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Preface
to the Third Edition

-

The objective of this edition is the same as that of the earlier editions: To gmphasize

the formulation of problems in mechanics, to reduce vague ideas into precise
mathematical statements, and to cultivate a habit of questioning, analyzing, design-
ing, and inventing in engineering and science. I have stressed applications even
more strongly in this edition. Thus, at the very beginning, continua are defined
with regard to real materials. Throughout the book, no discrimination was made
apainst biological materials. Biology is included in science, bioengineering is
included in engineering. Mechanics is not limited to physics.

In this book, I often ask the reader to formulate equations, regardless of
whether he or she can solve them or not. I have known many students who have

* worked innumerable exercises without ever formulating a problem of their own. I
hope that they will learn things the other way, to generate many problems of their
own and then strive 10 discover the methods of solution and subtleties of the
solutions. They are encouraged to observe natur and to think of problems in
engineering and science and then to take the first step to write down 2 possible
set of governing equations and boundary conditions. This first step—to derive the
basic governing equations—is an objective of this book.

This book is organized as follows. At the outset, the concept of continua is
explained. Then follows a thorough treatment of stress and strain. The practical
techniques of determining the principal stress and strain, and the concept of com-
patibility, are given emphasis in two separate chapters. In Chapter 7, idealized
specifications of fluids and solids are presented. The important concept of isotropy
is described in detail in Chapter 8. The mechanical properties of real fluids and
solids are discussed in Chapter 9. In Chapter 10, basic conservation laws of me-

il
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312(1;1}1‘(1:: g:lei dgsivixz).uha()hafters 111 and 12, some features of the flows of ideal and
‘ , boundary layer theory, linearized theory of elastici i
bending and torsion, and elastic , i e
. , aves are described. The last Ch i
It deals with long-term changes i i it i ot s 1t deal
: . ges in material when it is subjected
i els wih long e : . s subjected to stress. It deals
ol gr remodeling of materials. It is concerned with the stress-
Compared with the materials discussed in traditi :
‘ ( in traditional textbook i
222?1 mg:hamcs, some of the materials considered in Chapters 9 andslgfxrfxle‘ll li;ng
Fluid: ﬁk:t ;ﬁfg'da;e no‘t.tThel)irdarilgertainly not exotic in the sense of bein)é rare
r paint; solids like heart, lung, muscle, or rubb inly
common and precious; and it d : ething zbout o
o o, oes not hurt to learn something about their con-
o h,/lks l:a%:i numlsler ?f problems is dispersed throughout the book. Many are new
on. Most are problems for formulation, probl ‘ i
problems for inventing. A few, especially i S e i
) . - Afew, pecially in Chapters 2 and 10, are i
train ;}fle lieader in appl).rmg some of the formulas derived in the texf.xemlsgS et
- tl ‘f:I reade.r obtains a clear idea about the stress, strain, and constitutive
quations from this book, and knows how to use them in formulating scientific and
engineering problems, I shall be very happy. “

Y. C. Fung
La Jolla, California

eicert

Preface - - - -
to the First Edition

=

2 series of courses in mechanics. At this stage, stude

in calculus, physics, vector an
in continuum mechanics then provides a

RS

This book is intended for students of science and engineering who are beginning
jents normally have had courses
alysis, and elementary differential equations. A course
foundation for studies in fluid and solid
mechanics, material sciences; and other branches of science and engineering.

Tt is my opinion that, for a beginner, the approach should be physical rather
than mathematical. To engineers and physicists who use continuum mechanics
constantly, the primary attraction of the subject lies in its simplicity of conception
and concreteness in applications. Therefore, the students should be introduced to
the applications as soon as possible.

For the scientist or engineer, the important questions he must find answers
to are: How shall I formulate the problem? How shall I state the governing field
equations and boundary conditions? How shali I choose alternate hypotheses? What
kind of experiments would justify or deny ot improve my hypotheses? How exhaus-

tive should the investigation be? Where might errors appear? How much time is
ble solution? At what cost? These are questions which

required to obtain a reasona
concern active investigators, and are questions of synthesis, which employ analyses

as tools. Complete answers 0 these questions are beyond the scope of this “first
course,” but we canl make a good beginning. Tn this book, I often ask the reader
to formulate problems, regardless of whether he can solve his equations and under-
stand all the mathematical subtleties. 1 have known many students who have read
many books and worked innumerable exercises without ever formulating a problem
of their own. I hope they will learn the other way, 0 generate many problems of
their own and then strive t0 discover the methods and subtleties of solutions. They
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should be encouraged to observe nature and to think of problems in engineering
and then to take the first step to write down a possible set of governing equations
and boundary conditions. This “first step”—to derive the basic governing equa-
tions—is the object of this book. Perhaps it is justifiable for a “first course” to be
concerned only with this first step. But the preparation required for taking this
step is extensive. For such a step to be firm, one would have to understand the
basic concepts of mechanics and their mathematical expressions. To be able to use
these basic equations with confidence one must know their origins and their der-
ivations. Therefore, the discussions of basic ideas must be thorough. It is for this
reason that the first ten chapters of this book are rather comprehensive and detailed.

As for the organization of the book: At the outset, the concept of continua
is explained. Then a thorough treatment of the concepts of stress and strain follows.
The practical techniques of determining the principal stress and strain, and the
concept of compatibility, are given emphasis in two separate chapters. The descrip-
tion of motion is considered. In Chapter 7, an idealized specification of fluids and
solids is presented. The important concept of isotropy is described in detail in
Chapter 8. Data on the mechanical properties of common fluids and solids appear
in Chapter 9. In Chapter 10, a thorough treatment of the basic conservation laws
of physics is given. Beginning with Chapter 11, some features of perfect fluids,
viscous flow, boundary layer theory, linearized theory of elasticity, theories of
bending and torsion, and elastic waves are described briefly. The last two chapters
provide a glimpse into the rich fields of fluid and solid mechanics; to treat them
comprehensively would require many volumes at a more advanced mathematical
level. The introduction given here should prepare the student to enter these fields
with greater ease. ,

If the reader obtains clear ideas about the stress, strain, and constitutive
equations from this book, I would consider this introductory text a success. Beyond
this, only a sketch of some classical problems is provided. Many discussions are
given in the exercises, which should be regarded as an integral part of the text.

I have quoted frequently and borrowed heavily from my previous book,
Foundations of Solid Mechanics, which can be used for a course following the
present one. The material for this “first course” was organized for my class at the
University of California, San Diego, where the curriculum offers emphasis on
general sciences before specialization. The book should be useful for undergrad-
uates and younger graduate students who have a reasonable background in math-
ematics and physics.

The writing of this book was a pleasant experience. My wife, Luna, cooperated
throughout the task. A mathematician, she gave up her teaching career when 1
came to La Jolla. Willing to learn some mechanics, she worked through the man-
uscript very thoroughly. Many passages are clearer because of her declaration that
she did not understand. My friend, Chia-Shun Yih, Timoshenko Professor at the
University of Michigan, read through the manuscript and gave me many valuable
comments. I am also grateful to Drs. Pin Tong of the Massachusetts Institute of
Technology and Gilbert Hegemier of the University of California, San Diego, for

el .y N e I /;__; “~~;(vg|
Preface to the First Edition ) -
i jcholas Romaneli O
ish to register my thanks to Nicholas .
S gto Mrs. Ling Lin for preparing the index,
ate typing and cheerful good humor

their comments. Finally., ‘
Prentice Hall for editorial assistance,
and to Mis. Barbara Johnson, whose fast, accur

made the work a pleasure.

Y. C. Fung
La Jolla, California




A FIRST COURSE
IN CONTINUUM MECHANICS



! The definition of continua for real-world materials Is presented, as are ele-
mentary examples through which basic ideas of mechanics evolved.

1.1 THE OBJECTIVE OF THIS COURSE

Our objective is to learn how to formulate problems in mechanics and how to
reduce vague questions and ideas into precise mathematical statements, as well as
to cultivate a habit of questioning, analyzing, designing, and inventing in engi-
; neering and science.
Let us consider a few questions. Suppose an airplane is flying above us. The
; wings must be under strain in order to support the passenpers and freight. How
much strain are the wings subjected to? If you were flying a glider, and an anvil
cloud appeared, the thermal current would carry the craft higher. Dare you fly
into the cloud? Have the wings sufficient strength? Ahead you see the Golden
Gate Bridge. Its cables support 2 tremendous load. How does one design such
cables? The cloud contains water and the countryside needs that water. 1f the cloud
were sceded, would that produce rain? And would the rain fall where needed?
Would the amount of rainfall be adequate and not produce a flood? In the distance
there is a nuclear reactor pOWer station. How is the heat transported in the reactor”?
What kind of thermal stresses are there in the reactor? How does one assess the
safety of the power station against earthquakes? What happens to the earth in an
earthquake? Thinking about the globe, you may wonder how the continents float,
move, or tear apart. And how about ourselves: How do we breathe? What changes
take place in our Jungs if we do a yoga exercise and stand on our heads?
Interestingly, all these questions are concerned with force, motion, flow,
deformation, energy, properties of matter, external interaction between bodies, o1
internal interaction between one part of a body and another part; and changes in
matter, temporatily Or permanently, reversibly or irreversibly. These changes,
together with the axioms of continuum mechanics, can be reduced to certain dif-
ferential equations and boundary conditions. By solving such equations, we obtain
precise quantitative information. In this book, we deal with the fundamental prin-

1




) Introduction  Chap. 1

ciples that underlie these differential equations and boundary conditions. Although
it would be nice to solve these equations once they are formulated, we shall not
become involved-in discussing their solutions in detail. Our objective is formulation:
the formal reduction of general ideas to a mathematical form.

1.2 APPLICATIONS TO SCIENCE AND TECHNOLOGY

The mathematical approach taken in this book will be aimed at serving science
and technology. I want the applications to be apparent to the student; hence, the
examples and the problems to be solved are often stated in terms of scientific
research or engineering design. A person’s frame of mind with regard to designing
and inventing things, devices, methods, theories, and experiments can be strength-
ened by constant practice—by forming a habit.

1.3 WHAT IS MECHANICS?

Mechanics is the study of the motion (or equilibrium) of matter and the forces that
cause such motion (or equilibrium). Mechanics is based on the concepts of time,
space, force, energy, and matter. A knowledge of mechanics is needed for the
study of all branches of physics, chemistry, biology, and engineering.

1.4 A PROTOTYPE OF A CONTINUUM: THE CLASSICAL
DEFINITION

The classical concept of a continuum s derived from mathematics. We say that
the real number system is a continuum. Between any two distinct real numbers
there is another distinct real number, and therefore, there are infinitely many real
numbers between any two distinct real numbers. Intuitively, we feel that time can
be represented by a real number system ¢ and that a three-dimensional space can
be represented by three real number systems x, y, z. Thus, we identify time and
space together as a four-dimensional continuum.

Extending the concept of a continuum to matter, we speak of a continuous
distribution of matter in space. This may be best illustrated by considering the
concept of density. Let the amount of matter be measured by its mass, and let us
assume that a certain matter permeates a certain space ¥, as in Fig. 1.1. Let us
consider a point P in ¥, and a sequence of subspaces Vi, Vg . . ., converging
on P:

¥, CVety, PEVw @=12,...) (1.41)

Let the volume of ¥, be V, and the mass of the matter contained in V', be M,. We
form the ratic M,/V,. Then if the limit of M,/V, exists as n — and V, — 0, the

ey

Sec. 1.5 Our Definition of a Continuum

VFig‘ure 11 A sequence of spatial
domains converging on P.

lixniﬁng vaiue is deﬁhed as the density of the mass distribution at the point P ;md
is denoted by p(P):

o(P) = lim L (14-2)

] n

v,—0

1f the density is well defined everywhere in Vo, the mass is said to be continuously
dwm?f:iililar consideration can be used to define the depsity of mqmentum, t'hz
density of energy, and so on. A material cor%tin‘uum is a mate(zal for Wh]l;‘l
the densities of mass, momenium, and energy e;czst in thf;’Z rzz:li;;natzcal sense. The
‘ i ch a material continuum is confinuun mec _

mecm'llzlliic: izftillé usual definition of a material continuum. However, if we adhere%
rigoroxisly to it, it will be of no use to sc_ie.nce' and technology, because the setufle
real-world systems satisfying such a definition 1s empty. For example, nohga;L w(ci) u
satisfy Eq. (1.4-2) when V, becomes smaller than the mean free path. nu.
fluid would satisfy the equation when V, becomes atomic sized. No pol.ycrysta me;
metal or fiber composite structure, 0o cerfamic, and no pf)lymer plglstxc car;lmef:d
this requirement; no living organism, no tissue of any animal, no single cell, an

no cell aggregate can either.

15 OUR DEFINITION OF A CONTINUUM

We shall define a material as 2 continuum in a way. s}milar to tpe classical approach
presented in the preceding section, except that the size of V. will be bognded b;l.ow
“and the material particles will not be required to have 2 om?-to—one isomorp 1sg1
with the real number system. The material particles may be @screte a‘nd have voi }37
between them. For the concept of the density of the material, COIlSldGl: acpomt' ’
in a space V. Consider also a sequence of subspaces V', ¥z, - - - Y, in Ve, wit

volumes Vi, Vay « + - » Vi respectively, ¢ach enclosing the next one and all enclosing




4 Introduction  Chap. 1

P. As n— w, the limit of V, tends 10 a finite positive number w. Let the mass of
the material enclosed in ¥/, be M,. The sequence of the ratios M,/V, is said to have
a limit p with an acceptable variability e if

p.__"

<€

an

as n— . The quantity p is then said to be the density of the material at P with an
acceptable variability € in a defining limit volume .

We define the momentum of the material particles per unit volume and the
energy per unit volume similarly, each associated with an acceptable variability
and a defining volume. Later (see Sec. 1.6), we shall deal with the force acting on
a surface of 2 material body, and it would be necessary to consider whether a limit
of force per unit area exists at any point on the surface with an acceptable variability
in a defining limit area. If it does exist, then the limit is called the traction or stress,
and the collective entity of tractions in every orientation of the surface is called
the stress tensor. Further, in Chap. 5 we shall consider the change of spacing between
particles and define the strain tensor. The existence of strain components will be
associated with an acceptable variability and a defining limit length.

If, with a clear understanding of acceptable variabilities and defining limit
lengths, areas, and volumes, the density, momentum, energy, stress, and strain
can be defined at every point in the space ¥, and if they are all continuous functions
of spatial coordinates in V', then we say that the material in ¥} is a continuum.

If a material is a continuum in the classical sense, then it is also a continuum .

in our sense. For a classical continuum the acceptable variability and the defining
limit length, area, and volume are zero.

In other books on continuum mechanics, the authors say or imply that to
decide whether continuum mechanics is applicable to science and technology is a
matter for the experimenters in each discipline to decide. I say instead that every
experimenter knows that the classical theory does not apply; hence, it is the 1espon-
sibility of the theorist to refine the theory to fit the real world. Our approach does’
fit many fields of science and technology; the need to specify acceptable variabilities
and defining dimensions is the price we pay.

1.6 THE CONCEPT OF STRESS IN OUR DEFINITION

OF A CONTINUUM

Consider a material B occupying a spatial region V (Fig. 1.2). Imagine a closed
surface § within B, and consider the interaction between the material outside S
and that in the interior. Let AS be a small surface element on S, Let us draw, from
a point on AS, a unit vector v normal to AS, with its direction pointing outward
from the interior of S. Then we can distinguish the two sides of AS according to
the direction of v. Let the side to which this normal vector points be called the
positive side. Consider the part of material lying on the positive side. This part
exerts a force AF on the other part, which is situated on the negative side of the

Sec. 1.7  Abstract Copy of a Real Continuum 5

AF

AS

X

e

3 Figure 1.2 Stress principle.

normal. The force AF depends on the location and size of the area and the ori-
entation of the normal. We introduce the assumption that as AS .tends to a small
but bounded size o, the ratio AF/AS tends to a definite limit dF/dS with an acceptalfle
variability €, and the moment of the force acting on the surface AS _about any point
within the area vanishes in the limit of small but bounded area o with an acceptable
variability. The limiting vector will be written as

dF
ds’
where the superscript v is introducgd to denote the d.ircction of the normal v of
the surface AS. The limiting vector T is called the tz;ctzon, or the siress vector, and
force per unit area acting on the surface. .
lpﬂpresTatr:;satslslzrtion tl?at there is defined upon any imagined closed Sl]I"faCC Sin t.he
interior of a continuum a stress vector field who§e action on the' material occupying
the space interior to § is equipollent to the action of the exterior material upon 1?
is the stress principle of Euler and Cauc}.zy. We accept this principle as an axu').m.,'
however, it is no more than a basic simphﬁcam?n. For example,.there is no a priori
justification why the interaction of the material on the two sides f)f the surfaFe
element AS must be momentless. Indeed, some people who do not like the restric-
tive idea that the moment of the forces acting on the surface _AS flbout any point
within the area vanishes in the limit have proposed a generalization of the stfess
principle of Euler and Cauchy, namely, that across any s.mall .surf.ace elf:ment ina
material, the action of the exterior material upon the interior is equipollent tg
a force and a couple. The resulting theory requires the concept of couple stress an
is much more complex than the conventional theory. So far, no r.eal apphcatmn
has been found for the couple-stress theory; hence, we shall not discuss it further

in this book.

'i‘:

1.7 ABSTRACT COPY OF A REAL CONTINUUM

Once it is decided that a material body can be regarded as a contirlxuum, one can
make an abstract copy of the real material according to the cla.ssmal. deﬁmtxgn.
The abstract copy is isomorphic with the real number system: It is an idealization
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of the real material. The rules of idealization are as follows: The mass density of -

the idealized system s the same as the real one in the range of its definition. When
a set of forces is applied to both the real material and the abstract copy, the stress
and strain of the two systems are the same, except that the calculus of the idealized
system can be carried out rigorously, whereas that of the real material would have
a limitation on the lower bound of sizes and a statistical variability that must be

 evaluated. The constitutive equation of the real material is used to describe the

mechanical properties of the idealized copy. The real system satisfies the equations
of motion (or equilibrium), continuity, and balance of energy of the idealized system
with errors whose bounds can be caleculated. Often, a library full of results con-
cerning the abstract copy exists and can be borrowed. The known, acceptable
variability and defining dimensions will allow us to evaluate the difference between
the real material and the abstraction and let us know something about the real
system.

The constitutive equation of an abstract copy of a real material in a certain
range of sizes may differ from the constitutive equation of another copy of the
same material in a different range of sizes. If the constitutive equations of the real
material were the same for consecutive ranges of sizes, then the abstract copy has
one constitutive equation in the total range. If the constitutive equations of the
real material are different in different ranges of sizes, then the abstract copies in
successive ranges of sizes have different constitutive equations. This is indeed 2
useful feature of our system, because it allows us to recognize different structures
of an object at different dimensions of observation, to ask different questions at
different levels of sizes, and to gain a better understanding of the whole.

