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Solution of incompressible Navier-Stokes flows on GPU I

e GPU'’s are less efficient for algorithms that require access to the card’s
(device) global memory. Shared memory is much faster but usually scarce

(16K per thread block in the Tesla C1060) .

e The best algorithms are those that make computations for one cell
requiring only information on that cell and their neighbors. These
algorithms are classified as cellular automata (CA).

e Lattice-Boltzmann and explicit F<M (FDM/FVM/FEM) fall in this category.

e Structured meshes require less data to exchange between cells (e.g.
neighbor indices are computed, no stored), and so, they require less
shared memory. Also, very fast solvers like FFT-based (Fast Fourier

o
Transform) or Geometric Multigrid are available .
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Fractional Step Method on structured grids with QUICK I

Proposed by Molemaker et.al. SCA’08: 2008 ACM SIGGRAPH, Low viscosity
flow simulations for animation. &

e Fractional Step Method
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http://portal.acm.org/citation.cfm?id=1632592.1632595
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| Quick advection scheme '

1D Scalar advection diffusion: a= advection velocity, ¢ advected scalar.

g(agb) ~ (ap®)ir1 — (ag?);
ax ’i—|—1/2 AZI; ’
¢Q _ 3/8¢z'-|-1/2 + 6/8¢Z'_1/2 B 1/8¢i—3/27 ifa > 0,

conttol volume cell
: X

oO—
i+5/2

i+3/2

(launch video khinstab)
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Solution of the Poisson equation on embedded geometries I

e Solution of the Poisson equation is, for large meshes, the more CPU
consuming time stage in Fractional-Step like Navier-Stokes solvers.

e One approach for the solution is the /OP (Iterated Orthogonal Projection)
algorithm.

e It is based on solving iteratively the Poisson eq. on the whole domain
(fluid+solid). Solving in the whole domain is fast, because algorithms like
Geometric Multigrid or FFT can be used. Also, they are very efficient

. .®®
running on GPU’s .

e However, if we solve in the whole domain, then we can’t enforce the
boundary condition (Op/dn) = 0 at the solid boundary which, then
means the violation of the condition of impenetrability at the solid

boundary .
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The IOP (lterated Orthogonal Projection) method

The method is based on succesively solve for the incompressibility condition

(on the whole domain: solid+fluid), and impose the boundary condition.
u'=u—VP, onthe whole u” = Upqy, in Qpay,

u =11’, in Qquiq.-

u’ = Iy (u) { AP—v.u  domain (fluid+solid) u” = Iay (') { 3
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The IOP (lterated Orthogonal Projection) method (cont.)

ket k Saiv N Sbe

1
w — Hbdy]-_-[divw . \

Projection on the space of
divergence-free velocity fields:

/ u =u-VP,
u = Il (u
aiv (W) AP =YV -u,
Projection on the space of velocity Saiv N

fields that satisfy the impenetrability
boundary condition

14 .
U’ = Upgy, inpqay,

u’ = Hbd}’(u/) { 7

u’ =1, in Qguiq.
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Convergence of IOP I

e Il 4y, 114, are orthogonal projection

operators on L., —> the algorithm
converges, with linear rate of convergence

L]

Rate of convergence is O(1), i.e. NOT

depending on refinement . For
instance for an embedded sphere, the
residual is reduced to a factor of 0.1 in 3
iterations. However, the rate of
convergence degrades when thin surfaces

are present & .
e In videogame software, and special effects
animation, 3 iterations are usually enough,~
but for engineering purposes this is ~
insufficient and an algorithm with better = qntig;;,;;metric mode
convergence properties is needed. A 2
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‘ Using IOP/AGP with the FFT transform I

e When solving the projection problem u’ = I1g;, (u) for IOP or the
preconditioning for AGP, we have to solve a Poisson problem on the whole \ R
(fluid+solid) domain. This is normally done with a Geometric Multigrid
solver which has a complexity O (N log €) (N =nbr of grid cells, y
e=tolerance). It is an iterative solver.

e On the other hand, FFT solves the same problem in O(N log V). Itis a

direct solver.

