
































292 ENERGY THEOREMS Chap. 10

where y(x) is the deflection function of the beam. May we ask why arqthe
other two combinations, namely

d d’y)
9 =0, —(EI =0,
Ga) Y dx\  dx?
dy dty
9b =0, Er%Y —o,
(ob) dx dx?

never considered ?

An acceptable answer is perhaps that the boundary conditions (9a) and
(9b) cannot*be realized easily in the laboratory. But a more satisfying answer
is that they are not proper sets of boundary conditions. If the conditions (9a)
or (9b) were imposed, then, according to (4), it can not at all be assured that
the equation 6%, = 0 will be satisfied. Thus, a basic physical law might be
violated. These boundary conditions are, therefore, inadmissible.

From the point of view of the differential Eq. (5), one may feel that the end
conditions (9a) or (9b) are legitimate. Nevertheless, they are ruled out by the
minimum potential energy principle on physical grounds. In fact, in the
theory of differential equations the Eq. (5) and the end conditions (8) are
known to form a so-called self~adjoint differential system, whereas (5) and (9)
would form a nonself-adjoint differential system. Very great difference in
mathematical character exists between these two catagories. For example, a
free vibration problem of a nonself-adjoint system may not have an eigen-
vector, or it may have complex eigenvalues or complex eigenvectors.

There are other conceivable admissible boundary conditions, such as to
require

2
(10) 4 _o, 1(51 d y) —o, atx =0,
dx dx\  dx?
Such an end, with zero slope and zero shear, cannot be easily established in
the laboratory. Similarly, it is conceivable that one may require that at the
end x = 0 the following ratios hold:

(ay ) :dy = ¢, aconstant,
ox

d dty
EI £y EI d—— — M,| = ¢, thesame constant.
x

This pair of condltlons are also admissible, but are unlikely to be encountered
in practice.

10.9. THE COMPLEMENTARY ENERGY THEOREM
UNDER SMALL VARIATIONS OF STRESSES

In contrast to the previous sections let us now consider the variation
of stresses in order to investigate whether the ‘“‘actual” stresses satisfy a
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minimum principle. We pose the problem as in Sec. 10.7 with a body held in
equilibrium under the body force per unit volume F; and surface tractions per

unit area 7;* over the boundary S,, whereas over the boundary S, the dis-
placements are prescribed. Let oy, be the *“actual” stress field which satisfies
the equations of equilibrium and boundary conditions

M v "

oyv; =TT on S,.

Let us now consider a system of variations of stresses which also satisfy the
equations of equilibrium and the stress boundary conditions

in ¥,
2 (ayg)v; = OT; on S,
day, are arbitrary on S,,.

In contrast to the previous sections, we shall now consider the complementary
virtual work,

fu, OF, dv +f u, 8T, dS,
| 4 8

which, by virtue of (2) and through integration by parts,
= —f uy6oy,),; dv +f u(do,,)v, dS
v 8

=jV(6°'u)u¢.J dv —_L“i"J(ao'u) ds +J.s“4(6du)"1 ds

= 1] Go)uuy +ug) o
=f e;; 00y, dv.
v
Hence,
3 a f e, 60, dv =f u, OF, dv +f u, 8T, dS.
v v 8

This equation may be called the principle of virtual complementary work.
Now, if we introduce the complementary strain energy W} which is a
function of the stress components oy,, 0y, . . . , and which has the property
that,

@
t The Gibbs’ thermodynamic potential (Sec. 12.3) per unit volume, p®, is equal to

the negative of the complementary strain energy function. If the stress-strain law were
linear, then W,(o,) and W(e,) are equal: —p® = W, = W (linear stress-strain law).




