The hierarchy of the constitutive equations at different dimensions of obser-
vation of a material is related to the similarity or dissimilarity of the structure of
the material at different dimensions. The structure of a material may be fractal,
i.e., self-similar in successive ranges of sizes; or it may not be fractal. For example,
the geometric pattern of the airways of the lung, from the largest bronchi to the
smallest bronchioles, is fractal in structure, so the bronchi in this range of sizes
can be expected to obey the same constitutive equation. The structural pattern of
the alveolar ducts, from the respiratory bronchiole to the alveolar sacs, is another
fractal; hence, a different constitutive equation is expected to hold in this range.
The pulmonary alveoli—the alveolar walls—are not fractal at all; neither are the
collagen and elastin fibers in the alveolar walls. Hence, their mechanical properties
need entirely different descriptions.

1.8 WHAT IS CONTINUUM MECHANICS ABOUT?

We shall call a continuum enclosed in a closed surface a body. The surface may
be real, like the skin of a man or the shell of an airplane. But it may also be
imaginary, visualized to enclose a bit of space.

Real-world material objects are subjected to forces acting on their bodies
(such as gravitational and electromagnetic forces) and forces acting on their surfaces

Sec. 1.10 A Biological Example of a Hierarchy of Continua 7

(such as atmospheric pressure, wind and rain, burdens to be carried, and loads to
be transmitted to a remote place). If the body is-a continuum in the sense described
in the preceding section, then we would want to know how the material in the
body reacts to the external forces. The determination of the internal condition of
a body in response to external forces is what continuum mechanics is about.

1.9 AXIOMS OF CONTINUUM MECHANICS

The axioms of physics are taken as the axioms of continuum mechanics. In par-
ticular, we use Newton’s laws of motion and the first and second laws of ther-
modynamics.in this book.

There are three additional axioms of continuum mechanics. First, a material
continuum remains @ continuum under the action of forces. Hence, two particles
that are neighbors at one time remain neighbors at all times. We do allow bodies

to be breakable (i.e., they can be fractured); but the surfaces of fracture must be
identified as newly created external surfaces. In living bodies, we allow new growth

. (e.g., cellular or extracellular mass increased, new cells migrated into an area of
the body, or proliferated from existing cells by division) and resorption (cellular

. or extracellular mass reduced, cells migrated out of an area of the body, or cells
died and subsequently washed away by blood, or absorbed in tissue). Each newly
added or resorbed cell creates a new surface in the body.

The second axiom of continuum mechanics is that stress, as described in Sec.
1.6, and strain, as described in Chap. 5, can be defined everywhere in the body.
The third axiom of continuum mechanics is that the stress at a point is related to
the strain and the rate of change of strain with respect to time at the same point.
This axiom is a great simplifying assumption. It asserts that the stress at any point
in the body depends only on the deformation in the immediate neighborhood of

 that point. This stress-strain relationship may be influenced by other parameters,
such as temperature, electric charges, nerve impulses, muscle contraction, ion
' transport, etc., but these influences can be studied separately.

1.10 A BIOLOGICAL EXAMPLE OF A HIERARCHY OF CONTINUA

DEPENDING ON THE SIZE OF THE OBJECT INVOLVED
IN A SCIENTIFIC INQUIRY

We are familiar with telescopic views of the sky and microscopic views of cells,
tissues, metals, and ceramics. As scales of observation change, the object appears
different. An example is the human lung. Figure 1.3 shows that the lung may be
considered to be composed of three trees: an airway tree, an arterial tree, and a
venous tree. The airway tree is for ventilation. The trachea is divided into bronchi,
which enter the lung and subdivide repeatedly (in humans, 23 times, statistically
speaking) into smaller and smaller branches and, finally, into the smallest units,
called pulmonary alveoli. Figure 1.4 shows a photograph of human alveoli, as seen



Figure 1.3 A conceptual sketch showing the lung as composed of
three trees: the airway tree (trachea~bronchi-bronchioles-alveolar
ducts-alveoli), shown on the left; the pulmonary arterial tree (arteries-
arterioles-capillaries), shown at the center; and the pulmonary venous

tree (venules-veins-left atrium), shown on the right. Total height oa
the order of 40 cm.

in a microscope. The photo covers a small area within the little circle on the left
border of the leftmost drawing in Fig. 1.3. The walls of the alveoli are capillary
blood vessels. Every wall of each alveolus is exposed to gas on both sides. The
pulmonary artery also bifurcates again and again until it becomes capillary blood
vessels that lie in the alveolar wall. The venous tree begins with the capillaries in
the alveolar wall. The veins converge repeatedly until they become pulmonary
veins, which enter the left atrium of the heart. The main function of the lung takes
place in the alveoli. The venous blood takes up oxygen from the gas in the alveoli
and releases carbon dioxide to the alveolar gas. The gas exchange takes place across
the alveolar wall. Figure 1.5 shows a micrograph of the alveolar walls enclosed in
a small circle on the left border of Fig. 1.4. Figure 1.6 shows the collagen fibers
in the alveolar walls. The collagen fibers were stained with silver and appear as
black bundles. The collagen fibers are formed by fibrils. Fibrils are formed by
collagen molecules. One could go on to smaller hierarchies consisting of molecules,
atoms, nuclei, and quarks.

Depending on what property of the lung we wish to investigate, we may
consider the lung as a continuum at successive hierarchies. For example, if one is
interested in comparing the difference in strain in the upper part of the human
lung from that in the lower part, then the individual alveoli can be considered
infinitesimal and one can speak of deformation averaged over volumes that are
large compared with the volume of a single alveolus, but small compared with the

whole lung. Such an approximation would be appropriate in studying the interaction

Figure 1.4 A magnified view of a little tip of the lung sketched in Fig. 1.3,

»J. Appl.

, and Sobin, S.S., “Collagen and

lung tissue. Black lines, collagen fibers. Gray regions,

within the small circle on the left border of the lung. Silver-stained, thick
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10 Introduction  Chap. 1’

Figure 1.5 A magpified view of the alveolar walls enclosed in a small
circle on the left border of Fig. 1.4, showing the capillary blood vessels
in the walls (also called the interalveolar septa). A = alveolar gas
space.

between the lung and the chest wall, the distribution of pleural pressure, or the
distribution of ventilation in the whole lung {(because ventilation is related to alveo-
lar size, which is proportional to the strain). For these problems, a hierarchy with
a minimum dimension on the order of 1 cm will suffice. On the other hand, if one
is interested in the blood flow in the large pulmonary artery, then the blood can
be regarded as a homogeneous fluid and the blood vessel wall can be regarded as
a continuum, with a minimum dimension for the definition of stress and strain on
the order of 10 wm. If one is interested instead in the stress in-a single alveolar
wall (with a plane area on the order of 100 x 100 pm® and a thickness of about
10 pm), then even the individual collagen and elastin fibers in the wall cannot be
ignored, and the wall must be considered a composite structure made of several
different materials and constructed in a special way. What kinds of averages are
useful depend on what the purpose of one’s investigation is. Engineers, biologists,
and physicists are concerned about these questions. We bend the classical contin-
uum mechanics in this direction to make it useful for dealing with practical
problems.

e,

Sec. 1.10 A Biological Example of a Hierarchy of Continua

Figure 1.6 Collagen fibers in a pulmonary alveolar wall of a huma_n
lung inflated to a transpulmonary pressure (alvedlar gas pressure minus
pleural pressure) of 10 em H,0. Scale is marked on border; 800 PlXElS
are equal to 200 wm in tissue. OsO, fixed. Silver stained. Black l'mes
are collagen fibers. Larger ones are about 1 uwm wide. From Sobin; )
S.S., Fung, Y.C., and Tremer, H.M., “Collagen and Elastin Fibers in
Human Pulmonary Alveolar Walls,” J. Appl. Physiology 64(4): 1659~
1675, 1988. Reproduced by permission.
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1.11 ELEMENTARY TOPICS THROUGH WHICH BASIC IDEAS

EVOLVED

As an introduction to the rest of the book, let us consider some elementary topics
that are simple and useful and that have been fundamental in the history of mechan-
ics. These include Newton’s laws of motion, the equations of equilibrium, the use
of free-body diagrams, the analyses of a truss, a beam, a block, a plate, and a
shell, and the classical beam theory. If you are familiar with these topics, you can
go over them quickly. If some points are new to you, I can assure you that learning
them would not be a waste of your time.

Newton's Laws of iViotion

Newton’s laws are stated with respect to material particles in a three-dimensional
space that obeys Euclidean geometry. A material particle has a unique, positive
measure, the mass of the particle. The location of the particle can be described
with respect to a rectangular Cartesian frame of reference. It is assumed that an
inertial frame of reference exists, with respect to which the Newtonian equations
of motion are valid. It can be shown that any frame of reference moving with a
uniform velocity with respect to an inertial frame is again inertial. Consider a
particle of mass m. Let the position, velocity, and acceleration of this particle be
denoted by the vectors x, v, and a, Tespectively, all defined in an inertial frame of
reference. By definition,

dx dv
w T 1.11-1)

Let F be the total force acting on the particle. If F = 0, then Newton’s first law
states that

Y=

v = constant. (1.11-2)

IfF 0, then Newton’s second law states that
imv =F, or F=ma (1.11-3)
dt
When Eg. (1.11-3) is written as
F+ (-ma) =0, (1.11-4)

it appears as an equation of equilibrium of two forces. The term —ma is called
the inertial force. Equation (1.11-4) states that the sum of the external force acting
on-a particle and the inertial force vanishes; i.e., the inertial force balances the
external force. The Newtonian equation of motion stated in this way is called
D’Alembert’s principle.

Now, consider a system of particles that interact with each other. Every
particle is influenced by all the other particles in the system. Let an index { denote
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i i i ted by particle number
Jth particle. Let Fy denote the force of interaction exer umb
Bhgn pafticle number I”and F,;, that of particle / on particle J. Then Newton's third
law states that
Fu = —F_” or Fu + Fn ={. (111—5)

I = J, then we set Fy = 0, (I not summed) in agreement with Eq. (1.11—5h).
Let K be the total number of particles in the system. Thq force F; th'at acts ;}1{1 the
Ith particle consists of an external force B, such as gravity, and an internal force
that is the resultant of mutual interaction between particles. Thus,

K
F,=F + > Fu. (1.11-6)
J=1

The equation of motion of the Ith particle is, therefore,
K
gﬂnm = Fﬁ') + 2 Fo, (I=12,... , K). (1.13-7)
L =1

Each particle is described by such an equation. The totality of K equations

describes the motion of the system. . ‘ ‘
To make further progress, we must specify how the forces of interaction Iy

can be computed. Such a specification is a statement of the mgterial property ofl
the system of particles and is referred to as a constitutive equation of the materia

system.

Equilibrium

A special motion is equilibrium, i.e., one in which there is no acceleration for any

particles of the system.
At equilibrium, Eq. (1.11-7) becomes

X
B+ Y E =0, (=12....K. (1.11-8)
J=1
Summing over I from 1 to K, we obtain
i B9+ Fy = 0. (1.11-9)
I=1

In the last sum, whenever ¥y appears, F,; appears also; they add up to zero,
according to Eq. (1.11-5). Therefore, Eq. (1.11-9) reduces to

f F9 = 0. (1.11-10)
i=1

D=
M=

—
L)

1J

1

That is, for a body in equilibrium, the summation of all external forces acting on
the body is zero. :
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Next, let us consider the tendency of a body to rotate. If a body is pivoted
at a point O and is acted on by a force F;, then the moment of the force about O
that tends to cause the body to rotate about O is given by the vector product r; X
F;, where r;is a radius vector from O to any point on the line of action of the force
F;. Forming a vector product of r, with Eq. (1.11-8), i.e., with every term of that
equation, setting I = 1,2, . . . K, adding the results together, i.c., summing over
I'from 1 to K, and using Eq. (1.11-5) to simplify the grand total, we obtain
k
> x F9 = 0. (1.11-11)
j=1
The choice of the point O is arbitrary. Hence, we obtain the second condition of

equilibrium of the body: The summation of the moments of all the external forces
acting on the body about any point is zero.

Use of Free-Body Diagram in the Analysis of Problems

The word body or the phrase a system of particles used in the previous section can
be interpreted in the most general way. If a machine is in equilibrium, every part
of it is in equilibrium. By a proper selection of the parts to be examined, a variety
of information can be obtained. This method is like a surgeon’s exploration of a
diseased organ by biopsy. With imagined sections, we cut free certain parts of the
body and examine their conditions of equilibrium. A diagram of the part with all
the external forces acting on it clearly indicated is called a free-body diagram. The
method we use is therefore called the free-body method.

Example 1. Analysis of a Truss

Trusses are frame structures commonly seen in bridges, buildings, lifts in construc-
tion sites, TV towers, radio astronomical antennas, etc. Figure 1.7(a) shows a
typical truss of a small railway bridge. It is made of steel members ab, b, ac,. ..,
bolted together. The joints at 4, b, c, . . . may be considered pin joints, meaning
that the members are joined together with pins and are free to rotate relative to
each other. The whole truss is “simply supported” at the ends a and /, which anchor
the truss but impose no moment on the truss. The support at / rests on a roller so
that the horizontal reaction from the foundation is eliminated.

Trusses are made with slender members. The weights of these members are
small compared with the load carried by the truss. Hence, as a first approximation,
we may ignore the weights of the members.

Since each member is pin jointed and is considered weightless, the condition
of equilibrium of the member requires that the pair of forces coming from the
joints must be equal and opposite. Hence, each member can transmit forces only
along its axis.

Let the truss be loaded with a weight W at the center (point g). We would
like to know the load acting in various members of the truss.

T
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Figure 1.7 A simply-supported,
pin-jointed truss loaded by alfqrce
W. (a) Nomenclature of the joints,
(a, b, . . .), and the lengths of the
members, (L). (b) Forces in
members when W = 1. + for
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Let us first compute the reactions at the two supports. Consider the whqle
truss as a free body. It is subjected to three external forces: W, Ry, and R, [Fig.
1.7(b)]. The conditions of equilibrium are:

(1) Summation of vertical forces is zero:
W-R.-Re=0.

(2) Summation of moments about the point a is zero:
W-3L — Rp*6L = 0.

The solutions are R = R, = WI2. .
Next, we wish to know the tension in the members ab and ac. For this purpose,

we cut through ab and ac with an imaginary plane and consider the pqrtion ab'c’
as a free body [see Fig. 1.7(c)]. At the cut and exposed end b’, the tension F, acts
in the member ab. The tension F,. acts at the cut ¢’ of ac. At the support, a.force
W/2 acts (the reaction R, just computed). Now, summing all the .forces in the
vertical direction, and letting F denote the magnitude of F, we obtain

'¥+Fab5m9=0.

Since 6 = 45°, sin 0 = V212, and we obtain F, = ~W/V2.
Summing all the forces in the horizontal direction yields

Focos0+ F,.=0.
Hence, for 6 = 45° and F,, = —W/V2, we obtain F,. = Wi2.
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Next, we compute the tensions in the members df, ef, and eg. We pass a cut
through these members and consider the left portion of the truss as a free body
[see Fig. 1.7(d)]. For convenience, we resolve the tension in the member ef into
two components: the horizontal Hy and the vertical V... All the external forces
acting on this free body are shown in Fig. 1.7(d). The equilibrium conditions are:

) dKf' Far ¢

Ver
Hor
a
¢ ef\ g ¢
eg .
g Figure 1.7 (Cont.) (d) Free-body
W diagram of a part of the truss to the
) left of the cutting surface passing
() through f' and g'.

(1) Summation of all horizontal forces vanish:
Fdj‘ + H,f + F,g = .
(2) Summation of all vertical forces vanish:

W
7+ Va=

(3) Sum of moments about the point e vanish:
Yo
2 N + Fdf'L + O'F,f + O'ch = 0

(@) Sum of moments about the point f vanish:

w
—2~3L —F,L=0
Hence, from condition 3, we obtain Fy = —W; from condition 4, we obtain
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F,, = 3W/2; from condition 2, we obtain Vg = — W/2; and, finally, from condition
1, we obtain H; = —W/2. A similar calculation can be done for other members
of the truss.

The results can be presented as in Fig. 1.7(b). Since the load in every member
is proportional to W, we may express the load in each member in units of W and
set W equal to 1. For the truss design, it is important to know whether a member
is subjected to tension or compression. (A rod pushed at both ends is said to subject
to compression; a rod pulled at both ends is said to be subject to tension.) The
design of a steel member in tension is different from that in compression. A member
in tension may fail by plastic yielding; a member in compression may fail by elastic
buckling. Whereas the signs of F.., Fu, Vy, Hyp, etc., in the preceding equations
depend on the directions of the vectors we draw on the free-body diagram (which
is done arbitrarily), the tension-compression character of the stress in each member
is fixed by the load W. We present the final result in Fig. 1.7(b), with the convention
that if a member is in tension, we give the load a positive sign; if the member is in
compression, we give the load a negative sign. Thus, in Fig. 1.7(b), we see that the
member ab is in compression; the members be, ac, and eg are in tension; and the
member ef is in compression.

Example 2. A Simply Supported Beam

A beam is a solid member that resists Jateral load by bending. Figure 1.8(a) illus-
trates a simply supported beam. Its function is similar to the truss discussed in
Example 1. However, whereas the truss resists the load by tension or compression
in the members, the beam resists it by continuously distributed tensile and com-
pressive Stresses.

The ends of the beam shown in Fig. 1.8(a) are supported on pins that do not
resist moment. The reactions at the supports are obviously WE.

Let us ask how the beam resists the external load. For this purpose, let us
make a cut with an imaginary plane perpendicular to the beam at a distance x from
the left end [Fig. 1.8(b)]. Consider the free-body diagram of the left portion of the
beam, as shown in Fig. 1.8(b). At the cut surface, there acts a “shear force” S
tangential to the cut, an «axial force” H perpendicular to the cut, and a couple
M, called the bending moment in the beam. The conditions of equilibrium are

() Sum of all forces in the horizontal direction vanish:
H=20.
(2) Sum of all forces in the vertical direction vanish:

w
S--Z—.

(3) Sum of the moments of all forces about the left end support vanish:

M=8= (%/—)x




18 Introduction  Chap. 1

Q
o

H

rojr-

g
~
i

{a)

y Figure 1.8 A simply supported
beam. (a) A sketch of the beam of
length L, loaded by a force W. (b)
H Free-body diagram of a part of the
beam to the left of a plane
e X —— perpendicular to the beam axis at a
S distance x from the left end. The
) shear, §, tension, H, and bending
moment, M, act in the cross section
at x. (c) The bending moment
diagram showing the bending
moment, M, in the ordinate and
WL the position of the cross section, x,
'y . in the abscissa, The length of the
base is L. The maximum bending
0 moment is WL/4 and acts in the
(c) cross section located at x = L/2.
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Thus, in a cross section at a distance x from the left end, the stresses in the beam
are equipollent to a shear force § = W/2 and a moment M = Wx/2.

