGPU (GTX-580, DP).

I NTEC
CONICET

_ O

NSFVM and “Real Time” computing I

e For a 128x128x128 mesh (=~ 2Mcell), we have a computing time of
2 Mcell/(140 Mcell/sec) = 0.014 secs/time step.

e That means 70 steps/sec.

e A von Neumann stability analysis shows that the QUICK stabilization
scheme is inconditionally stable if advanced in time with Forward Euler.

e With a second order Adams-Bashfort scheme the critical CFL is 0.588.

e For NS egs. the critical CFL has been found to be somewhat lower (= 0.5).

o lf L=1,u=1,h=1/128, At = 0.5h/u = 0.004 [sec], so that we can

compute in 1 sec, 0.28 secs of simulation time. We say ST/RT=0.28.

(launch video nsfvm-bodies-all), (launch video NSFVM-64-64-64-Simple), (launch video
NSFVM-2-128-128-Simple).

file:/home/scratch/mstorti/BACKUPED/GPUCONF/nsfvm-bodies-all.avi
file:/home/scratch/mstorti/BACKUPED/GPUCONF/NSFVM-64-64-64-Simple.ogv
file:/home/scratch/mstorti/BACKUPED/GPUCONF/NSFVM-2-128-128-Simple.ogv
file:/home/scratch/mstorti/BACKUPED/GPUCONF/NSFVM-2-128-128-Simple.ogv

I NTEC

CONICET

_ O

NSFVM and “Real Time” computing (cont.)

Cylinder
moving Vrb3d-
randomly in cvlinder. avi 128x128 16K (2D 3] 0.5 90 0.14 127 0.11
a square s '
cavity
2-D Flow
around a .

. vrk3d-moving-
moving square.avi 128x128 16K (2D 0.66] 0.5 90 0.031 16 0.019
square
body
3-D Falling .

falling-block-

block off offcentered.avi 128x128x128|2M |3D 3] 05 140 115 10 115
centered
3-D Cube
moving moving-
randomly in|cube-random. avi 128x128x128|2M |3D 3.8] 05 140 145 5 3
a 3-D cavity
2-D Flow
around a - [cylinder-nsvm- o561 054 |2621|2D 2| 05 90 3 3.52 0.85
cylinder at |rel000.avi
Re=1000

I N T E C
)
An FFT Prec Incomp Flows on GPGPU'’s por M.Storti et.al. CONTCET

- <y

Computing times in GPGPU. Fractional Step components I

50

GTX 580 (Simple precision)

N
o

256x256x128 mesh

B 128x128x128 mesh
]

(OV)
o

N
(@)

time participation in total computing time [%]
|_I
o

predictor comp-div CG-FFT-solver corrector

CIMEC-INTEC-CONICET-UNL 30

((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))

I NTEC
CONICET

_ O

LBM and FVM '

This algorithm competes with the popular Lattice Boltzmann Method.
Both are CA (Cellular Automata) algorithms

Both are fast (measured in cellrates) on GPGPU’s with structured meshes.
LBM doesn’t solve a Poisson equation, so it’s partially compressible, and
then there is a CFL penalization factor (CFL oc Mach,+).

Both can be nested refined near surfaces, or other interest zones.

Higher order treatment of BC’s on body surfaces may be better improved
in FVM.

\
’

I NTEC
CONICET

_ O

| Current work '

Current work is done in two main directions

e Improving performance by replacing the QUICK advection scheme by .
MOC+BFECC (which could be more GPU-friendly). \ N
e Implementing a CPU-based renormalization algorithm for free surface
(level-set) flows. P
e Another important issue is improving the representation (accuracy) of the
solid body surface by using an immersed boundary technique (see

-

Peskin, Acta humerica 11.0 (2002): 479-517)

http://dx.doi.org/10.1017/S0962492902000077

I NTEC
CONICET

_ O

MOC+BFECC '

e QUICK has a stencil that extends more than one cell in the upwind
direction. This increases shared memory usage and data transfer. We
seek for another low disipation scheme with a more compact stencil.

e The Method Of Characteritics (MOC) is a method that has a null disipation
for a constant velocity field and integer CFL number.

e Disipation is non-null for non-integer CFL and maximum for semi-integer
CFL.

e Combination of MOC with the BFECC reduces dissipation and gives a

compact stencil.