»
X

-
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Accelerated Global Preconditioning (AGP) I

e The IOP algorithm iterates on the velocity u state.
e A method based on pressure would be more efficient, and in particular in

‘@@
the GPGPU, due to a better use of the shared memory .
e In addition, IOP is a stationary method (with linear rate of convergence)

. We look for an accelerated Krylov space algorithm (CG) .

e The proposed AGP algorithm is to solve the fluid pressure problem with
PCG (Preconditioned Conjugate Gradient) with the solution on the whole
(fluid+solid) domain.

e It can be shown that the condition number of the preconditioned matrix is

516}
also O(1) .
e ltis an accelerated method, so convergence is much better than IOP; for
the sphere with three iterations we have a reduction of 1e-3 in the residual

0O
(while IOP gives a reduction of 0.1) .

516
Conditioning degrades also for thin surfaces .
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‘ Accelerated Global Preconditioning (AGP) (cont.) I

To solve:

AGP Preconditioning:

PaicpXrp =yrB

defined by

O O

solid Lody
Pbdy
XG 0c " e (F) fluid node
0 Ao Acgca - - - 1 e (B) boundary node
o (G) ghost node
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Accelerated Global Preconditioning (AGP) (cont.) I
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Spectral decomposition of Stekhlov operators I

Stekhlov operator Sy for the fluid domain is A

defined by: w = Sp(v), if
Ap =0, inQp
L
¢r = v

then w = (0¢/0n) |-

In the same way the Stekhlov operator S for Y
the fluid domain can be defined. It turns out to
be that the preconditioned matrix corresponds

toP 1A — (SF + 85)_18F.
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‘ Spectral decomposition of Stekhlov operators (cont.) I

ol Ak, +S) |

...............................

Lo cobooood ik A U L

............................

¥ YN a—
..... '____:_____:__A(k,—,S)—__
: i v |k, +,5)

L
4

Mk, £, F) = |k|, Lo i
Ak, +,S) = ktanh(kw/2), ]+ B{MY (kuw /2)
Mk, —.8) = keoth(kw/2).  K(S) = 1/Auin(S) = L/ (mw)
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FFT Solver '

e We have to solve a linear system Ax = b

e The Discrete Fourier Transform (DFT) is an orthogonal transformation
x = Ox = fft(x).

e The inverse transformation O ! = O is the inverse Fourier Transform
x = OTx = ifft(x).

e If the operator matrix A is homogeneous (i.e. the stencil is the same at all
grid points) and the b.c.’s are periodic, then it can be shown that O
diagonalizes A, i.e. OAO~! = D.

e So in the transformed basis the system of equations is diagonal

(OAO™) (Ox) = (Ob),

Dx = b,

For N = 2P the Fast Fourier Transform (FFT) is an algorithm that
computes the DFT (and its inverse) in O( N log(N)) operations.
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‘ FFT Solver (cont.) I

e So the following algorithm computes the solution of the system in
O(N log(N)) ops.
> b = fft(b), (transform r.h.s)
> x = D~ b, (solve diagonal system O(V))
> x = ifft(x), (anti-transform to get the sol. vector)
e Total cost: 2 FFT’s, plus one element-by-element vector multiply (the
reciprocals of the values of the diagonal of D are precomputed)
¢ In order to precompute the diagonal values of D,
> We take any vector z and compute y = Az,
> then transform z = fft(z), y = fft(y),

> Dyjj = y;/2-
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‘ Implementation details on the GPU I

e We use the CUFFT

library.
Per iteration: 2 FFT’s
and Poisson residual

evaluation. The FFT on

the GPU Tesla C1060
performs at 27 Gflops,
where the operations

are counted as
5N logs (N).
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FFT computing rate [Gflops]
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‘ FFT computing rates in GPGPU. GTX-580 I