As x varies, the moment varies, as shown in Fig. 1.8(c). Such a figure is called
a bending moment diagram of a beam subjected to a specific loading. Knowing the
bending moment, we can compute the stresses acting in a beam. [See Eq. (1.11-
31) infra.] Beams are generally designed on the basis of the maximum bending
moments they have to resist.

Example 3. Stresses in a Block

Consider a block of solid material compressed by a load W acting on ifs end, as
shown in Fig. 1.9(a). The block is a rectangular parallelepiped. We wish to know
" the stress in the block.

Let us assume that at a distance sufficiently far away from the ends, the
stresses are uniform in the block, i.e., everywhere the same. Let us erect a set of
rectangular Cartesian coordinates x, y, z, as shown in the figure, with the z-axis
parallel to the axis of the block. Let us pass an imaginary plane z = 0 through the
block and consider the free-body diagram of the upper part of the block, Fig.
1.9(b). The stresses acting on the surface z = 0 must have a resultant force and a
resultant moment. Applying the conditions of equilibrium as before, we find at
once that the horizontal component of the resultant force vanishes, that the vertical
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W Figure 1.9 Stresses in a block. (a)
N The frame of reference , y, z, and
(d) the loading, W, acting on the
W “block. (b) Free-body diagram of
7 the part of the block above the

plane z = 0. (c) Free-body diagram

o of the upper part of the block cut

’ by a plane whose normal vector v
makes an angle 0 with the z-axis.
(d) The force acting on the inclined
plane with normal vector v is
resolved into a normal force, N,
and a shear force, S. (¢) The
variations of the normal and shear
stresses acting on the inclined
plane, o, and T, respectively, are
plotted against the angle of
{e) “inclination, 6.

)
w
I

P
BIT

o
@
iy
LS

component of the resultant force is W, and that the resultant moment is zero. In
this case, we say that the stress acting on a plane z = 0 is a compressive, normal
stress with a magnitude

W ‘
= - 11112

g ‘ A ? ( )

where A is the normal cross-sectional area of the block (cut by the plane z = 0
normal to the axis of the block). The stress is compressive because the material is
compressed in that direction. It is normal because o is a force (per unit area)
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perpendicular (normal) to the surface z = 0. We indicate the compressive nature
of the stress by giving it a negative value.

Next, let us make a cut with a plane that is inclined at an angle 6 to the xy-
plane. The simplest way to express the orientation of a plane is to specify the
normal vector of the plane. Let v be the unit normal vector (of unit length) of the
inclined plane, and z be a unit vector in the direction of the z-axis; then v+z =
cos (v, z) = cos §. Consider the upper half of the block as a free body, as shown
in Fig. 1.9(c). The balance of forces requires that the resultant force acting on the
plane v (a plane whose unit normal vector is v) is exactly equal to —W. This
resultant can be resolved into two components, one normal and one tangential to

the surface, as shown in Fig. 1.9(c). Let these be N and S, respectively; then [see
Fig. 1.9(d)]

N=-Wcosf, §= —Wsin. - (1.11-13)

The cross-sectional area of the block cut by the plane v is A/cos 6, where A is the
normal cross-sectional area. Dividing N and S by the area of the surface on which
they act and denoting the results by o, and T, we obtain

o, = — cos’ OWIA, 7= — sin f cos OW/A. (1.11-14)

These are the normal stress and shear stress, respectively, acting on the inclined
surface v. We give the normal stress o, a negative value to indicate that it is a
compressive stress. If the load W is reversed so that the block is pulled, then the
material on the two sides of the plane v tends to be pulled apart. We say in that
case that the stress is in fension and indicate that fact by assigning o, a positive
numerical value.

The sign convention of the shear stress will be discussed in Sec. 3.1.

The normal and shear stresses o, and 7 vary with the angle 6. If we plot them
as a function of 6, we obtain the curves shown in Fig. 1.9(¢). We see that o, is a
maximum when 8 = 0, whereas the shear r reaches a maximum when 6 = 45°,
and that the maximum shear is 7., = 3W/A.

The principal lesson that we learn from this example is that there are two
components of stress, normal and shear, whose values at any given point in a body
depend on the direction of the surface on which the stress acts. Thus, stress is a
vector (o, T) associated with another vector (v). To specify a stress, we have to
specify two vectors. To specify fully the state of stress at a given point in a continuum,
we must know the stresses acting on all possible planes v (i.e., sections oriented
in all possible directions). A quantity such as the state of stress is called a tensor.
Thus, this example tells us that stress is a tensorial quantity.

In the International System of Units (SI Units), the basic unit of force is the
newton (n) and that of length is the meter (m). Thus, the basic unit of stress is
newton per square meter (n/m”), or pascal (Pa, in honor of Pascal). We also have
1 MPa = 1 n/mm’. A force of 1 n can accelerate a body of mass-1 kg to 1 m/sec?
A force of 1 dyne can accelerate a body of mass 1 gram to 1 cm/sec?. Hence, 1
dyne = 10~° newton. Following are some conversion factors:

Sec. 111 Elementary Topics through Which Basic Ideas Evolved 21

1 kilogram force (kgf) = 9.806 65 newton

1 pound force = 4.448 221 newtons

1 pound mass avoirdupois = 0.453 592 kg

1 pound per square inch (psi) = 6.894 757 kPa

1 dyne/em® = 0.100 /m’

1 atmosphere = 1.013 25 x 10° W/m® = 1.013 125 bar
1 mm Hg at 0°C = 133.322 /m® = 1 torr ~ 75 kPa
1 cm H,0 at 4°C = 98.063 8 n/m’

1 poise (viscosity) = 0.1 newton sec/m® = 0.1 Pa-sec
1¢p = 0.001 Pa-sec

The notion of stress has practical value. If you have large blocks and smag
blocks of the same material, obviously the large ones can take larger lp:ads, an
the small ones can take smaller loads; but both will break at the same critical state

of stress. Hence, engineers look at stresses.

Example 4. Stresses in a Plate

i in rectangular plate of uniform thickness and hom(_)geneous.ma.tenal.
izzslig:fnai;hll??g: 1.10g(2) arfd (b), the plate is subjected to a uniformly d;:trlbuteﬁi
load acting on the surfaces x = *aand y = +b anfi no load on the 311 ace z f-a
+h/2. In Fig. 1.10(b), it is shown that the stress acting on the edge x ; ais g 2
magpitude o, per unit area. (0x is equal to the total load on’ tile e %&1 x t;ess
divided by the cross-sectional area of the plate cut by .the plane x = a.l) 10(8)5 fes
acting on the edge y = b is of magnitude o,, per unit area. In Fig. - c(, y
shown that the plate is subjected to a shear stress 7, on the que x = (;t;,g s
equal to the total shear load acting on the edge x = an the dlrecnor;1 o ) e}srs
axis, divided by the cross-sectional area of the section x = a) and a shear str *
Tyx o,n the edge y = b. Gux, Oy, T AN Ty ATE called stresses because they are a
in uni e per unit area. o
m'um;sp(;flyficgg tl?e equations of equilibrium to the p%ate shown in Fig. 1.. 10(b), tz:
see that the stress o, acting on the edge x = -ais equal to that ;ctmg pnFi
edge x = a. Applying the equations of equilibrium to the plate § own‘—u}) : fd
1.10(c), we see that ,onx = —ais equal to T On x = 4, that 'r,,f ony —tresses
y = —b are also equal, and further, that by taking the moment of all forces (s

% cross-sectional area) about the origin 0, we obtain

247, 2bh — 2b 120k = 0, Or Ty = Ty

The state of stress in the plate shown in Fig. 1.10(b) is spt.:c.med by fo and
o... The state of stress in the plate shown in Fig. 1.10(c) is specified by Ty = Ty
Ifyya plate is subjected to both the normal SIFESSES Ox, Oy and the shea}; sﬁ:;sezt;,:é
7. |2 superposition of the condition shown in Fig. 1.10(b) anii ©1, 't[‘ enlariefy ate
of stress is specified by the four numbers oz, Oy, Ty Tye (15 = Ty). To &
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Figure 1.10  Stresses in a plate. (a) Side view of a plate in the yz-
plane, showing the ‘stress o, acting in cross sections perpendicular to
the y-axis. (b) Plan view of a plate in the xy-plane, showing the normal
stress o, acting on a cross section normal to the x-axis and in the
direction of the x-axis; and the normal stress o,, acting on cross-
sectional plane L to y in the direction of y. (c) The shear stress ., is a
force per unit area acting in a plane cross section L to the x-axis, and
in the direction of y-axis. If the outer normal of the cross section points
in the positive direction of the x-axis, then a positive 1,, is a stress
pointing in the positive direction of the y-axis. If the outer normal
points to ~x direction then a positive ., is a stress vector pointing in
~y direction. Similarly, 7. is a stress vector acting in cross section L to
y and in the direction of x.

double subscript notation, we specify the rule that the first index of the stress denotes
the plane on which the stress acts, whereas the second index denotes the direction in
which the force acts. Thus, the tensorial character of stress mentioned at the end
of Example 3 becomes even clearer in the present example.

Example 5. A Pressurized Spherical Shell

The wall of an inflated balloon shown in Fig. 1.11(a) is in tension. We would like
to know the tensile stress in the wall. For this purpose, it is simplest to cut the
sphere with a diametrical plane and consider the hemisphere as a free body, as
shown in Fig. 1.11(b). Let the inner radius of the shell be r, the outer radius be
15, and the thickness of the wall be & = r, — r. The internal pressure p; acts on
the inner wall. The resultant pressure force acting on a hemisphere is wr!p;. The
normal stress in the wall of the shell is not uniform; the calcdlation of this must
await a general formulation (Chap. 10, et seq.), but it is easy to calculate the
average tensile stress in the wall. Let {¢) be the average normal stress acting on a
surface normal to the wall (i.e., passing through the center of the sphere). The
area of the wall on the diametrical plane is wr2 — wr? The resultant tensile force
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Figure 1.11 A pressurized
spherical shell, (a) A diametrical
cross section of the shell in a plane
passing through the center of the
shell, showing the inner radius, r,,
the outer radius, r,, the wall
thickness, #, and the internal
pressure, p;. (b) A free-body
diagram of a thin slice of the shell
cut by two parallel planes at a small
distance apart, one on each side of
the center of the sphere, and a
third plane normal to the first two
and passing through the center of
the sphere. The circumferential
stress o is a stress acting on, and
normal to the last mentioned cross-
sectional plane. ¢ is not uniform
across the wall of the shell. The

- average value of o is (¢). The value
of {o) is computed in the text.

due tb wallstressisw(r2 — r?){o). The balance of the forces in equilibrium requires,

- therefore, that

a(r} - o) = aripy (L.11-15)
or
r? r gps
- = B 1.11-16
(@) Piag h(r, + 1) ( )

This is a useful formula that is valid for thick-walled, as well as thin-walled, spherical

shells. .
If a pressure p, acts on the outside of the shell, as in Fig. 1.12, the resulting

normal stress in the wall will be

___Tepe _
(o) = i) (1.11-17)

Tf the shell is subjected to both an internal and an external pressure, and the wall

Figore 112 A spherical shell
subjected to external pressure.

@
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of the sphere is very thin, thenr, — r; = h; r, = r, = r, and the foregoing equations
reduce to

e )
0= (1.11-18)

Example 6. Pressurized Circular Cylindrical Tanks

Consider a cylindrical shell subjected to an internal pressure p;, as shown in Fig.
1.13(a). Let us pass two planes perpendicular to the axis of the cylinder to cut the
shell into a ring, pass another plane through the axis of the cylinder to cut the ring
into two halves, and isolate the semicircular ring as a free body, as shown in Fig.
1.13(b). The stress acting on the radial cut CD is normal to the surface and is
directed in the direction of increasing polar angle 6 in polar coordinates; hence, it
will be denoted by o,. As in Example 5, we do not know the exact distribution of
o, in the cross section, but if (o) denotes the average value of o, over the cross
section, then (o) multiplied by the area (r, ~ r)) L is the resultant force acting in
the cross section CD. Similarly, the tensile force in the section EF [Fig. 1.13(b)]
is also (o) (r, — 7;) L. The resultant of pressure acting on the inside is 2r,Lp;. The

A 8
t
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(c)

Figure 113 A pressurized cylindrical tank. (a) The shell seen in a
cross section passing through the central axis of the shell. (b) A free-
body diagram of a part of the shell cut by two planes perpendicular to
the central axis and a third plane containing the central axis. () A
free-body diagram of a part of the shell to the left of a plane
perpendicular to the central axis.
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balance of forces acting on the semicircular ring in the vertical direction requires
that

2oa)(ro = 1)L = 2riLp:. (1.11-19)

Hence,

= b (1.11-20)
(Uﬂ> r, — r,',
which is another very useful exact formula. . o .

If we cut the cylinder by a plane perpendicular to its axis and consu_ler the
left half of the tank as a free body, as shown in Fig. 1.1.3(c),‘ we can examine the
average value of the axial stress o that acts in the axial dII‘BCthD.x onza crozss
section perpendicular to x. We note that the area on which o, acts is 7(r; - rd).
On the other hand, the surface on which the internal pressure p; acts has a pro;ect'ed
area in the axial direction equal to mr}. Hence, the balance of forces in the axial
direction yields

arip; = (o (s — i) (1.11-21)

or

(o) = 2 (L.11-22)

2
r.z,—'r,-

1f the shell wall is very thin, so that 7, — r; = h and thus, r, = r; = r, then these
equations are simplified to

Ip; I y
(o) = ”11;_’ (0 = - (1.11-23)

Simple Beam Theory

Consider a prismatic beam of a uniform isotropic 'Hookean mate?al w1t‘l;u:zl ;51;
tangular cross section subjected to a pair of bending momengs 0 ;ng;gmb do Ml
acting on its ends, as shown in Fig. 1.14(?): If the cross section oth ; e e
symmetric with respect to the plane containing the .end‘ moments, he degm vl
deflect into a circular arc in the same plane, as shown in Elg. 1.14(b). The de ?C ior
curve must be a circular arc because of symmetry, since every Cross section axﬁ
subjected to the same stress and strain. Let us assume that the deﬂe(f:?on is ;mef_
(compared with the length of the bean.l). We ghoo§e a rectangula.r d{im? of r *
erence x y z, with the x-axis pointing in the direction pf the longitu mlat :;mil o
the beam, y perpendicular to x but in the p]ar{e of beqdmg, and z notrrtr]la Z I)lct e
7. [See Fig. 1.14(a).] The origin of the coordinates will be chosen at the ¢
of one cross section, for reasons that will bgcome clear shortly. il
The deflection of the beam can be descrl.bed by the deflection of.the cgntro1 !
surface (the plane y = 0 when the beam is in the undeflected configuration) an
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Figure 1.14 Bending of 2 prismatic beam. (a) The configuration of the
beam at zero-stress state. (b) The beam bent by a uniform bending
moment M. (c) Under the hypotheses of the classical beam theory, the
deformed form of a small segment of the beam bounded by two cross-
sectional planes A and B in () and A’, B' in (b) is shown. R is the
radius of curvature of the neutral surface on which the origin of the
coordinates system x, y, z is located. (d) The distribution of the
bending stress in a cross section of the beam. The bending stress is zero
on the neutral surface, and is a linear function of y under the
assumption that plane cross sections perpendicular to the neutral axis
remain plane in bending deformation.

any displacements relative to this surface. Consider two neighboring cross sections
A and B that are perpendicular to the plane y = 0 when the beam is unloaded.
When the beam is bent into a circular arc, the two planes A and B are deformed
into planes A’ and B' that remain normal to the arc. [See Fig. 1.14(c).] That A’
and B' are planes is because of symmetry. That they are perpendicular to the
centroidal arc is also because of symmetry. Let the radius of curvature of the
centroidal arc be R. When the cross sections A’ and B’ are bent to a relative angle
of d, the centroidal arc length is Rd6; whereas a line at a distance y above the
centroidal line will have a length (R + y)d6. The change in length is y d6. A
division by its original length R df yields the strain

o = 'zyi' (1.11-24)
" In response to the strain e, there will be a stress O We now make the
assumption that o, is the only nonvanishing component of stress, whereas o,, =
O = Ty = Tz = T = 0. Then according to Hooke’s law, we have
y

0. = Bow = Ep. : (1.11-25)

e acan i
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Since only pure bending moments act on the beam, the resultant axial force *
must vanish. Thatis,

L o dA =0, ‘ (1.11-26)

where A is the cross section, dA is an element of area in the cross section, and
the integration extends Over the entire cross section. Substituting Eq. ‘(1.11—25)
into Eq. (1.11-26) yields ,

LydA=O, , )

which says that the origin (y = 0) must be the centroid of the c{oss section. This
explains our original choice of the centroid as origin. The centroidal pl@e y= O
is unstressed during bending [according to Eq. (1.11-25)]. Material particles on it
are pot strained in the axial direction. This plane is therefore called the neutral
surface of the beam. ,

The resultant moment of the bending stress O about the z-axis must be equal
to the external moment M. A force o, dA acting on an element of area dAina
cross section has a moment arm y; hence, the bending moment is

M= J o= dA. (1.11-28)
Substituting Eq. (1.11—25) into this equation yields
E 2
== 1.11-29
M R L ¥ dA. ( )

We now define the last integral as the area moment of inertia of the cross section
and denote it by I

I= f Y dA. (1.11-30)
A

Then the foregoing equations may be written as*

TN R R

HBorR e I

where c is the largest distance from the neutral surface to the edge of the cross
section. [See Fig. 1.14(d).] The stress oo is the largest bending stress in the beam.
It is called the outer fiber stress because it is associated with the outer edge of the
beam cross section. /s a property of the cross-sectional geometry. Fora rectangular
cross section with depth h and width b, as shown in Fig. 1.14(a), we have ¢ =

hf2 and I = 0P,

A (L11-31)

*Thirty important formulas in this book are marked by black triangles on the right. These are
thirty lines worthy of memorizing.
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These formulas give us the stress and strain in a prismatic beam when itis
subjected to pure bending. Can we use them for a prismatic beam subjected to a
general loading, such as the one shown in Fig. 1157 Orto a beam with variable
cross sections? The answer is that although the solution is then no longer exactly
correct, it is found empirically to be surprisingly good. The basic reason is that the
shear stresses which must exist in the general case cause a deflection which usually
is negligible compared with that due to the bending moment. Therefore, in general,
the hypothesis that plane sections remain plane is very good, and Egs. (1.11-24)
through (1.11-31) can be considered locally true along the beam.

MM Figure 1.15 A beam subjected to

’7/5/, 79/7 4 distributed loading.