I NTEC
CONICET

_ O

‘ MOC+BFECC (cont.) I

e Assume we have a low order (dissipative) operator (may be SUPG, MOC,
or any other) ' T2 = L£(®!, At).

e The Back and Forth Error Compensation and Correction (BFECC) is as
follows:
> Advance forward the state ®'T20* = L(®!, At).

> Advance backwards the state ®** = L(DITAL* _At).

> If £ introduces some dissipative error ¢, then ®** £ &7, in fact
OL* = O + 2e.
> So that we can compensate for the error:

PITAL = L(BE AL) — ¢,
— (I)t+At,* . 1/2((I)t,>k . (I)t)

»
.

250

Comparing computing

rates with QUICK and g
MOC-BFECC: = .
e NSFVM+QUICK =
7 ms/Mcell g
e Predictor step o 100
(QUICK): §_
3 ms/Mcell E
e MOC-BFECC o 50

(Scalar) 5 ms/Mcell
BUT: NSFVM+QUICK

0

advances at CFL=0.5, 10°
Zalezak’s disk. Computing rates for the MOC-BFECC
on a GPGPU Nvidia GTX580. CFL=4.9. Scalar
advection.

while MOC-BFECC
could advance at
CFL=4.9.

MOC+BFECC (cont.) I

I NTEC

UNL

CONICET

&

200%200.

1

SP

100x100-

A

DP

50x50.

10%

Ncell

10°

I NTEC
CONICET

_ O

Renormalization '

Even with a high precision, low dissipative algorithm for transporting the level
set function ® we have to renormalize ® — ®’ with a certain frequency the
level set function.

e Requirements on the renormalization

algorithm are:

> &’ must preserve as much as posible
the 0 level set function (interface) I'.

> ®’ must be as regular as possible near
the interface.

> ®’ must have a high slope near the
interface.

> Usua"y the Signed distance function is q) (renormalized)
used, i.e.

P

¢’ (x) = sign(®(x)) [y = s

I NTEC

CONICET

_ O

Renormalization (cont.) I

Computing plainly the distance
function is O(N N1) where Nt is the
number of points on the interface. This

scales typically oc N1t (na—1)/na
(N5 in 3D).

Many variants are based in solving the
Eikonal equation s éausti

- | N =
|V®| =]_7 SSSs=z=

As it is an hyperbolic equation it can
be solved by a marching technique. @~ ——— — e L
The algorithm traverses the domain
with an advancing front starting from
the level set.

However, it can develop caustics
(shocks), and rarefaction waves. So,
an entropy condition must be enforced.

I NTE C
ﬂ CONICET

&

Renormalization (cont.) I

e The Fast Marching algorithm *— ¢ —o ¢
proposed by Sethian (Proc Nat o—o o—o—o
Acad Sci 93(4):1591-1595 (1996)) ,

Is a fast (near optimal) algorithm @——¢ o—0—9
based on Dijkstra’s algorithm for i

computing minimum distances in
graphs from a source set. (Note:
the original Dijkstra’s algorithm is
O(IN?), not fast. The fast version
using a priority queue is due to
Fredman and Tarjan (ACM Journal
24(3):596-615, 1987), and the
complexity is

O(Nlog(|Q])) ~ O(N log(N))). &—6—

@ Q=advancing front

o
@ F=far-away

http://www.pnas.org/content/93/4/1591.short
http://www.pnas.org/content/93/4/1591.short
http://dx.doi.org/10.1145/28869.28874
http://dx.doi.org/10.1145/28869.28874

I NTE C
u CONICET

&

The Fast Marching algorithm I

e We explain for the positive part ® > 0.
Then the algorithm is reversed for ® < 0.