' 128x128x128

s'imble preciEion

128x64x64

1
64x64x64 |

double preci

256x128x128

I
256x256x128
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| FFTW (CUFFT) on i7-3820@3.60Ghz (Sandy Bridge) I
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| FFTW (CUFFT) on W3690@3.47Ghz (Nehalem) I
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‘ NSFVM Computing rates in CPU I

i7-3820@3.60Ghz (Sandy Bridge), 1 core (sequential): 1.7 Mcell/sec \ k.
i7-950@3.07 (Nehalem), 1 core (sequential): 1.51 Mcell/sec
Cellrates with nthreads>1, and W3690@3.47Ghz not available at this time. P
BUT, we expect at most 7 to 10 Mcell/secs, so there is speedup factor of 8
to 10, with respect to the GPGPU (GTX-580, DP).
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NSFVM Computing rates in CPU (cont.) I

NSFVM and “Real Time” computing

e For a 128x128x128 mesh (= 2Mcell), we have a computing time of
2 Mcell/(140 Mcell/sec) = 0.014 secs/time step.

e That means 70 steps/sec.

e A von Neumann stability analysis shows that the QUICK stabilization
scheme is inconditionally stable if advanced in time with Forward Euler.

e With a second order Adams-Bashfort scheme the critical CFL is 0.588.

e For NS egs. the critical CFL has been found to be somewhat lower (= 0.5).

o If L=1,u=1,h=1/128, At = 0.5h/u = 0.004 [sec], so that we can

compute in 1 sec, 0.28 secs of simulation time. We say ST/RT=0.28.

(launch video nsfvm-bodies)

(launch video kh-instab-128)



file:/home/scratch/mstorti/TO-BACKUP/DATA-CD/nsfvm-bodies-videos-results-2012-01-30/nsfvm-bodies-all.avi
file:/home/scratch/mstorti/BACKUPED/videos-gpu/videos-real-time-gpu/incompresible-offline/khtest-2.avi

I N T E C
)
An FFT Prec for FSM on GPGPU'’s por M.Storti et.al. CONTCET

- <y

Computing times in GPGPU. Fractional Step components I
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| LBM and FVM '

This algorithm competes with the popular Lattice Boltzmann Method.
Both are CA (Cellular Automata) algorithms .
Both are fast (measured in cellrates) on GPGPU’s with structured meshes. \
LBM doesn’t solve a Poisson equation, so it’s partially compressible, and
then there is a CFL penalization factor oc Mach,+. ’
Both can be nested refined near surfaces, or other interest zones.

Higher order treatment of BC’s on body surfaces may be better improved
in FVM.
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Conclusions '

The Accelerated Global Preconditioning (AGP) algorithm for the solution of
the Poisson equation specially oriented to the solution of Navier-Stokes
equations on GPU hardware was presented. It shares some features with the
well known /OP iteration scheme. As a summary of the comparison between
both methods, the following issues may be mentioned

e Both solvers are based on the fact that an efficient preconditioning that
consists in solving the Poisson problem on the global domain
(fluid+solid). Of course, this represents more computational work than
solving the problem only in the fluid, but this can be faster in a structured
mesh with some fast solvers as Multigrid or FFT.

e Both solvers have their convergence governed by the spectrum of the

S~ 1Sr, however
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> IOP is a stationary method and its limit rate of convergence is given by

le" ] < yiop2”]

Y1IOP — I — )\mina (2)
)\min = min(eig(S_lSF)).

> AGP is a preconditioned Krylov space method and its convergence is
governed by the condition number of S~ 'Sy, i.e.
1 1

_1 L A
KV(A AF) '] min(eig(8—18p)) o )\min

»
& , @)

e It has been shown that \,;;;, = O(1), i.e. it does not degrade with
refinement, so that /OP has a linear convergence with limit rate O(1).

e By the same reason, the condition number for AGP does not degrade with
refinement.

e /OP iterates over both the velocity and pressure fields, whereas AGP

iterates only on the pressure vector (which is better for implementation on

GPU’s).
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