Deflection of Beams

Based on such an empirical observation, we can analyze the deflection of a beam
under a lateral load. For example, consider the beams illustrated in Fig. 1.16. Let
the beam deflection curve (deflection of the neutral surface) be y(x). When y(x)
is small (much less than the length of the beam), its curvature can be approximated
by d?ylds?, and the use of Eq. (1.11-31) leads to the basic equation

&2y 1
; A (111-32)

RN
r 4_“ Simply supported end
g}; )

7

Simply supported beam

g tEELEE
%/‘> Free end

Cantilevered beam
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Clamped end

, Figure 1.16 End conditions of
Clomped beom beams.
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The beam deflection y(x) can be obtained by solving this equation with appropriate

boundary conditions, which are: '
Simply supported end (deflection and moment vanish):

y=0, % = 0. (1.11-33)
Clamped end (deflection and slope vanish):
y=0, % ={. (1.11-34)
Free end (moment and shear specified):
E %% =M, El%z—x);’ = §. (1.11-35)

i i hose expla-
_1.16.) All these ar® pretty evident except the last one, for w
o e ou)ld examine Prob. 1.14 infra, which shows that the bending moment

nation we sh '
M. the transverse shear S, and the lateral load per unit length w are related by the

equations
A (1.11-36)

= in Eq. (1.11-35).
oo M = EI d?ylds’, we must have § = EI d*yldy’ asin Eg. (1.
B g small (so that the preceding analysis can be valid), but the

If the curvature is ' ‘
slope is finite, then we should use the exact expression for 1/R, which leads to the

following equation in place of Eq. (1.11-32):

oyl (@ Tn _ME) 1.11-37
7152'&1 ¥ (dx) EI (150

As an example, consider the small deflection of a cantilever be.am clamped
at the left end, as shown in Fig. 1.17, and subjected to a constant bending moment.

The right-hand side of Eq. (1.11-32) is constant in this case, SO that equation can

be integrated t0 obtain

My y
yx) = T2 + Ax + B, (1.11-38)

5

X Figure 1.17 Bending of
cantilever beam.

Y, J
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where A and B are arbitrary constants. The boundary conditions y = dy/dx = 0
at x = 0 then yield A = B = 0, so that the solution is

M i

“E72 (1.11-39)

In this special case, the boundary conditions on the free end are also satisfied
because M = const.

Can we, however, satisfy all the boundary conditions in general? After all,
our beam has two ends with two conditions each, so that we have four boundary
conditions, whereas our differential equation (1.11-32) is only of the second order.
Are we going to have a sufficient number of arbitrary constants to satisfy all
boundary conditions? The answer, as it stands, is no. A further reflection tells us,
however, that for a general loading, the differential equation must be obtained by
combining Eq. (1.11-36) with Eq. (1.11-32). Thus, the general equation must be

ds d*M 4 ( dzy)
= — = —— = ——E[—5
dx?‘ 1
which is a fourth-order differential equation, able to handle four boundary con-
ditions. In the case of a uniform beam, we have

A (1.11-40)

d'y

Elzxq = w(x). A (1.11-41)
Equation (1.11-40) is an approximate equation, exact only in the pure bending

of a prismatic beam, but it is used often to describe beam deflection in the general

case, even for beams of variable cross section. In general, for a slender beam, it

yields close approximations. Significant deviation occurs only when the beam is

not slender or for sandwich constructions with very soft core material in which

shear deflection becomes significant.

PROBLEMS

1.1 Ice melts into water with a slight reduction in volume. The molecules of water in ice
rearrange themselves to achieve this feature. Construct some macroscopic examples
that can do the same, i.e., change a solid structure into one that can be deformed
easily.

1.2 When a truck of premixed concrete pours the mixture into a mold at a construction
site, the mixture can be treated as a fluid continuum. Similarly, rice flowing in a grain
chute of a silo can be considered as a fluid. Solar flares, sunspots, and the lava flow
after a volcanic explosion are other examples. Name 10 -more examples in which an
aggregate of solid bodies flows like a fluid and to which the continuum concept can
be applied in some sense.

1.3 Consider a spacecraft that yéu would like to bring back to the earth. You are faced

with the problem of frictional heating upon reentry into the eartl’s atmosphere. You
know that for a gas, the length of the mean free path between collisions is a measure

B ]
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of the average distance between molecules.‘f“‘or air at 1 km above ktlt];e %I()u;ld; t1h(;
fean free pathis 8 X 107 cm; at 100 km, it is 9.5 cm; afld at 200 km, 1 t:; -
cm. To analyze the flow of air around your spacs:craft as it reer_xte;s the ﬁ tlosp1 ané
would it be petmissible to use the method of c9ntmuum mechz}nxcsf At \a{) la e‘é&:,) n
for what purpose can you consider air a continuum? What kind of problems ¥
have to solve to bring the spacecraft back 0 carth safely? i e staped and
! are a surgeon, and you have a patient w 10 has a dime- ;
H 3?§1g:§1:etc}1l;tie}:;uof skin yougwould like to remove because it is cancerous. After ixttglé
away the diseased tissue, you would like to sew up tl.le healthy skin to cmc/iermg the
hole. Here is a chance 10 do some engineering planning. Inve‘x‘lt a “{fi%’{ to nould ]t o
g0 as to obtain the best results. First deﬁne‘what you mean by “best. Idow w >
healthy skin survive the surgery? What kind of hez}hng process wou? you € é) !
17 Can you treat the skin as continuum? In which way

t final result do you wan he ski :
Yv?uald yI:)u use the continuum concept 0 deal with this problem? Does the location of

the cancerous lesion (e.g., on the face, the hand, the back, or the abdomen) make a
 difference to your method? , o
15 A 100-story building is to be built in town, and you aré challenged to des'lgn 51 h'ft to
. elevate heavy material in the. construction process. Make several ?lte.rnaUVe desxgns,
and then make a choice from among them. Explain why your choice is a good one.
d at the simple truss shown in Fig. P1.6(a) and felt that he could

i k - 3
L A e the truss by adding another member AB, as shown in Fig, PL6(b).

i of :
};‘thg?‘géiz Soafftet:z members AB, CD, AC, BD,and AD were broken by some accident,

the truss would not immediately collapse.

A D
c l B 7
vy’
1000% 1000%
(@) {b)

Figure PL6 - (2) A statically determinate truss. (b) A statically
indeterminate truss.

i construction i i ially for critical public structures

, fail-safe construction 18 2 great idea, especia

such aI: Oa?rplzxnes bridges, and ships. But introducing anott;er ?cmbcr ABe:::é:rgzsf
he ’ is. find first the load in every m

ter of the truss.. To understand this, fin :
?ﬁ: ‘zlrl\?:? ‘i:n Fig. P1.6(a). Then, determine the load in every mempc?r of .th? trus:i (;)If1
Fig. P1.6(b) also. You'll find that you cannot do it. Why? Whgt a.\ddmonal 1(111 c.xm;ﬁ on
is i‘eedéd? With the additional information, h.o.w do you d(;termme the loads in
members? What cost do you pay for the additional safety?

Note: A truss like that shown inFig. 1.6(b) is called a statically indeterminate structure

because the tension in the bars cannot be determined by statics alone.

posed the following problem: A column of marble

17 Galileo, in his Two New Sciences, oy el beam. O ens of

rested on two supports, in the manner
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Rome were worried about the safety of the column and sought to increase the support.
They inserted a third support in the middle of the span, as in Fig. P1.7. The column
broke. Why?

Figure P1.7 Galileo’s problem of a fallen column.

1.8 Ttis pretty easy to demonstrate that the tension in an Achilles tendon is considerable
when we stand on tiptoe or when we poise for a jump. A tension gauge can be built
using the same principle we would have used to measure the tension in the string of
a bow or in a rubber slingshot. Design such a gauge.

Hint. T we pull on a bow as shown in Fig. P1.11, and if a lateral force F induces a-

deflection angle 8, show that T = F/(2 sin 6).

Figure P1.8  Measurement of
tension in a string.

1.9 Compare the bending moment acting on the spinal column at the level of a lumbar
vertebra for the following cases:
{a) A secretary bends down to pick up a book on the floor (i) with knees straight
and (i) with knees bent. .
(b) A water skier skiis (i) with arms straight and (ii) with elbows hugging the
waist.
Discuss these cases quantitatively with proper free-body diagrams.

1.10 Your doctor always trys to “feel your pulse” by putting his fingers on your radial
artery. To understand what he can find by doing this, let us consider a simpler case.
A small balloon is inflated by air at a pressure of p pascals. I press my finger on the
balloon. (See Fig. P1.10.) I assume that the bending resistance of the wall is negligible.
How far down should I press so that the pressure acting on my finger is exactly p?

Hint. Consider the free-body diagram of a small piece of the balloon under the finger.
Consider the condition when the spot under the finger becomes flattened into a plane surface.

Figure P1.10 Feeling the pressure
in a batloon.
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1.11 One man is twice s tall as another man. Assume that they are completely similar and
doing exactly the same stationary gymnastic maneuver. Are they subjected to the same

stresses in their bones and muscles?

Answer. The ratio of the linear dimensions is 2. The ratio of the mass of the cor-
responding organs is 8. The ratio of the corresponding areas is 4. The ratio of the stresses

is 2.

in a soap bubble is related to the surface tension & and the radius

. ?Syg?;cp;:i?;gnPP = 40/;){ Derive this equation, whi_ch is known as Laplace’s law.
Take a pippette, put a valve in the middle, close it, and' blow two bubbles, one

at each end. (See Fig. P1.12.) One bubble is large and one is small. N_ow open the
middle valve so that the gas in the two bubbles can move. In which way will the bubble

diameters change? Explain in detail.

Answer. The small bubble will disappear.

Figure P1.12  Collapse of a small
soap bubble into a large one.

cathes, air enters the mouth, nose, trachea, bronchi, bronghio}es,

e Zilge:ljegg:%i:é and ends in the alveoli, which are the final units .of resglrauog.
Most textbooks of physiclogy liken each alveolus to'ﬂ?e gas bubble cora.mdereg in Pml 1

1.12 and state that a human lung consists of 300 million bubbles ventilated in paralle

to the atmosphere. Now, apply the results of P'rot?. 1.12 to this statement. One cannot

help reaching the conclusion that all the alveoli will gol}apse c?xcept for the largest oneé
So.the lung would consist of one open alveolus. This is obviously absurd. What wen

wrong? What is the correct answer?

Hint. Mammalian lungs are so well packed that each wall of an alveolgs serves as a
wall to two neighboring alveoli. Hence, the walls are more accurately t_:alled interalveolar
septa, and the gas bubble analogy is incorrect for the pulmonary alveoli.

1.14 Let M denote bending moment in a beam, § the shear, and w the load. Show that,
according to the free-body diagram in Fig. P1.21,

Mo
S“T, W—-dx,
hence,
oM
e
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wdx

Hit
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o || el
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l ‘ Figure P1.14 Equilibrium of a
Ol beam segment.

115 U'sing. the. differential equation derived in Prob. 1.14, find the bending moment dis-
trfxbutlon in the beams shown in Figs. P1.15(a) and (b) under a loading per unit length
o

w*asinmc
T

% Figure P1.15 - Bending of beams
under a sinusoidally distributed

m load. (2) Beam is cantilevered, i.e.,
free at one end and clamped at the

7&_ ;9~ other. (b) Beam is simply
22 7, supported.

1.16 A person weighing. W pounds tries to walk over a plank that is simply supported at
two ends across a river. (See Fig. PL.16.) The plank will break whenever the bending
gllom.ent :xceeds M.. At what place (¥) will the plank break and the person fall into

e river?

Answer. x = ;[L = (L* — 4K)"], where K = LM.IW.

Figure P1.16 A person walking
over a plank.

1.17 A hinge is adc}ed to the left end of a cantilever beam that is loaded by a constant force
bP, as?shown in Fig. P1.17. How would you determine the bending moment in the
eam?

SRS ——
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R Figure P1.17 Redundant supports.

Solution. A beam clamped at B and simply supported at A is statically indeterminate
because the reaction at A cannot be computed by statics alone. To solve the problem, we
must consider the elasticity of the beam.

One method is as follows. Take the support of A away. Then the beam becomes a
cantilever beam. We can find the deflection at A due to the load P. Let this be 8", which
is proportional to P.

Next, consider the same cantilever beam loaded by a force R at the tip. This produces
2 deflection 5 at the end A. In reality, the end A does not move. Hence, 8" + 8" = 0.
From this equation, we can compute R. With R known, we can then complete the moment

diagram.
1.18 A beam (Fig: P1.18) rests on three hinges which, unlike Galileos rocks discussed in

Prob, 1.7, are so rigidly attached to the foundation that both push and pull can be
sustained. Sketch a method with which the bending moment distribution in the beam

can be calculated. ‘ )
Solution. First, withdraw one of the supports, so that the problem becomes statically
determinate. Compute the deflection at the location of the withdrawn support due to the

load P.
Next, apply a force R at the location of the withdrawn support, and compute the

displacement at this point.
The condition that the net displacement at all the supports must vanish provides an

equation to compute the reaction R. Then all the forces are known, and the moment diagram
can be completed.

P

4 7 7 Figure PL18 Redundant supports.

1.19 A strong wind blows on & palm tree. (See Fig. P1.19.) The wind load on the trunk is
w = kD per unit length of the trunk, where D is the local diameter of the trunk and
I is a constant. How should the diameter vary with the height so that the tree is
uniformly strong from top to bottom with respect to bending in wind? Note that the
area moment of inertia of the cross section of the tree trunk is proportional to D', and
the outer fiber stress due to bending is proportional to Mcll ~ MD™?, where M is the
bending moment. Ignore the bending moment contributed by the leaves.

Hint. Let x and & be measured downward from the treetop. The bending moment
atxis

M) - [, - DIDOE
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Figare P121 A red blood cell
suspended in a buffered isotonic

: plasma is an axisymmetric body of
: revolution with a central cross
section as shown.

P-]

1.22 Figure P1.22(a) shows a person working. Figure P1.22(b) shf>ws a free—body. diggram

' of the upper body, with a cross section passing'thn?ugh an mtgrverFebral disc in the

lumbar region. The structure of the lumbar spine 18 ske.tched in Fxg. P1.22(c). The

discs serve as pivots of rotation: They cannot r.esxst bending and torsion moments. In

Figure PLI9. A strong wind : resisting the external load, the vertebra, the discs, 'and the muscles are st.resscd. The
blowing on a paim tree. - major muscles behind the centroidal line of the discs are the erector spinae, whose

centroid is located about 92 of the depth of the trunk behind the center of the disc.
The maximum bending stress at x is proportional to M(x)/D(x). The problem is to determine e oat W acting with 2 moment arm St L. what is the bending moment £ the

D(x) so that M(x)/D°(z) is constant. Try a pover law, such a5 D(x) = const.x", and show : external load about the disc? How large is the tension in the erector spinae muscle for
that m = 1. The tree trunk should look like a slender cone. ;

a person of your size?

1.20 One of the most beautiful results in aerodynamic theory says that the best design for Low back painis so §ommon that lots of attention has b_een given toS glx;fcp(::sb;:nﬂ

the minimum induced drag of an airplane (the air resistance to forward motion due The loads acting on the discs haye been'mAeasured mthbst{amdg;ges 120 ome o i;m

to lifting the weight of the airplane) is one with elliptic loading. By loading is meant ; was found that no agreement thh. prediction can Qbe o tam:, we e il
the aerodynamic lift force per unit span. By elliptic loading is meant that the lift : account the fact that when one lifts a hea\{y .welght,doxgeh enfgstl'ltphel s
distribution from wing tip to wing tip is an ellipse. Let x be the distance along the wing muscles so that the pressure in the abdomen is increase .1 01\: aS ;hUl tzp o
span measured from the centerline of the airplane. Let b be the semispan of the wing : to have a large abdomep and str_ong abdommal'mu’s’cles.B ef. i a’edic. é;'ome-
(the distance from the centerline to the wing tip). Then the theorem says that the : Ashton-Miler, J.A. “Biomechanics of human spm;. n Naschork 117991 o
minimum induced drag is achieved if the lift is distributed according to the formula ; chanics, ed. by V.C. Mow and W.C. Hayes, Raven Press, New , , bp-

() = k(1 = " 364.
where k is a constant. This lift distribution, shown in Fig. P1.20, yields the best fuel
economy.

Assume that the airplane has an elliptic loading. Consider the wing as a cantilever
beam. Compute the bending moment M {x) at x in the wing. Plot the bending moment
diagram to show the moment at every station in the wing due to aerodynamic load. ;
T the Jift distribution is approximated by €(x) = A cos {wx/2L), and the wing’s i
bending rigidity is EI(x), find the wing tip defiection relative to the wing root.

=Acos Z& k : Vertebra
g 2L {H-ﬂ’ bone |
Tﬂ ill TTTT} MUY
| h Figure 120 The optimal elliptic izl
x=L aerodynamic loading acting on an ( ¥
——x airplane wing. m’

Disk

1.21 A red blood cell is an axisymmetric shell with a very thin wall in the shape of a doughnut . (o)
without a hole. (See Fig. P1.21.) People describe it as a biconcave disk. It is filled Tension from bac

Extensor muscle

Abdominal /

with a Newtonian fluid, and it floats in another Newtonian fluid. By considering suitable pressure vl —verlbro
free-body diagrams of the red blood cell, we can compute the difference between the ; £ivor =
internal pressure p; and external pressure p, under the assumption that the bending ; {b)

rigidity of the cell membrane can be neglected. What conclusion do you reach? What

i ds in the spine when a man shoves weight.
is the physiological significance of this conclusion? Figure P1.22 Loads in the SP
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1.23 Figure P1.23is a classic from a book by Giovanni Alphonso Borelli (1608-1679) entitled
“De Motu Animalium” (On the Movement of Animals), published in 1680 (first part)
and 1681 (second part), recently translated by P. Maquet, Springer-Verlag, New York,
1989. The figure shows a person carrying a heavy load. Several parts are cut open to
show how bones and muscles work in this effort. Further clarification can be obtained,
of course, by use of more detailed free-body diagrams. Use them to estimate how large
is the load acting on the hip joint when a 70 kg person walks carrying a 30 kg globe
on the shoulder. :

Figure P1.23 A figure from Table
VI, Fig. 1 of Borelli’s book.

s e orwrrin

VECTORS AND TENSORS

A beautiful story needs a beautiful language to tell. Tensor is the language
of mechanics.

2.1 VECTORS

A vector in a three-dimensional Euclidean space is defined as a directed line
segment with a given magnitude and a given direction. We shall denote vectors by
Xg, ITQ, ..., or by boldface letters, u, v, F, T, . . . .

Two vectors are equal if they have the same direction and same magnitude.
A unit vector is a vector of magnitude 1. The zero vector, denoted by 0, is a vector
of zero magnitude. We use the symbols | AB |, |u|, and v to represent the magnitudes
of ﬁ, u, and v, respectively.

The sum of two vectors is another vector obtained by the “paralielogram
law,” and we write, for example, AB + BC = AC. Vector addition is commutative
and associative.

A vector multiplied by a number yields another vector. If k is a positive real
number, ka represents a vector having the same direction as a and a magnitude &
times as large. If k is negative, ka is a vector whose magnitude is ]k[ times as large
and whose direction is opposite to a. If k£ = 0, we have (+a = 0.