e All nodes are in either: ()=advancing front,
F'=far-away , I =frozen/inactive. The
advancing front sweeps the domain
starting at the level set and converts [’
nodes to /.

e Initially () = {nodes that are in contact

with the level set}. Their distance to the
interface is computed for each cut-cell.
The rest is in /' =far-away.
e /oop: Take the node X in () closest to the
interface. Move it from () — 1.
e Update all distances from neighbors to X Tt
and move them from F' — (). *—o—9
e Go to /oop. — o o o—o
e Algorithm ends when () = (). © Q=dvancing fron © F-faramay

@ = frozenlinactive

Level set

I NTEC
CONICET

_ O

FastMarch: error and regularity of the distance function I
- P 0
© ~
o // N
e Numerical example shows Ry P N
. . rd N
regularity of computed distance U A
function in a mesh of 100x100. 1 —
e We have a LS consisting of a circle ~ doidx \
R =0.2insideasquareof L = 1. N
e ®isshownalongthe z = 0.6 cut S
of the geometry, also we show the - \ (
first and second derivatives. | oIz ‘\ /’
e O deviates less than 107 from the = Y
analytical distance. . 1
e Small spikes are observed in the :
second derivative. e //
e The error & — @, shows the BTN
discontinuity in the slope atthe LS. ... '

000000

I NTEC
CONICET
UNL

&

FastMarch: implementation details I

e Complexity is O(N)x the cost of finding the node in () closest to the
level set.

e This can be implemented in a very efficient way with a priority queue
implemented in top of a heap. In this way finding the closest node is
O(log |@])- So the total cost is

O(Nlog|Q]) < O(N log(N"* " ha)) = O(N log N?) (in 3D).
e The standard C++ class priority queue<> is nhot appropriate because
don’t give access to the elements in the queue.
e We implemented the heap structure on top of a vector<>and an
unordered_map<> (hash-table based) that tracks the ()-nodes in the
structure. The hash function used is very simple.

I NTEC
CONICET
UNL

&

FastMarch renorm: Efficiency.

e The Fast Marching algorithm is
O(N log |Q|) where N is the

number of cells and |()| the size of
the advancing front.

e Rates were evaluated in an Intel
i7-950@3.07 (Nehalem).

=
o

e Computing rate is practically - : g
constant and even decreases with 3 ° ;
high V. >

e Since the rate for the NS-FVM % ey 'g Q Q N 3
algorithm is >100 [Mcell/s], e & 3§ X & & 9
renormalization at a frequency s L B
greater than 1/200 steps would be £
too expensive. 7

e Cost of renormalization step is §0,1
reduced with band renormalization s
and parallelism (SMP). 0L —

: L
N (Nbr of cells per side)

FastMarch renorm: band renormalization '

e The renormalization algorithm
doesn’t need to cover the whole
domain. Only a band around the
level set (interface) is needed.

e The algorithm is modified simply:
set distance in far-away nodes to
d = dmax-

e Cost is proportional to the volume
of the band, i.e.:

Vband — Sba,nd X Qdmax X dmax- ¢(renormalizedwlodmax) ‘ll)v;itt;‘:fzrg::rma"zaﬁon
o LOW dmax reduces COSt! bUt q)(renormalized w/ dmax) !

increases the probability of forcing
a nhew renormalization, and thus CDomuR ' 5
increasing the renormalization @ -/ e

frequency. |

I NTE C
n CONICET

&

FastMarch renorm: Parallelization '

23 16 10 19 21
| @ ®

How to parallelize FastMarch? We can ‘
do speculative parallelism that is while
processing a node X at the top of the
heap, we can process in parallel the
following node Y, speculating that
most of the time node Y will be far
from X and then can be processed ®
independently. This can be checked % 18
afterwards, using fime-stamps for
instance.

Level set

13. 4 .X 1 6 ¢ 17.

11. 15.

22

All nodes of the same color can be
processed at the same time.