The subtraction of vectors can be defined by

a—-b=a-+ (~b).
If we let e,, e, e; be the unit vectors in the directions of the positive x;, x,,
x; axes, respectively, we can show that every vector in a three-dimensional Euclid-
ean space with coordinate axes x;, x,, ¥; may be represented by a linear combination
of e,, e, and e;. Furthermore, if the vector u is represented by the linear combi-
nation” - :

U= we + ey + e, 2.1-1)
then u;, u,, us are the components of u, and u can be represented by a matrix

(w1, 1, 3).

39
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The magnitude |u] is then given by
1“1 = Vid + 1§ + i, 2.1-2)

and therefore u = Oifand only if wy = 4y = Us = 0.
The scalar (or dof) product of w and v, denoted by u-v, is defined by the
formula

wv=lufly|cos§ (O=0=m), (2.1-3)

where @ is the angle between the given vectors. This represents the product of the
magnitude of one vector and the component of the second vector in the direction
of the first; that is, -

u-v = (magnitude of u)(component of v along u). (2.1-4)

0= e + e + wses v = v + e + vies

the scalar product of these two vectors can also be expressed in terms of the
components: '

v = vy + gV + U (2.1-5)

Whereas the scalar product of two vectors is a scalar quantity, the vector (or
cross) product of two vectors u and v produces another vector w; and we write
w = u X v. The magnitude of w is defined as

|w| = [ullv|sing  (0=8=m), (2.1-6)

where 8 is the angle between u and v, and the direction of w is defined as per-
pendicular to the plane determined by u and v, in such a way that u, v, w form a
right-handed system. Vector products satisfy the following relations:

uxv=—(vxu
uX(v+tw=uxviuXw

gxu=0
e1Xe,=erez=63Xe3=0

@.1-7)

e Xe =6 e X e =g e Xe =&

Cdu X v=uXkv=kmXxv).
Using these relations, the vector product can be expressed in terms of the com-
ponents as follows:

w X v (s — e + (v — mvs)er + (vz — uvr)es.  (2.1-8)
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PROBLEMS

2.1 Given vectoru = —3e, + 4e, + Se,, find a unit vector in the direction of u.

Answer: (V210)u.

=
22 I X;S = —2¢, + 3e, and the midpoint of the segment AB has coordinates (—4, 2),
find the coordinates of A and B.

Answer: (=3, %), (=5, %).

2.3 Prove that, for any two vectors , v, o= vt + o+ v = 2(u? + V).

2.4 Find the magnitude and direction of the resultant force of three coplanar forces of
10 b each acting outward on a body at the origin and making angles of 60°, 120°, and
270°, respectively, with the x-axis.

Answer: 10(\/§ -1, Lx
2.5 Find the angles between u = 6e, + 2e, — Jeyand v = —¢ + 8e, + de,.
Answer: cos™ (= 2)-

2.6 Givenu = Je, +4e — €, V= 2e, + Se;, find the value of e sothatu + avis
orthogonal to v.

Answer: —%.

27 Givenu =2¢ +3e, V=86 " & + e, W = e — le;, evaluate u(v x w)and
(n X v)-w.
Answer: 16.

28 (u X v)-w is called the scalar triple product of w, v, w. Show that (@ X v)'w
= g-(v X W).
2.9 Find the equation of the plane through A(1, 0, 2), B(0,1, —1), and C2,2,3).

Answer: Tx =2y =3z -1=0.
2.10 Find the area of AABC in Prob. 2.9.

Answer: V6212
2,11 Find a vector perpendicular to bothu = Ze, + 3¢, — e;and v = ¢ — %e, + 3k

Answer: Te, — Te, — Tes.

22 VECTOR EQUATIONS

The spirit of vector analysis is to use symbols to represent physical or geometric
quantities and to express a physical relationship or a geometric fact by an equation.
For example, if we have 2 particle on which the forces FO, F@, ..., F® act,
then we say that the condition of equilibrium for this particle is

FO 4+ FO 4 .- + FO = 0. (2.2-1)
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As another example, we say that the following equation for the vector r represents -

a plane if n is a unit vector and p is a constant:
rn = p. (2.2-2)

By this statement, we mean that the locus of the end point of a radius vector r
satisfying the preceding equation is a plane. The geometric meaning is-again clear.
The vector n, called the unit normal vector of the plane, is specified. The scalar
product r-n represents the scalar projection of r on n. Equation (2.2-2) then states
that if we consider all radius vectors r whose component on n is a constant p, we
shall obtain a plane. (See Fig. 2.1.)

n
=
a1 Jr
‘L Figure 2.1 'Equation of a plane,
n=p.

On the other hand, elegant as they are, vector equations are not always
convenient. Indeed, when Descartes introduced analytic geometry in which vectors
are expressed by their components with respect to a fixed frame of reference, it
was a great contribution. Thus, with reference to a set of rectangular Cartesian
coordinate axes O-xyz, Egs: (2.2-1) and (2.2-2) may be written, respectively, as

SF0=0, YF0=0, FP=0, 2.2-3)
i=1 i=1 i=1
ax + by + ¢z = p, . (22-4)

where FO, F, F® represent the components of the vector F@ with respect to the
frame of reference O-xyz; x, y, z represent the components of r; and a, b, c represent
those of the unit normal vector n.

Why is the analytic form preferred? Why are we willing to sacrifice the
elegance of the vector notation? The answer is compelling: We like to express
physical quantities in numbers. To specify a radius vector, it is convenient to specify
a triple of numbers {x, y, z). To specify a force F, it is convenient to define the
three components F, F,, F,. In fact, in practical calculations, we use Egs. (2.2-3)
and (2.2-4) much more frequently than Egs. (2.2-1) and (2.2-2).

PROBLEMS

2.12 Express the basic laws of elementary physics—e.g., Newton’s law of motion, Coulomb’s
law for the attraction or repulsion between electric charges, and Maxwell’s equation
for the electromagnetic field—in the form of vector equations.

For example, to express Newton's law of gravitation in vector form, let m, and
m, he the masses of two particles. Let the position vector from particle 1 to particle 2
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be r,,. Then the force prodnced on particle 1 due to the gravitational attraction between
1and?2is :

g M T
Flz N lerﬂiz

Tl -

where G is the gravitational constant.
2.13 Consider a particle constrained to move in a circular orbit at a constant speed. Let v
be the velocity at any instant. What is the acceleration of the particle; i.e., what is the

vector dv/di?

Answer. The velocity vector v may be represented in polar coordinates as follo.ws.
Let £, 0, 2, be, respectively, the unit vectors with origin at P in the directions of Fhe radius,
the tangent, and the polar axis perpendicular to the plane of the orbit. (See Fig. P2.13.)
Then v = vi, where v is the absolute value of v. Hence, by differentiation,

dv db  dv,
Et-——v-[i?-i' dt().

\

\ () /?
o/P Figure P2.13  Velocity vector of a
g particle moving in a circular orbit.

The last term vanishes because v is a constant. To evaluate d0/dt, we note that § is a unit

vector; hence, it can only change direction. d/d is, therefore, perpendicular to the vector

8, i.e., parallel to f. Let @ be the angular velocity of the pa{ticle about the center of the

orbit. Obviously, @ is turning at a rate of = v/a. Hence, d0/dt = —(v/a)§, and dvldt =

—{(vYa)t.

2.14 A particle is constrained to move along a circular helix of radius a {md Pitch hata
constant speed v. What is the acceleration of the particle? If the particle is located at
P, as shown in Fig. P2.14, express the velocity and acceleration vectors in terms of

Figure P2.14 A helical orbit.
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unit vectors t, n, and b that are, respectively, tangent, normal, and binormal to the
helix at P.

Answer. The velocity vector is parallel to t and has a magnitude v. Hence, v = vt.
By differentiation, and noting that v is a constant, we have dvidt = v dt/dt. But since ¢ has
a constant length of unity, dt/dt must be perpendicular to t and, hence, must be 8 combination
of n and b. That is,

dt
dt—~Kn+'rb

where x and 7 are constants. If the particle moves with unit velocity, the constants k and 7
are called the curvature and the torsion of the space curve, respectively.

Tt is convenient to use polar coordinates for this problem. Let the unit vectors in the
direction of the radial, circumferential, and axial directions be £, 9, and 2, respectively.
Then

v = ub + wi

where 1 and w are the circumferential and axial velocities, respectively. Hence, dvidt =
(duldt)® + u dbidt + (dwld)z + w(ddldl) = u dbldt = —(u¥la)t. The velocities u and w
are related to v as follows: In the time interval At = Jmraf, the axial position z is changed
by h. Hence, w = hiAt = hul2wa, and v = ufl + Pi(4ra)]"

2.3 THE SUMMATION CONVENTION

For further development, an important matter of notation must be mastered.

A set of n variables Xy, Xz, -+ + 5 %n IS usually denoted as x;, i = 1, ..., 1.
When written singly, the symbol x; stands for any ore of the variables x;, Xz, . .+ »
x,. The range of i must be indicated in every case; the simplest way is to write, as
illustrated here, i = 1,2, ..., n. The symbol i is an index. An index may be
either a subscript or a superscript. A system of notations using indices is said to

be an indicial notation.
Consider an equation describing a plane in a three-dimensional space referred
to a rectangular Cartesian frame of reference with axes x,, Xz, Xs, i.€.,

mx, + Xy + BX3 = P, (2.3—1)

where g; and p are constants. This equation can be written as
3
2 ax; = p. (2'3'.2)
f=1

However, we shall introduce the summation convention and write the pre-
ceding equation in the simple form

ax; = p. (23-3)

The convention is as follows: The repetition of an index in a term will denote a
summation with respect to that index over ifs range. The range of an index i is the

Iy
e
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set of n integers 1 to n. An index that is summed over is called a dummy index;
one that is not summed is called a free index.

Since a dummy index indicates summation, it is immaterial which symbol is
used. Thus, a;x; is the same as 4;x;, etc. This is analogous to the dummy variable
in an integral, e.g.,

[} foya = [/ 1oves.

Examples

The use of the index and summation convention may be illustrated by other exam-
ples. Consider a unit vector v in a three-dimensional Euclidean space with rectan-
gular Cartesian coordinates x, y, and z. Let the direction cosines a; be defined as

a = cos (v, %), @ = cos (v, y), o= cos(,2),

where (v, x) denotes the angle between v and the x-axis, and so forth. The set of
numbers o;(i = 1, 2, 3) represents the components of the unit vector on the
coordinate axes. The fact that the length of the vector is unity is expressed by the
equation

() + (@) + () = 1L,
or, simply,
oo = 1. 2.3-4)
As another illustration, consider a line element with components dx, dy, dz

in a three-dimensional Euclidean space with rectangular Cartesian coordinates x,
y, and z. The square of the length of the line element is

ds* = d + dy* + d7*. (2.3-5)
If we define ,
dy = dx, dun=4dy, dn=4d (2.3-6)
and
bu=%a=%=1 23-7)

dp =0 = ¥y = 0y = dn =0 = 0,
then Eq. (2.3-5) may be written as

ds* = S;idx,'dxi, A (23—8)

with the understanding that the range of the indices i and j is 1 to 3. Note that
there are two summations in this expression, one over i and one over j. The symbol
3y, as defined in Eq. (2.3-7), is called the Kronecker delta.
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Matrices and Determinants

The rules of matrix algebra and the evaluation of determinants can be expressed
more simply with the summation convention. Anm X n matrix A is an ordered
rectangular array of mn elements. We denote

ay G 7 0w
A = ((l,'i) = (1'_;1 Gy *°° 4u (2.3—9)
At Gua ' G|

so that a; is the element in the ith row and jth column of the matrix A. The index
i takes the values 1,2, . . . , m, and the index j takes the values 1,2, ..., n. A
transpose of A is another matrix, denoted by A7, whose elements are the same as
those of A, except that the row numbers and column numbers are interchanged.
Thus,

ay Gy " Om
T — T
Al = (a;i) =14y 0n - 4w (2.3—10)
Qi O " O

The product of two 3 X 3 matrices A = (a;), B = (b is a3 x 3 square
matrix defined as

ay ap s\ [bu bn by
AB = Gy On an b21 bzz bg

@ On Gu) \bu bn bu/ (2.3-11)
auby + apby + apbsy -

= {anby + anby + apby

ayby + anby + asnby

whose element in the ith row and jth column can be written, with the summation
convention, as

(A-B); = (aubs)) 23-12)
A vector u may be represented by a row matrix (), and Eq. (2.1-2) can be written
[u]? = (u)-(u)" = u + 4 + 1} = w (2.3-13)

By this rule, the scalar product of two vectorsu-v, Eq. (2.1-3), can be written
as

wev = () (V)" = wwy + vy + Vs = Wvs (2.3-14)

N STEEE
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The determinant of a square matrix is a number that is the sum of all the
products of the elements of the matrix, taken one from each row and one from
each column, and 1o two or more from any row or column, and with sign specified
by a rule given shortly. For example, the determinant of a3 X 3 matrix A is
written as det A and is defined as

ay Gz 4p

1l

Gy On G
Gy Gn On (2'3“15)

Gy 0nay + Gpdnls + 4l dn

det A = det ((l,'i)

l

= Gylndyp — Gplnlyn — Gpdnds

The special rule of signs is as follows: Arrange the first index in the order 1, 2, 3.
Then check the order of the second index. If they permute as 1,2, 3, 1, 2, 3,...,
then the sign is positive; otherwise the sign is negative.

Let us introduce a special symbol, €., called the permulation symbol and
defined by the equations

€ =€ T €33 T € T € T € T € T € T 7T 0,
€3 = €3 T &z & 1, (2.3"16)
€3 = €y < € T -1

In other words, €; vanishes whenever the values of any two indices coincide;

& = 1 when the subscripts permute as 1, 2, 3; and €;, = —1 otherwise. Then
the determinant of the matrix (a;;) can be written as
dCt (aii) = €r5ilr1l02s (2.3*-17)

Using the symbol €., we can write Eq. (2.1-8) defining the vector product u X
v.as

0 X V= €UV (2.3-18)

The e-5 Identity

The Kronecker delta and the permutation symbol are very important quantities
that will appear again and again in this book. They are connected by the identity

€€ist = OBy — 07D A (2.3-19)

This €-5 identity is used frequently enough to warrant special attention here. It can
be verified by actual trial.
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Differentiation

Finally, we shall extend the summation convention to differentiation formulas. Let
f(x1, % . . ., x,) be a function of n variables xi, X, . . . , x,. Then its differential
shall be written as

of

af of | of
- L+ oo 4 dy, = . 3220
df ™ dx, + o di, + o + Py dx, ax'_dx (2.3-20)

PROBLEMS

2.15 Write Eq. (2.2-1) or (2.2-3) in the index form. Let the components of F® be written
as F® k =1,2,3;ie., F, = R, etc.

Answer. 3 F? =0,

=1
2.16 Show that
(@) 8, =3
(b) 88, =3
(0) s = 6
(d) e 4,4, =0
(€) 8;8 = By
(®) Sy =0
2.17 Write Egs. (2.1-1) and (2.1-5) in the index form, e.g., u-v = uy,
Note. For Eq. (2.1-1), we may do the following: Define three unit vectors v = e,,
v® = g, ® = e; thenu = 1, -v?.
2.18 Use the index form of vector equations to solve Probs. 2.5 through 2.9.

2.19 The vector product of two vectors u = (i, i, u3) and v = (v,, v, ;) is the vector
w = u X v whose components are

Wy = Vs — Ugly, Wb = IV — UVs, W = Uy — LoV
Show that this can be shortened by writing
W = €y,

2.20 Express Eqgs. (2.1-7) in the index form.

2.21 Derive the vector identity connecting three arbitrary vectors A, B, C by the method
of vector analysis:

Ax (B xC)=(A-C)B - (A-B)C.
Solution. Since A x (B X C) is perpendicular to B X C, it must lic in the plane

of B and C. Hence, we may write A X (B X C) = aB + bC, where a, b are scalar quantities.
But A x (B x C) is a linear function of A, B, and C; hence, # must be a linear scalar
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. combination of A and C, and b must be a linear scalar combination of A and B. Accordingly,

a, b are proportional to A+C and A-B, respectively, and we may write
Ax(BxC=MACB + pnA-BIC

where \, p are pure numbers, independent of A, B, and C. We can, therefore, evaluate X,

i by special cases, e.g., if i, J, k are the unit vectors in the directions of the x-, y-, and

z-axes (a right-handed rectangular Cartesian coordinate system), respectively, we may put

B=iC=jA=itoshowthatp = ~1;andB = i,C =j, A = jtoshowthat\ =

1

2,22 Write the equation in Prob. 2.21 in the index form, and prove its validity by means
of the e-8 identity (2.3-19).

Note. Since the equation in Prob. 2.21 is valid for arbitrary vectors A, B, C, this
proof may be regarded as a proof of the e-d identity.

Solution. [A X (B X C)]: = Elmnam(B X C)n = elmnamen}kblck = enlmenikamb]ck'
By the e-b identity, Eq. (2.3-19), this becomes (8,8« — 8148 mg) 4,0, Hence, it i5 8,5a....b;
= BpllnbnCs = BuCaubr — a,b.0 = (A‘C) (B), - (A'B)(C),.

2.4 TRANSLATION AND ROTATION OF COORDINATES

Two-Dimensional Space

Consider two sets of rectangular Cartesian frames of reference O-xy and O'-x'y’
: on a plane. If the frame of reference O'-x'y" is obtained from O-xy by 2 shift of
| origin' without a change in orientation, then the transformation is a franslation. If
a point P has coordinates (x, y) and (x', ') with respect to the old and new frames
I of reference, respectively, and if the coordinates of the new origin O' are (£, k)
Z relative to O-xy, then

x=x+h X =x-h
or (2.4-1)

B y=y +k y=y-k

If the origin remains fixed, and the new axes are obtained by rotating Ox

k and Oy through an angle 6 in the counterclockwise direction, then the transfor-

; mation of axes is a rotation. Let P have coordinates (x, y), (x', ') relative to the
i old and new frames of reference, respectively. Then (see Fig. 2.2),

x=1x"cosf — ysinf (2.4-2)
x'sin 6 + y' cos 6.

]
1l

-
I

"=xcos f + ysinf (2.4-3)
* y = —xsinf + ycos 6.
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i
]
|
8 L 1 x Figure2.2 Rotation of
0 V] coordinates.

Using the index notion, we let xi, x, replace X, y and xi, x3 replace x', y'.
Then obviously, a rotation specified by Eq. (2.4-3) can be represented by the
equation

=Bz (=12 (2.4-4)
where B;; are elements of the square matrix
) = (B“ B) - (m? o 9)- @249
Ba Bz —sinf cos 6
The inverse transform of Eq. (2.4-4) is
x=0x, (=12) (2.4-6)

where, according to Eq. (2.4-2), B is the element in the jth row and ith column
of the matrix (B;;). It is clear that the matrix (;;) is the transpose of the matrix

(Bii): i'e-y

(6 = (Ba)" (24-7)
On the other hand, from the point of view of the solution of the set of simultaneous
linear equations (2.4-4), the matrix (B;) in Eq. (2.4-6) must be identified as the
inverse of the matrix (8y), i.e.,

(B) = (Ba) ™" (24-8)

Thus, we obtain a fundamental property of the transformation matrix (B;;) that
defines a rotation of rectangular Cartesian coordinates:

®)" = Ba)~" (249

A matrix (8,),i,j = 1,2, . . , n, that satisfies Eq. (2.4-9) is called an orthogonal

matrix. A transformation is said to be orthogonal if the associated matrix is orthog-

onal. The matrix of Eq. (2.4-5) defining a rotation of coordinates is orthogonal.
For an orthogonal matrix, we have

BB = BB = (i),
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- where §;; is the Kronecker delta. Hence,

Bie By = & (2.4-10)

To clarify the geometric meaning of this important equation, we rederive it directly
for the rotation transformation as follows. A unit vector issued from the origin
along the x;-axis has direction cosines By, B with respect to the x;-, xr-axes,
respectively. The fact that its length is unity is expressed by the equation

@)+ @) =1 (=12 (2.4-12)

The fact that a unit vector along the x; -axis is perpendicular to a unit vector along
the x!-axis if j # i is expressed by the equation

BBy + BB =0, (i # - (2.4-12)

Combining Eqgs. (2.4-11) and (2.4-12), we obtain Eq. (2.4-10).
Note: Alternatively, since we know what the @;/'s are from Eq. (2.4-5), we
can verify Eq. (2.4-10) by direct computation.

Three-Dimensional Space

Obviously, the preceding discussion can be extended to three dimensions without
much ado. The range of indices i, j can be extended to 1,2, 3. Thus, consider two
right-handed rectangular Cartesian coordinate systems x;, X3, X; and xi, Xz, X3, with
the same origin O. Let x denote the position vector of a point P with components
X1, X2, X3 OF X1, %3, %5. Let &, €, & be unit vectors in the directions of the positive
Xy, %z, ¥:-axes. They are called base vectors of the x;, Xp, X; coordinate system. Let
e}, e}, e} be the base vectors of the x!, x5, x} coordinate system. Note that since
the coordinates are orthogonal, we have

e =0, ee =0 (2.4-13)
In terms of the base vectors, the vector x may be eXpressed as follows:
| X = X = X €. (2.4-14)
A scalar product of both sides of Eq. (2.4-14) with e; gives
x(ere) = x/(ej-€). (2.4-15)
But
xi(ee) = 5, = x5
therefore,
x = (e -e)x]. (2.4-16)
Now, define » k

(e &) = Bis (2.4-17)
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then,
xr = Biix;! (] = 11 27 3) ) (24"18)
Next, dot both sides of Eq. (2.4-14) with e;. This gives
x;(e;ref) = xj(ef ).
But (¢/ ) = 5; and (¢;¢/) = By; therefore, we obtain
X = ﬁi}xj, (i =1,2, 3). (2.4—19)
Equations (2.4-18) and (2.4-19) are generalizations of Egs. (2.4-4) and
(2.4-6) to the three-dimensional case.
Equation (2.4-17) shows the geometric meaning of the coefficient f;;. That
Egs. (2.4-7) and (2.4-8) hold for i, j = 1, 2, 3 is clear because Eqgs. (2.4-18) and
(2.4-19) are inverse transformations of each other. Then, Egs. (2.4-9) and
(2.4-10) follow.

Now, the numbers x;, x;, x5 that represent the coordinates of the point P in
Fig. 2.3 are also the components of the radius vector A. A recognition of this fact

X3

X Tigure 2.3 Radius vector and
% coordinates.

gives us immediately the law of transformation of the components of a vector in
rectangular Cartesian coordinates:

A,’ = B,’in, A,' = B,‘,'A;, (24—20)

in which B;; represents the cosine of the angle between the axes Ox; and Ox;.

* Finally, let us point out that the three unit vectors along x1, x3, x5 form the
edges of a cube with volume 1. The volume of a parallelepiped having any three
vectors m, v, w as edges is given either by the triple product u-(v X w) or by its
negative; the sign is determined by whether the three vectors u, v, w, in this order,

 form a right-handed screw system or not. If they are right handed, then the volume

is equal to the determinant of their components:
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Uy Uy U

Volume = (u X v)'w = {¥; V2 Vi (2.4-21)
Wy Wp W

Let us assume that X, %, X and x!, x5, x} are tight handed. Then it is clear
that the determinant of B;; represents the volume of a unit cube and hence has the

value 1:
Bu Br Bos
|Bsl=[Ba Bn Bn| =1 (2.4-22)
Bu Bz Bs

PROBLEMS
2.23 Write out Eq. (2.4-10) in extenso, and interpret the geometric meaning of the six
resulting equations; [ = 1,2,3.
Solution. Let the index i stand for 1,2, 3.
» Ifi=1,j = 1: then B;fu + BuPn + Bubis = 1. )]
Ifi=1,j = 2:then BuBu + Bubxn + Bubs = 0. @

Fquation (1) means that the length of the vector (By;, Bry B.) is 1. Equation (2) means that

the vectors (By, Bas Bis)s (Bas Bz Bu? are orthogonal to each other.
Other combinations of i, J are similar.

2.24 Derive Eq. (2.4-10) by the following alternative procedure. Differentiate both sides
of Eq. (2.4-4) with respect t0 %;. Then use Eq. (2.4-6) and the fact that ox/dx; = o
to simplify the results.

Solution. Differentiating Eq. (2.4-4) with respect to x!, we obtain 8; = Budx/
ax). But x; = Bx. On changing the index i to k and differentiating, we have ax,/ax] =

B;.. Combining these results yields 8; = BuBj

25 COORDINATE TRANSFORMATION IN GENERAL

A set of independent variables xi, Xa, %3 specifies the coordinates of a point in a
frame of reference. A set of equations

E‘ = fl'(xh Xy X3), (l = 1) 27 3) (2.5'—1)

describes a transformation from Xy, X, X; to a set of new variables ¥, %, %;. The
inverse transformation

X = g,'(:\f—l, 3’.:2, f;;), (l = 1, 2, 3) (2.5'—2)
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proceeds in the reverse direction. In order to ensure that such a reversible trans-
formation exists and is in one-to-one correspondence in a certain region R of the
variables (x;, x,, x;)—1.€., in order that each set of numbers (%;, %,, %,) defines a
umque set of numbers (xl, X2, %), for (x1, Xz, x3) in the region R, and vice versa—
it is sufficient that

(1) The functions f; are single valued, are continuous, and possess continuous
first partial derivatives in the region R.

(2) The Jacobian determinant J = det(6%:/6x;) does not vanish at any point
of the region R. That is,

Xy (?xz 9x;
ax,) X, 0% 0%

=22 =2 2y 253
0x1 0x; 0Xx3 ( )

le 09X, 8x3

Coordinate transformations with the properties 1 and 2 are called admissible
transformations. If the Jacobian is positive everywhere, then a right-hand set of
coordinates is transformed into another right-hand set, and the transformation is
said to be proper. If the Jacobian is negative everywhere, a right-hand set of
coordinates is transformed into a left-hand one, and the transformation is said to
be improper. In this book, we shall tacitly assume that our iransformations are
admissible and proper.

Significance of the Jacobian Determinant

To appreciate the significance of the Jacobian determinant, let us assume that we
have found that (x}, x3, x3) corresponds to (%9, X3, X3), i.e., they satisfy Eq.
(2.5-1), and ask whether we can find an inverse transformation in a small neighbor-
hood of this point. We differentiate Eq. (2.5-1) to obtain

df(- = gfidx, (l = 1, 2, 3) (2.5"4)
ax,-

and evaluate the partial derivatives dfi/dx; at the point (x§, 1§, x3). The Eq.

(2.5-4) defines a linear transformation of the vector dx; to a vector d¥;. If we solve

the set of linear equations (2.5-4) for dx;, we know that the solution exists only if

the determinant of the coefficients does not vanish:

det (aa—f) # 0. (2.5-5)

X
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“Thus, an inverse exists in- the-neighborhood.of.(xf, x3, x3) only if Eq. (2.5-3) is
valid. Further, when J # 0, Eq. (2.5-4) can be solved to obtain

dx; = Ciidjfi (25—6) ’

where ¢;; are constants. Hence, a small neighborhood of the known point, an inverse
transformation [an approximation of Eq. (2.5-2)] can be found in a small neigh-
borhood of the known point. Thus, conditions 1 and 2 stated earlier are sufficient
conditions for the existence of an inverse in a small region around the known point.
By repeated application of this argument to new known points away from the initial
known point, one can extend and find the region R in which a one-to-one inverse
transformation given by Eq. (2.5-2) exists.

PROBLEM

225 (a) Review the methods of solving linear simultaneous equations. One of the methods
uses determinants. Use that method to solve Eq. (2.5-4) for dx,, dx,, dx,. Use the
permutation symbol €., defined in Eq. (2.3-16), to express the final result.

(b) R is a region in and on a circle of unit radius on a plane. The equation of the circle
is r = 1in polar coordinates and x* + y* = 1 in rectangular Cartesian coordinates.
Show that.the Jacobian J is equal to r and that the area of the circle is

Jf Jdrd6=jf dx dy,

R R

; ) or

! o VIR

: f[ rdrd0=ff dx dy.
oo [N

Here, an integration of the Jacobian multiplied by the product of the differentials
dr d9 gives the area.

2.6 ANALYTICAL DEFINITIONS OF SCALARS, VECTORS,
AND CARTESIAN TENSORS

Let (x1, Xz, %) and (%, %, %) be two fixed sets of rectangular Cartesian frames of
reference related by the transformation law

Z; = B;,-xi (26—1)

where B; is the direction cosine of the angle between unit vectors along the coor-
dinate axes X; and x;. Thus,

Bu = cos(®, x1), (2.6-2)
: and so forth. The inverse transform is
é 5= Bk : (2.6-3)

H [ U JRRRE.
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A system of quantities is called a scalar, a vector, or a tensor, depending upon
how the components of the system are defined in the variables x,, x,, x; and how
they are transformed when the variables x;, x», x5 are changed to ¥, %, Xs.

A system is called a scalar if it has only a single component & in the variables
x; and a single component @ in the variables ¥; and if ® and @ are numerically
equal at the corresponding points,

@(xl, Xz, x3) = 6(:{1, i:z, f:;) (2.6“4)

A system is called a vector field or a tensor field of rank 1 if it has three

components &; in the variables x; and three components £; in the variables ¥; and
if the components are Telated by the characteristic law

Ei(fu X, fx) = €k(x1, Xy xs) Bixs (2‘6—5)
£i(ny, X2, X3) = & (%, o, %) Bre

Generalizing these definitions to a system that has nine components when {
and j range over 1, 2, 3, we define a tensor field of rank 2 if it is a system that has
nine components #; in the variables x1, x,, x3 and nine components #; in the variables
%, %, % and if the components are related by the characteristic law

i.‘i(fl, X, 23) = bn (xl, X2, X3) BimBim (26~6)
tii(x17 X2 x3) = inm(fl, fz, f3) B"’iBlli'

Further generalization to tensor fields of higher ranks is immediate. These
definitions can obviously be modified to two dimensions if the indices range over
1, 2, or to n dimensions if the range of the indices is 1, 2, . . ., n. Since our
definitions are based on transformations from one rectangular Cartesian frame of
reference to another, the systems so defined are called Cartesian tensors. For
simplicity, only Cartesian tensor equations will be used in this book.

Elaboration on Why Vectors and Tensors Are Defined
in This Manner

The analytical definition of vectors is designed to follow the idea of a radius vector.
We all know that the radius vector, a vector joining the origin (0, 0, 0) to a point
(%1, %2, x;), embodies our idea of a vector and expresses it numerically in terms of
the components (x; -0, x,—0, x—0), i.e., (1, X2, x5). When this vector is viewed
from another frame of reference, the components referred to the new frame can
be computed from the old according to Eq. (2.6-1), which is the law of transfor-
mation of the components of a radius vector. Our generalization of Eq.
(2.6-1) into Eq. (2.6-5), which defines all vectors, is equivalent to saying that we
can call an entity a vector if it behaves like a radius vector, namely, if it has a fixed
direction and a fixed magnitude.

These remarks are intended to differentiate a matrix from a vector. We can
list the components of a vector in the form of a column matrix; but not all column
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matrices are vectors. For example, to identify myself, I can li§t my age, social
security number, street address, and zip cod.e ina f:olumq matrix. What can you
say about this matrix? Nothing very interesting! It is certamly. n'o't a ve:ctor..

The mathematical steps we took in generalizing the definition given In _Eq.
(2.6-5) for a vector to Eq. (2.6-6) for a tensor are natural enough. These equations
are so similar that if we call a vector a tensor of rank 1,. we cannot help but call
the others tensors of rank 2 or 3, etc. What is the physxf:al 51gn}ﬁcz§nce of tt}ese
higher order tensors? The most effective way to answer this question 1§ to consider
some concrete examples, such as the stress tqnsgr. However, before we turn our
attention to specific examples to discuss the significance of tensor equations, con-

sider the following problems:

PROBLEWMS

2.26 Show that, if all components of a Cartesian tensor vanish in one coordinate systern, then
they vanish in all other Cartesian coordinate systems. This is perhaps the most important

property of tensor fields.

Proof. The property follows immediately frqm Eq. (246~6)“ ?f. every cgmponent of
1,.» vanishes, then the right-hand side vanishes and t; = Oforall i, j.

9,27 Prove the following theorem: The sum or difference of two Cartesx:an tensors of the
same rank is again a tensor of the same rank. Thus, any linear combination of tensors

of the same rank is again a tensor of the same rank.
Proof. Let Ay, By be two tensors. Under the coordinate transformation given by
Eg. (2.6-1), we have the new components
Ay = AnBiubim By = BuaBinBn
Adding or subtracting, we obtain

A, + By = BiaBulAm = Bu)

and the theorem is proved. .
2.28 Prove the following theorem: Lef Au,.. o Bay.. oy be tensors. Then the equation

An. oo X o2 Xa) = ;I S S A

is a tensor equation; i.e., if this equation is true in one Cartesian coordinate system, then it
is true in all Cartesian coordinate systems.

Proof. Multiplying both sides of the equation by

Bi°1 Bi«z. o Bk“r
and summing over the repeated indices vields the equation
Zil..‘k(fls Yo oo o fn) = _B‘u..‘k(fn oy ooy En)-

Alternatively, write the equation as A — B = 0. Then every component of A — B vanishes.
Then apply the results of Probs. 2.27 and 2.26, in turn.
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2.7 THE SIGNIFICANCE OF TENSOR EQUATIONS

The theorems stated in the problems at the end of the previous section contain the
most important property of tensor fields: If all the components of a tensor field
vanish in one coordinate system, they vanish likewise in all coordinate systems that
can be obtained by admissible transformations. Since the sum and difference of
tensor fields of a given type are tensors of the same type, we deduce that if a tensor
equation can be established .in one coordinate system, then it must hold for all
coordinate systems obtained by admissible transformations.

Thus, the importance of tensor analysis may be summarized by the following
statement: The form of an equation can have general validity with respect to any
frame of reference only if every term in the equation has the same tensor char-
acteristics. If this condition is not satisfied, a simple change of the system of
reference will destroy the form of the relationship, and the form would, therefore,
be merely fortuitous. '

We see that tensor analysis is as important as dimensional analysis in any
formulation of physical relations. In dimensional analysis, we study the changes a
physical quantity undergoes with particular choices of fundamental units. Two
physical quantities cannot be equal unless they have the same dimensions. An
equation describing a physical relation cannot be correct unless it is invariant with
respect to a change of fundamental units.

Because of the design of the tensor transformation laws, the tensorial equa-
tions are in harmony with physics.

2.8 NOTATIONS FOR VECTORS AND TENSORS: BOLDFACE
OR INDICES? '

In continuum mechanics we are concerned with vectors describing displacements,
velocities, forces, etc., and with tensors describing stress, strain, constitutive equa-
tions, etc. For vectors, the usual notation of boldface letters or an arrow, such as
u or 1, is agreeable to all; but for tensors, there are differences of opinion. A
tensor of rank 2 may be printed as a boldface letter or with a double arrog) or with

a pair of braces. Thus, if T'is a tensor of rank 2, it may be printed as T, T or {T}.
The first notation is the simplest, but then you have to remember what the symbol
represents; it may be a vector or it may be a tensor. The other notations are
cumbersome. More important objections to the simple notation arise when several
vectors and tensors are associated together. In vector analysis, we have to distin-
guish scalar products from vector products. How about tensors? Shall we define
many kinds of tensor products? We have to, because there is a variety of ways
tensors can be associated. The matter becomes complicated. For this reason, in
most theoretical works that require extensive use of tensors, an index notation is
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used. In this-notation, vectors and tensors are resolved into their components with
respect to a frame of reference and denoted by sympols such as u;, u;;, etc. These
components are real numbers. Mathematical operations on then_x follow the usual
rules of arithmetic. No special rules of combination need to b'e mtrosiqced. Thus,
we gain a measure of simplicity. Furthermore, the index notation exhibits the rank
and the range of a tensor clearly. It displays the role of the frame of reference
explicitly. . .

The last-mentioned advantage of the index notation, however, is also a weak-
ness: It draws the attention of the reader away from the physical entity. Hence,
one has to be adaptive and familiarize oneself with both systems.

2.9 QUOTIENT RULE

Consider a set of 7 functions A(1, 1, 1), A(1, 1,2), A1, 2, 3), etc., or A, j, k)
for short, with each of the indices i, j, k ranging over 1,2, .. . , 1. Although the
set of functions A(i, j, k) has the right number of components, we do not know
whether it is a tensor. Now suppose we know something.about the nature of the
product of A(Z, J, k) with an arbitrary tensor. Then there is a method that enables
us to establish whether A(f, j, k) is a tensor without going to the trouble of deter-

‘mining the law of transformation directly. N
Igor example, let £(x) be a vector. Let us suppose that the product A(, j, k)&
(summation convention used over i) is known to yield a tensor of the type Aplx),

ie.,
A, j, k)& = Ape (2.9-1)

Then we can prove that A(i, j, k) is a tensor of the type A,~,-,,(x).. '
The proof is very simple. Since A(i, J, K)&is of the type Ay, it is transformed

into ¥-coordinates as
Z(ls j1 k)-ét = Zik = BierxAr.v = B,‘rﬁk;[A(m, r, S)g,,.]. (2.9*2)

But £, = Bint Inserting this in the right-hand side of Eq. (2.9-2) and transposing
all terms to one side of the equation, we obtain

[AG,j, k) = BirBesBimA(m, 7, $)JE = 0. (2.9-3)

Now £; is an arbitrary vector. Hence, the quantity within the brackets must vanish,
and we have .