UNL CON%
‘ FastMarch renorm: Parallelization (cont.) I

80

e How much nodes can be .~
processed concurrently? It :*
turns out that the il N
simultaneity (number of ;" I I
nodes that can be |
processed simultaneously) "
grows linearly with i 1
refinement. -

e Average simultaneity is
16x16: 11.358
32x32: 20.507 g

e Percentage of times

simultaneity is >4:

16x16: 93.0% : e

32x32: 98.0%

L
E\‘ [~

I NTEC
CONICET
UNL

&

FastMarching: computational budget I

e With band renormalization and SMP parallelization we expect a rate of
20 Mcell/s.

e That means that a 1283 mesh (2 Mcell) can be done in 700 ms.

e This is 7x times the time required for one time step (74 ms). |

e Renormalization will be amortized if the renormalization frequency is more N
than 1/20 time steps. I

e Transfer of the data to and from the processor through the PCI Express 2.0 |
x 16 channel (~4 GB/s transfer rate) is in the order of 70 ms.

e BTW: note that transfers from the CPU to/from the card are amortized if
they are performed each 1:10 steps or so. Such transfers can’t be done all

time steps.

I NTE C
n CONICET

&

Conclusions '

The Accelerated Global Preconditioning (AGP) algorithm for the solution of
the Poisson equation specially oriented to the solution of Navier-Stokes
equations on GPU hardware was presented. It shares some features with the
well known /OP iteration scheme. As a summary of the comparison between
both methods, the following issues may be mentioned

e Both solvers are based on the fact that an efficient preconditioning that
consists in solving the Poisson problem on the global domain
(fluid+solid). Of course, this represents more computational work than
solving the problem only in the fluid, but this can be faster in a structured
mesh with some fast solvers as Multigrid or FFT.

e Both solvers have their convergence governed by the spectrum of the

S~ 1Sr, however

i

I NTEC
CONICET

_ O

> IOP is a stationary method and its limit rate of convergence is given by
le" | < yiop 2"
Y0P = 1 — Amin, (3)
Amin = min(eig(S™'Sg)).

> AGP is a preconditioned Krylov space method and its convergence is
governed by the condition number of S~'Sy, i.e.
1 1 1
KV(A AF) min(eig(S—lsp)))\min’

e It has been shown that \;;;, = O(1), i.e. it does not degrade with

refinement, so that /OP has a linear convergence with limit rate O(1).
e By the same reason, the condition number for AGP does not degrade with

refinement.
e /OP iterates over both the velocity and pressure fields, whereas AGP
iterates only on the pressure vector (which is better for implementation on
GPU’s).
The MOC+BFECC scheme is an efficient solver for the advection equation.

»
X

(4)

I NTEC
CONICET

UNL w

It gives high computing rates with large CFL numbers.
e The Fast-Marching renormalization technique is a good candidate for
doing renormalization on the CPU and having times competitive with
those of NS-FVM on the GPU.

»
X

)

I NTE C
n CONICET

&

Acknowledgments I

This work has received financial support from

e Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET,
Argentina, PIP 5271/05),

e Universidad Nacional del Litoral (UNL, Argentina, grant CAl+D
2009-65/334),

e Agencia Nacional de Promocidn Cientifica y Tecnoldogica (ANPCyT,
Argentina, grants PICT-1506/2006, PICT-1141/2007, PICT-0270/2008), and

e European Research Council (ERC) Advanced Grant, Real Time

Computational Mechanics Techniques for Multi-Fluid Problems

(REALTIME, Reference: ERC-2009-AdG, Dir: Dr. Sergio Idelsohn).

The authors made extensive use of Free Software as GNU/Linux OS, GCC/G++
compilers, Octave, and Open Source software as VTK among many others. In
addition, many ideas from these packages have been inspiring to them.

http://www.conicet.gov.ar
http://www.unl.edu.ar
http://www.agencia.gov.ar
http://erc.europa.eu
http://erc.europa.eu/index.cfm?fuseaction=page.display&topicID=518
http://erc.europa.eu/index.cfm?fuseaction=page.display&topicID=518
http://www.gnu.org