A, j, k) = BinBirBrsA(m, 1,5), (2.9-9)

which is precisely the law of transformation of the tensor of ?he type {4.-,-,(.
The pattern of the preceding example can be generalized to higher order

tensors.
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2.10 PARTIAL DERIVATIVES
When only Cartesian coordinates are considered, the partial derivatives of any tensor

field behave like the components of a Cartesian tensor. To show this, let us consider
two sets of Cartesian coordinates (%, Xz, Xs) and (%, %, %) related by

%= By + (2.10-1)
where B;; and o, are constants.
Now, if &:(x1, X2, %3 is a tensor, s0 that
Ei(fh %o, %) = Exly, %2 X3) Bk, (2.10-2)
then, on differentiating both sides of this equation, one obtains
g‘% = m%:%% = BikBjm gi—: (2.10-3)

which verifies the statement.
It is a common practice to use a comma to denote partial differentiation. Thus,

ij s i axi, ik = axk,

When we restrict ourselves to Cartesian coordinates, ® ;, £; ;, and ;. are tensors
of rank 1, 2, and 3, respectively, provided that ®, £, and o; are tensors.

PROBLEMS

2.29 In any tensor Aye..m equating two indices and summing over that index is called a
contraction. Thus, for a tensor A, a contraction over i and j(i,j = 1,2, 3) results
in a veetor Ay = A + Ani + Asy Prove that the contraction of any two indices
in a Cartesian tensor of rank » results in a tensor of rank n ~ 2.

Solution. The only significant part of the statement is that the result of contraction
is a tensor. Let Ay, e a tensor of rank 7. Then A, has only (n — 2) indices. To show
that it is a tensor, consider the definition

Ziik...n = Ac;nzu;...u,,Blu; Bithk«x; N Bnc,,'
A contraction over i and j yields

Zlik...n = A @]a303..8n Bla, Blnz Bka; o Bnun'
But we know from Eq. (2.4-10) that

Blulﬂluz = Sn,az.

. Hence,
Augon = Aumq...a,,samﬁku;‘ * 'Bnun
= Au]n,n;.un,,Bkng. " Bna,l'
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Ths, A uyages..e, O0CYS the transformation law for a tensor of rank (n — 2), and we have
proved the statement. )
230 A, isa Cartesian tensor of rank 2, show that Ay is a scalar.
Solution. From Prob. 2.29, A;;isa tensor of rank 0 and hence is scalar. More directly,
we have
Z,, = ApaBinBin

Ay = AuBinBin = SunAun = Ao

which obeys the definition of 2 scatar, Eq. (2.6-4).

2.31 Use the index notation and summation convention to prove the following relations
(see the table of notations below):
(@uxv=-¥XU
(b) 6 xH@mx v) = (su)(t-v) - (s+v){t-u)

(c) curf curl v = grad div v — Av

Example of solution.
9

(c) curl curl v = e,,k&—i €4im %‘;—;
v,
= Eizkﬁimkm
p
= (Bilsjm - aimail) 6_:335‘:5—1
v _ B 1(9_) _ _a.(z.)
T aex, ardyy  ax\oxl 8% \0%

=V(Vv) - VW= grad divv — Av.

2.32 Let r be the radius vector of a typical point in a field and r be the magnitude of r.
Prove that, with the notations defined in the following table,

Vector Notation Index Notation Rank of Tensor
; 1
v (vector) Vi .
» = uwv (dot, scalar, or inner product) A= WY
w=nuxy (cross or vector product) W = EpliVi 1
grad § = Vo (gradient of scalar field) 3 1
ax;
grad v = V¥ (vector gradient) av, 2
ox;
divv=V-v (divergence) av; 0
ax;
culv =V XV {curl) . vy 1
ik
ax; ,
Vy = V-V = Av (Laplacian) K (%) _ o 1
ax \ox  Oxidx;
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(a) div (r'e) = (n + 3)r"
(b) curl "1) = 0
() AGY) = n(n + L

Example of solution.
(a) Let the components of rbe x; (i = 1, 2, 3).

. ax;
divr=Vior=—=
ox;
Gepn G X
iXiy ax, iy “ax,' r
d ax; ar"
v =V =—0%)=r—+x—
iv ('T) (r'r) ax,( ) R

ar
=3"+n (nr"“ 5;) = 3"+ rxx = (0 + 3

2.33 A matrix-valued quantity a;(i, j = 1, 2, 3) is given as follows: _

ay Oy G 110
Gy Op Oz =11-2.2
aQy an 4y 023

What are the values of (a) a;;, (b) a,a;, (¢) aya;, wheni = 1;k = 1andi = 1; and
k=2

Answer. 6,24,2,3.

2.34 Itis well known that rigid-body rotation is noncommutative. For example, take a book,
and fix a frame of reference with x-, y-, z-axes directed along the edges of the book.
First rotate the book 90° about y; then rotate it 90° about z. We obtain a certain
configuration. But a reversal of the order of rotation yields a different result.

The rotation of coordinates is also noncommutative; i.e., the transformation
matrices (B, are noncommutative. Demonstrate this in a special case that is analogous
to the rigid-body rotation of the book just considered. First transform x, y, z to x,
y', z' by a rotation of 90° about the y-axis. Then transform x', y', z' to 2", y", 2" by a
90° rotation about z'. Thus,

x 0 0 I\/x b 0 1 0\/x
yi=10 10yl yi=1-10 0}y
z' -1 0 0/\z 2z 0 0 1\

Derive the transformation matrix from x, y, z to x", y", 2". Now, reverse the order of
fotation. Show that a different result is obtained.

2.35 Infinitesimal rotations, however, are commutative. Demonstrate this by considering
an infinitesimal rotation by an angle 6 about y, followed by another infinitesimal
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; rotation U about z. Compare the results with the case in which the order of rotations
is reversed.

2.36 Express the following set of equations in a single equation using index notation:

1 _ 1 + v
€ T ’E.[ o= V(o Tt 0.} &= E Ty
1 _ 1+ 'UO-
€y = E oy — G o)l 6= E 7"
1+

€. & %[Ux: - V(U'u + ny)]: € & E (P
2.37 Write out in'longhand, in unabridged form, the following equation:

' 1 _
Gl + 1 _2vuk.ke +Xi=p Py
Let
x1=x,xz=y,X3=Z; u‘=u,uz=v,u3=w.

2.38 Show that €0 = 0, where €, is the permutation symbol and o7 is a symmetric

tensor, i.e., 0 = Tk .

i i hysics in tensor notation, using the indicial
39 Write down a full set of basic laws of phy : tion
2 systemn. Take 2 good physics book and go through it from beginning to end.




STRESS

In Chapter 1 we introduced the concept of stress. In Chapter 2 we defined

and analyzed the Cartesian tensors. In this chapter we discuss the properties
" of the stress tensor.

3.1 NOTATIONS OF STRESS

The concept of stress has been discussed in Sec. 1.6. Consider a continuum in a
rectangular parallelepiped, as shown in Fig. 3.1. Let a rectangular Cartesian frame

T33
T32
T3 T3
i3
T

I L] 22

i

2| %

) T

Xz

Figure 3.1 Notations of stress

g components.

of reference with coordinate axes x;, X, x5 parallel to the edges of the parallelepiped
be used. Let the surface AS, be a surface of the parallelepiped with an outer normal
vector pointing in the Qositive direction of the xl-laxisl. L(lit the stress vector acting

on AS; be denoted by T, with three components T}, T,, T in the directions of the

coordinate axes x;, x,, X3, respectively. In this special case, we introduce a new set
of symbols for these stress components:

1 1 1
Ti=m,To= 1, Ty = ms.

(3.1-1)

) 65
Sec. 3.1 Notations of Stress
Similarly, let AS; be the surface with an outer, normal pointing in the din'actmn
of the x, axis. The stress vector acting on AS,, T, has three components 1n the
directior;s of x,, Xa, X5 These stress components shall be denoted by

(3.1-2)

2 2 2
T, = T, T, = T, T; = .

The situation is similar for AS;. If we arrange the components of jthe stresses, Or
tractions, acting on the three surfaces in a square matrix, we obtain

Components of
Stresses
1 2 3

Surface normaltox; T Tz T
Surface normaltox, Tu T T
Surface normaltoxs T T2 ™

(3.13)

This is illustrated in Fig. 3.1. The components Ty, Tz, Ts3 ar¢ called normal stre‘;fes,
and the remaining components Tp, Tis, etc., are called shealcl }vz;:v;ves. Each of these
i i er unit area, or .
components has the dimension of force p LT*. ‘
pA great diversity in notations for stress components exists in the literature.
The mo‘st widely used notations in American literature are, In reference to a system

of rectangular Cartesian coordinates x, ¥, Z,

Ox Txy Txz

Te Oy Tz (3.1-4)
Ty Ty O
or
Orx Oy Oz
G Oy Oy (3.1-5)

O-ZI Uzy 0':2

~n n .
Love* writes X, Y, for o, and 7,,, and Todhun.ter afld Pear'son* use xx, x);].alsllr;ii
the reader is likely to encounter all thc?se notations in the literature, twebi al not
insist on uniformity and would use whichever notation that happens to
i d be no confusion.
mem'l;rik;ei;cl;gftilt to emphasize again that a stress will alvygxys bf:duncife;stscil(;gazc;
be the force (per unit area) that j[he part lying on the posxtx\;, si et 1;)3 e
element (the side on the positive side of the outer normal) exel s ont Oigts g
on the negative side. Thus, if the outer normal of a surface element p

*A. E. H. Love. A Treatise on the Mathematical Theory of Elasticity. Cambridge: University

. 4th ed. 1927. N
pres };t C’I(‘i(;:lillﬁizer an; K. Pearson. A History of the Theory of Elasticity and of the Strength of

Materials. Cambridge: University Press. Vol. 1, 1886. Vol. 2, 1893.
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positive direction of the x-axis and 5, is positive, the vector representing the
component of normal stress acting on the surface element will point in the positive
xp-direction. But if 7, is positive while the outer normal points in the negative x,-
axis direction, then the stress vector acting on the element also points to the negative
xg-axis direction. (See Fig. 3.2).

T33

\,
\
o

T
T — 22

S

Top—tf=mmmr 1
i
i

.
o3 - 7 T3
)

P
X3 T33
*z
Figure 3.2 Directions of positive
£ stress components.

Similarly, positive values of 7, 7,3 will imply shearing stress vectors pointing
to the positive x,-, x;-axes if the outer normal agrees in sense with x,-axis, whereas
the stress vectors point to the negative x;-, x;-directions if the outer normal disagrees
in sense with the x,-axis, as illustrated in Fig. 3.2. A careful study of the figure is
essential. Naturally, these rules agree with the usual notation of tension, compres-
sion, and shear.

3.2 THE LAWS OF MOTION

Continuum mechanics is founded on Newton’s laws of motion. Let the coordinate
system X, X, x; be a rectangular Cartesian inertial frame of reference. Let the
space occupied by a material body at any time ¢ be denoted by B(¢). See Fig. 3.3.
Let r be the position vector of a point with respect to the origin of the coordinate
system. Now, consider an infinitesimal element of volume dv enclosing the point
atr. Let p be the density of the material, and V be the velocity at r. Then the mass
of the infinitesimal element is p dv, and the linear momentum is (p dv) V. An
integration of the momentum over the domain B(Y), i.e.,

®=| Vpdv (3.2-1)

B{i)

is the linear momentum of the body in the configuration B(f). The integral of the
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X

K Figure 3.3 Body forces.
moment of momentum of the element about the origin, ¥ X V p dv, over the
domain B(), i.e.,

* = j rXVpdv (3.2-2)
Bl1)

is the moment of momentum of the body. Newtor’s laws, as stated l?y Euler for a
continuum, assert that the rate of change of the linear momentum is gqual fo the
total applied force ¥ acting on the body, i.e.,

P =9, (3.2-3)
and that the rate of change of moment of momentum is equal to the total applied
torque & about the origin, i.e.,

%= . (3.2-4)

It is easy to verify that if Eq. (3.2-3) holds, then .when Eq. (3.24) is valid for one
choice of origin, it is valid for all choices of origin.” .

As we have mentioned before, there are two types of external forces acting
on material bodies in the mechanics of continuous media:

(1) Body forces, acting on elements of volume of the body.

(2) Surface forces, or stresses, acting on surface elements. ‘

Examples of body forces are gravitational forces anq electromagnetic forces.
Examples of surface forces are aerodynamic pressure acting on a body and stress
due to mechanical contact between two bodies, or between one part of a body on
anOth% specify a body force, we consider a vo!ume bounded by an arbitrfiry surface
S (Pig. 3.3). The resultant force vector contnbutgd by the body force is assumed

“The derivatives % and % tefef to the time rate of change of @ and ¥ of a fixed set of material
particles. Later we shall denote them by DPIDt and DD, respectively. (See Sec. 10.3.)
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to be representable in the form of a volume integral taken over the domain B
enclosed in S, viz.,
[ X dv.
B

The vector X, with three components Xj, X, X;, all of the dimensions of force
per unit volume, i.e., M(LT)™% is called the body force per unit volume. For
example, in a gravitational field,

Xi = pgi

where g; are components of a gravitational acceleration field and p is the density
(mass per unit volume) of the material.

The surface force acting on an imagined surface in the interior of a body is
the stress vector conceived in Euler and Cauchy’s stress principle. The surface force
acting on an external surface of a body can also be expressed in terms of a stress
vector. According to this concept, the total force acting upon the material occupying
the region B interior to a closed surface § is

@=£%ﬁ+hxw, (3.2-5)

where T is the stress vector acting on dS whose outer normal vector is v. Similarly,
the torque about the origin is given by the expression

$=§rxi¢+frxxw. (3.2-6)
3 B

Combining these equations, we have the equations of motion,

v D
jgsTdS+Lde=ELVpdv, A (3.2-7)

v D
Sgsr X TdS+LrXde=ELr XVpdv. A (32-8)

No demand was made on the domain B(f) other than that it must consist of
the same material particles at all times. No special rule was made about the choice
of the particles, other than that of continuity, i.e., that they form a continuum.
Equations (3.2-7) and (3.2-8) are applicable to any material bodies. They can be
applied to an ocean, but they are also applicable to a spoonful of water. The
boundary surface of B(f) may coincide with the external boundary of an elastic
solid, but it may also include only a small portion thereof. '
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3.3 CAUCHY'S FORMULA

From the equations of motion, we shall first derive a simple resglt which states
that the stress vecior TU) representing the action of material exterior to a surface
element on the interior is equal in magnitude and opposite in directiozf to the stress
vector T representing the action of the interior material on the exterior across the

same surface element:

TG = ~T, A (33-1)

To prove this, we consider 2 small “pillbox” with two parallel surfa_ces of area AS
and thickness 8, as shown in Fig. 3.4. When 8 shrinks to zero, vyhlle AS remains
small but finite, the volume forces and the linear momentum and its rate of change

Tt4) S

A

Figure 3.4 Equilibrium of 2
T+ “pillbox” across a surface S.

with time vanish, as does the contribution of surface forces on the sides of the
pillbox. The equation of motion (3.2-3) implies, therefore, that for small AS,

TMAS + T AS = 0.

Equation (3.3-1) then follows. A ' '
Another way of stating this result is to say that the stress vector is a function

of the normal vector to a surface. When the sense of direction of the normal vector

reverses, that of the stress vector 1EVerses also. .
Now we shall show that knowing the componenis T, we can write down at
once the stress vector acting on any surface with unit outer vnormal vector v whovse

components are vy, vz, Vs. This stress vector is denoted by T, with components Ty,
’jl"z, i given by Cauchy’s formula:
5‘,‘ = VYjTji. A (33—2)

Cauchy’s formula can be derived in several ways. We shall give an elementary

derivation. ol
Let us consider an infinitesimal tetrahedron formed by three surfaces paralie

to the coordinate planes and one normal to the unit vector v. (See Fig. 3.5.) Let




S
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X3

Figure 3.5 Surface tractions on a
tetrahedron.

the area of the surface normal to v be dS. Then the areas of the other three surfaces
are

ds, = dS cos (v, x;)
= v, dS = area of surface parallel to the x,x;-plane,
dS, = v, dS = area of surface-parallel to the X:x-plane,

dSs = v, dS = area of surface parallel to the x,x,-plane,

and the volume of the tetrahedron is
dv = 3 hdS,

where # is the height of the vertex P from the base dS. The forces in the positive
direction of x,, acting on the three coordinate surfaces, can be written as
(—1'21 + Ez)dSz, L

(‘—Tn + El)dsl, (_'731 + €3)d83,

where Ty;, Ta1, T3 are the stresses at the vertex P opposite to dS. The negative sign
is obtained because the outer normals to the three surfaces are opposite in sense
with respect to the coordinate axes, and the €’s are inserted because the tractions
act at points slightly different from P. If we assume that the stress field is continuous,
then €, €, € are infinitesimal quantities.VOn the other hand, the force acting on
the triangle normal to v has a component (T, + €)dS in the positive x,-axis direction,
the body force has an x,-component equal to (X; + ¢')dv, and the rate of change
of linear momentum has a component pV, dv, where V; is the component of

R
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acceleration in the direction of x,. Here, Ti and X; refer to the point P, and €
and €' are again infinitesimal. The first equation of motion is thus

(=7 + e)n dS + (= + e dS

F(otn + s dS + (T + 9dS + (X + )shdS = pVi3hdS. (333)

Dividing through by 45, taking the limit as h— 0, and noting that €, &, €, €, €'
vanish with 4 and dS, one obtains

Ty = vy + Tz T Tay, (3.3-4)

which is the first component of Eq. (3.3-2). Other components follow similarly.

Cauchy's formula assures us that the nine components of stresses T; are nec-
essary and sufficient to define the traction across any surface element in a body.
Hence, the stress state in a body is characterized completely by the set of quantities
Tyj. Since T, is a vector and Eq. (3.3-2) is valid for an arbitrary vector v, it follows
that =, is a tensor. Henceforth, ; will be called a siress tensor.

Checking Acceptable Errors

In Sec. 1.5, we defined continua on the basis of acceptable variability and a limiting
approach that has a lower bound of dimensions. In Sec. 1.6, the concept was applied
to the definition of stress. In Section 1.7, we adopted an abstract copy of the real
material as a way of idealization. In the proof of Cauchy’s formula, Eq. (3.3-4),
we have used the abstract copy and followed the usual method of calculus to throw
away a number of terms in Eq. (3.3-3) and reach Eq. (3.3-4). We claimed that
the sum of the terms

ey + es + evs + € + 3h(e = pVi) (3.3-5)
is small, compared with the terms that are retained; i.e.,
Ty, TuV1, Vaibz, Tabs, (3.3-6)

when we take Eq: (3.3-3) to the limit as i~ 0 and AS — 0. Now, if we are not
allowed to take the limit as & — 0 and AS — 0, but instead we are restricted to
accept h no smaller than a constant 1* and AS no smaller than a constant multiplied
by (1*)?, then the quantity listed in line (3.3-5) must be evaluated for h = h* and
AS = const.-(k*)* and must be compared with the quantities listed in line (3.3-6).
A standard of how small is negligible must be defined, and the comparison be
made under that definition. If we find the quantity in line (3.3-5) negligible com-
pared with those listed in line (3.3-6), then we can say that Eq. (3.33) or Eq.
(3.3-2) is valid. This tedious step should be done, in principle, to apply the con-
tinuum theory to objects of the real world.
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3.4 EQUATIONS OF EQUILIBRIUM

We shall now transform the equations of motion, Eqs. (3.2-7) and (3.2-8), into
differential equations. This can be done elegantly by means of Gauss’s theorem
and Cauchy’s formula, as is shown in Chapter 10, but here we shall pursue an
elementary course to assure physical clarity.

Consider the static equilibrium state of an infinitesimal parallelepiped with
surfaces parallel to the coordinate planes. The stresses acting on the various surfaces
are shown in Fig. 3.6. The force 7, dx dx, acts on the left-hand side, the force
[T + (@mu/ox) dx;] dx, dx; acts on the right-hand side, etc. As it will be explained
below, these expressions are based on the assumnption of continuity of the stresses.
The body force is X dx, dx; dxs.

51'22
722+ ﬁX‘a_dxz

afa
iy g;;dxz
T +923-dx
23 ax 2 ,‘
) iy
Otz
/T|g+ ax1 dX1
X L 6r”
>1 L T“+ 'ax—i"dﬂ
dx TTTTTTOY
2 |7 T23 dris
T3t Bx1 dxi
dX3
— X,
X3 1
P

Figure 3.6 Equilibrating stress components on an
infinitesimal parallelepiped.

The stresses indicated in the figure may be explained as follows. We are
concerned with a nonuniform stress field. Every stress component is a function of
position. Thus, the stress component 7y i§ a function of x;, Xz, X3t Tu(¥1, X2, X3)-
At a point slightly to the right of the point (xi, %, ¥3), namely, at (x1 + dxs, Xz,
xs), the value of the stress Tu is Tu(n + dxi, X2, %2). But if T is a continuously
differentiable function of x;, X, X3, then, according to Taylor’s theorem with a
remainder, we have

ot
(X + dxy, X, X)) = 71, X2, X)) + dx —ézll (21, X2, X3)
1

1 821'11

+ dx%'z‘-’—(xl + o dxy, X, ¥3)

0x1
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where0=a=11 9r/oxt is finite, then the last term can be made arl?itrarily
small compared with the other terms by choosing dx: sufficiently small. With such

a choice, we have
aT” ) d
m( + dr, X2 %) = Tl X X)) + o (1, %2, X3)dx1.
1

In Fig. 3.6 we write, for short, 7y and T + (8myy/9x1)dx, on the surfaces where
the stresses act. The left, bottom, and rear surfaces are located at xy, Xs, X3. The

edges of the element have lengths dxi, dxz, dxs. o

All stresses and their derivatives are evaluated at (1, X2, X3)- Eqml{bnum of
the body demands that the resultant forces vanish. Consider the forces in the x;-
direction. As shown in Fig. 3.7, we have six components of surface force and one

component of body force. The sum is

a;
T + ?E_l_i‘ dxl) dx;)_ dX3 - ‘Tndxz dx3 + (Tz; + = dx;) dX3 dx‘
Bx; ax2

0
— oy s dxy + T T "deg dx; dx;
X3

- T3i dxl dXZ + X1 dxl dxg dx; ={. (34"‘1)

X3

Figure 3.7 Components of tractions in x,-direction.

Dividing by dx: dx, dxs, we obtain
AL L S A ) (3.42)
ax; axs axs
A cyclic permutation of the indices leads to similar equations of equilibrium of
forces in the x,- and x;-directions. The whole set, written concisely, 18

Iy =0 A (343)

Bx,-
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This is an important result. A shorter derivation will be given later, in Sec. 10.6.

The equilibrium of an element requires also that the resultant moment vanish.
If there do not exist external moments proportional to a volume, the consideration
of moments will lead to the important conclusion that the stress tensor is symmeiric,
ie.,

A (3449
This is demonstrated as follows. Referring to Fig. 3.6 and considering the moment

of all the forces about the x;-axis, we see that those components of forces parallel
to Ox; or lying in planes containing Ox; do not contribute any moment. The

Tij = Tji

X2
5122
}[ 22t Gy, 0%
01’32 572‘
T32+ -—54\‘3 dX3 i Ty ‘1"2"5(1:\'2 - N ﬁgd){‘l
I > 0x4
{1 X
e e
T _‘,
| { S
e e S T X
i nt Txy
T 4 Y“sz
e e e Xy
dxa
i ; dx3
// | .
s ! Figure 3.8 Components of

X3

tractions that contribute moment

5":3| $
Tt g 3 YT about the Ox;-axis.

components that do contribute a moment about the x;-axis are shown in Fig. 3.8.
Therefore, taking care of the moment arm properly, we have

dx, dx,
- (Tu aTll dx;) dx~; dx3 + Tl de dx3

+ (T]z ale )

dx;) dx, dx; dxy — (sz + B dJCz) dxydxs dx;

dx;dx _‘_Tzzdxldx;;"i’l

dx,
- Ty dxy dxz

6732

+ ('1'32 + — dx;) dx, dx

a dx
(1'31 + — 731 ) —_ + T31 dx; dx; 2

dx, _

- X[ dx1 de dx3 + Xz dXI dxz dX3

N,
N,
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...On dividing through by dx, dx, dx; and passing to the limit as dx; — 0, dx, — 0,

and dx; — 0, we obtain

Tiz = Ty,

(3.4-5)

Similar considerations of resultant moments about Ox, and Oz, lead to the general
result given by Eq. (3.4-3). A shorter derivation will be given later, in Sec. 10.7.

So far, we have considered the condition of equilibrium. If it is desired to
derive the equation of motion instead of that of equilibrium, it is necessary only
to apply the D’Alembert principle to our cubical element. According to the
D’Alembert principle, a particle in motion may be considered in equilibrium if the
negative of the product of the mass and the acceleration of the particle is applied
as an external force on the particle. This is the inertial force. For a system of
particles, D’Alembert’s principle applies if the resultant of the inertial forces on
all particles is applied to the center of mass of the system.

For the element considered in this section, if a (with components ai, a5, as)
represents the acceleration vector of the particle referred to an inertial frame of
reference, then since the mass of the element is p dx; dx, dxs, the inertial force is
—pa; dx, dx, dx,. An addition of this to Eq. (3.4-1) and dividing through by
dx, dx, dx, leads to the equation of motion,

ot 01y | Oy

=—+4+ =+ =+ A-
pay o, % oxs Xl, etc (3 4 6)
ie.,
a; = o + X 3.4-7
pa ox; " (34-7)

35 CHANGE OF STRESS COMPONENTS iN TRANSFORMATION
OF COORDINATES

In the previous section, the components of stress 7; are defined with respect to a
rectangular Cartesian system x;, X, x;. Let us now take a second set of rectangular
Cartesian coordinates. xi, X, x3, with the same origin but oriented differently,
and consider the stress components in the new reference system (Fig. 3.9). Let
these ‘coordinates be connected by the linear relations

X = BuXi, (k=1,2,3) (3.5-1)

where By; are the direction cosines of the x;-axis with respect to the x-axis. Since
7;;is atensor (Sec. 3.3) we can write down the transformation law at once. However,
to emphasize the importance of the result, we shall insert an elementary derivation
based on Cauchy’s formula (derived in-Sec. 3.3), which states that if S is a surface
element whose unit outer normal vector v has components v, then the force per
unit area acting on 4 is a vector T with components

d

) T, = TiVy.

(3:5-2)
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Given stresses

Figure 3.9 Transformation of stress components under
rotation of coordinate systems.

If the normal v is chosen to be parallel to the axis x%, so that
= B, v = Pias ¥ = B,
then the stress vector 'f." has components
Tt = 1
The component of the vector 'ﬁ" in the direction of the axis x, is given by the
product of T; and By Hence, the stress component
i = projection of é‘"’ on the x)-axis
= Tip + BB + T

= BB + ToBuBm + TaBiBnsi

Tem = TiBriBmi- (3.5-3)

If we compare Eq. (3.5-3) with Eq. (2.5-6), we see that the stress components
transform like a Cartesian tensor of rank 2. Thus, the physical concept of stress
described by T;; agrees with the mathematical definition of a tensor of rank 2 in a
Euclidean space.

3.6 STRESS COMPONENTS IN ORTHOGONAL CURVILINEAR
COORDINATES '

Orthogonal curvilinear coordinates are often introduced in continuum mechanics
if the boundary conditions are simplified by such a frame of reference. For example,
if we want to study the flow in a circular cylindrical tube or the torsion of a circular
shaft, it is natural to use cylindrical coordinates. If we wish to study the stress
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distribution in a sphere, it is natural to use spherical coordipates. In fa(ft, if we
want to study the explosive forming of a flat sheet of metal into 2 §Rhencal cap,
it may be-useful to use 2 rectangular frame of reference for the original state of
the plate and 2 spherical-polar frame of reference for the Qefomefi state.

It is appropriate t0 resolve the components of stress in thc? directions of the
curvilinear coordinates and denote them by corresponding subscripts. For example,
in a set of cylindrical coordinates, r, 6, z, which are related to the rectangular

Cartesian coordinates X, ¥, Z by

x = rcos 6, g =tan”’ i,
y = rsin#, rr=xt+ (3.6-1)
z=1, z =1,

it is natural to denote the components of the stress tensor at a point (r, 6, z) by
Trr Trg.  Trz Or Tro Trz
Tor T Tor|OT|Ter Oo Tz} (3.6-2)
Tzr Tzp 0,

Tzr Tz0 Trr,

To relate these stress components 10 0, Ty, €1C., let us erecta local rectangular
Cartesian frame of reference x'y'z' at the point (r, 6, z), with the orig'm.lo'cated
at the point (r, 8, z), the x'-axis in the direction of increasing r, the y'-axis in tlfe
direction of increasing 0, and the 7'-axis parallel to z (see Fig. 3.10). Then, 1n

X" axis
r-direction

y'—axis
8 —direction 4

Figure 3.0 Stress components in
cylindrical polar coordinates.

conventional notation, the SETESSES Teys Tyys » - - ATC wel‘l d.efined. Nova we’ ca,n
define the stress components listed in Bq. (3.6-2) by identifying r, g, zwithx',y',

z"
(3.6-3)

Trr = Tr'xs Trg = Tr'y's Too = Tyy

ete. Since the coordinate systems ¥,y,z andx,y, z are both Cartesian, we can
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apply the transformation law of Eq. (3.5-3). The direction cosines of the axes
x', ', 2" telative to x, y, z are (see Fig. 2.2 and Eq. 2.4-3)

cos @ sinf 0
(B) =|-sinf cosd 0} (3.64)
0 0 1
Hence, by virtue of Egs. (3.5-3) and (3.6-3), we have
o, = 6,co8* § + o, sin® 6 — 7, 8in 26,

o, = o, sin* 0 + oy cos* @ + 7y sin 26,

0z = 0 (3.6-5)
75y = (0, — 0g) sin f cos 8 + 7,(cos’ § — sin” 0),

Toe = T,,C08 0 — 1,500 6,

Tay = Tz SID 6 + Ty COS 6.

Spherical or other orthogonal curvilinear coordinates can be treated in a
similar manner.

3.7 STRESS BOUNDARY CONDITIONS

Problems in mechanics usually appear this way: We know something about the
forces or velocities or displacements on the surface of a solid or fluid body and
inquire into what happens inside the body. For example, the wind blows on a
building whose foundation we known is firm. What are the stresses acting in the
columns and beams? Are they safe? To resolve such questions, we set down the
known facts concerning the external world in the form of boundary conditions and
then use the differential equations (field equations) to extend the information to
the interior of the body. If a solution is found to satisfy all the field equations and
boundary conditions, then complete information is obtained for the entire interior
of the body.

On the surface of a body or at an interface between two bodies, the traction
(force per unit area) acting on the surface must be the same on both sides of the
surface. This, indeed, is the basic concept of stress that defines the interaction of
one part of a body on another.

Consider a cube composed of a hard material joined to a soft material, as
shown in Fig. 3.11(a). Let the block be compressed between two plane walls. Both
the soft material and the hard material will be stressed. At a point P on the interface
AB, the situation may be illustrated by a sequence of free-body diagrams as shown
in the figure. For the hard material, on the positive side of the interface at P, there,

acts a surface traction 'i(‘), Fig. 3.11(b). Withx;, x,, xsidentified with the coordinates

o TT ty
{a) —] }4 t e X
7N
N j§ iy D
T = gy 0
® A 2 ]

{c)

{e)

Figure 3.11 . Derivation of the stress boundary condition at an interface between
two materials. {a) An interface AB between two continuous media 1 and 2. (b)
Free-body diagram of a small element of material No, 1 at a point P on the
interface. The stress vector T acts on the surface AB of this element. (c) Free-
body diagram of a small element of material No. 2 at P. (d) Free-body. diagram of
4 small flat element including both materials. (e) Free-body diagram of a small
vertical element, showing that o, can be discontinuous at the interface.

79



80 Stress  Chap. 3

%, ¥, z, the unit normal vector v® has three components (0, 0, 1), and the traction
vector T has three components ofv{", (i = 1, 2, 3), where of) is the stress tensor

in the hard material. For the soft material, there must exist a similar traction o),
with components oPvf?, Fig. 3.11(c). The equilibrium of an infinitesimally thin
pillbox, as shown in the free-body diagram [Fig. 3.11(d)], requires that

TO = O, (3.7-1)

This is the condition of equality of surface traction on the two sides of an interface.
More explicitly, let the interface be the xy-plane, and let the z-axis be normal to
xy. Then, the vector equation (3.7-1) implies the three equations

ol = o2, (3.7-2)

which are the boundary conditions on the stresses in the media 1 and 2 at their
interface.

Note that these interface conditions indicate nothing about the stress com-
ponents o, 0,,, 0, These components are not required to be continuous across
the boundary. Indeed, if the elastic moduli of materials 1 and 2 are unequal and
the compressive strain is uniform, then, in general,

d®#o® ol £, o) #of. (3.7-3)

That these discontinuities are not in conflict with any conditions of equilibrium can
be seen in Fig. 3.11(e).

A special case is one in which medium 2 is so soft that its stresses are com-

pletely negligible compared with those in medium 1 (for example, air vs. steel).
Then the surface is said to be free, and the boundary conditions are

0y, = 0. (3.7-4)

On the other hand, if the traction in medium 2 is known, then it can be considered
as the “external” load acting on medium 1. Thus, the stress boundary conditions
on a solid body usually take the form

o =68, o =2,

0z = 0, Oy = 0,

Untz = Pa, (3.7"‘5)

where p, p,, p» are specific functions of location and time and n, 4, f, are a set of
local orthogonal axes with » pointing in the direction of the outer normal.
Although every surface is an interface between two spaces, it is a general
practice to confine one’s attention to one side of the surface and call the other side
“external.” For example, structural engineers speak of the wind load on a building
as the “external load” applied to the building. Reciprocally, to the fluid dynamicist,
the building is merely a rigid border to the flow of air. The same interface presents
two different kinds of boundary conditions to the two media. The basic justification
for such a divergence of attitude is that the small elastic deformation of the structure
is unimportant to the aerodynamicist who computes the aerodynamic pressure
acting on the structure, whereas the elastic deformation is all important to the
structural analyst who determines the safety of the building. Hence, for the aero-

Gun = D1y Oy = P,

1
i
;
i
‘
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dynamicist the building is rigid, whereas for the elastician it is not. In other words,
both boundary conditions are approximations.

PROBLEMS

3.1 Consider a long string. If you pull on it with a force T, it is clear that the same total
tension T acts on every cross section of the string. If we consider the strength of the
string, it is intuitively clear that the larger the cross section, the stronger it would be.
Thaus, if we have several strings and wish to compare the strengths of their materials,
the comparison should be based on the stress (which in this case is equa_l to the tension
T divided by the cross-sectional area), rather than oni.the total force. 1t is not too.much
to hope that all strings of the same material will break at the same ultimate stress. .In
fact, the problem would be very interesting if an experiment were done and one dis-
covered that all strings made of the same material did not break at the same stress.
Could you conceive of such a contingency? What if the strings were extremely small?
For concreteness, consider nylon threads of diameters 1 cm, 0.1 cm, 1072 em, 107 cm,
..., 107 cm. When would you begin to feel a little uncertain that some other factors
might enter the picture in defining the strength of the threads? What are the factors?

3.2 Take a piece of chalk and break it (a) by bending, and (b) by twisting. The way the
piece of chalk breaks will be different in these two cases. Why? Can we predict the
mode of failure? The cleavage surface?

3.3 A gentle breeze blowing over an expanse of water generates ripples, Fig. P3.3. I?escribe
the stress vector acting on the water surface. Write down the boundary conditions at

the water surface.

Velocity profile

Wind

}

¥

X
! Figure P3.3 Dynamic boundary
z conditions at the water-air
interface.

P NAY
-0

3.4 In Fig. P3.4, water is shown in a reservoir. At a point P, let us consider surfaces A-A,
B-B, etc. Draw stress vectors acting on these surfaces. Consider all possible surfaces
passing through P. What is the locus of all the stress vectors?

Answer: A sphere.

7. Figure P3.4 Water in a reservoir.

3.5 Water in a reservoir is pouring over a dam (Fig. P3.5). Consider a point close to §he
top of the dam, say, 10 cm above it. Again (as in Prob. 3.4), consider all surfaces passing
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through this point, and describe the stress vectors acting on these surfaces. Is the locus
of all the stress vectors a sphere?

Now consider a sequence of points closer and closer to the solid surface on the
top of the dam, say, at distances 1 cm, 10 cm, 107% em, 10~ cm, and 10~ cm. Would
you expect the stress-vector locus to change as the distance becomes very small? Pay
particular attention to the viscosity of water.

3.6 Label the stresses shown in Fig. P3.6.

PN

Figure P3.6 Stresses.

3.7 The components of a stress tensor at a certain place in a body may be presented as a
matrix:
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Xy . .z
x |0 1‘2
y i1 2.0
z {2 0 1

What is the stress vector acting on the outer side (the side away from the origin) of
the following plane, which passes through the place in question?

x+3y+ z =1
What are the normal and tangential componems of the stress vector to this plane?
Answer: T, = (5,7, 3)VIL; T%) = &- shear = 0.771.
Solution: The plane has a normal vector with du'ecnon cosines (1, 3, 1)/V11. Hence,
7o 1) + (13 + Q1) _ _§_, 7= 1 £
If we use i, j, k to denote unit vectors in the directions of the x-, y-, z-axes, respectively,

wehave T = (i + 7j + 3k)V/I1. The normal component is Tov = 1. The shear (tangential

component) can be obtained by several methods:
(1) Let the shear = s and the normal component = #. Then

> 25+49+9 83

2 = 12 D
s+n T,l T T
h&(@)’.
1y’
hence
‘ 6V
§ =

@) The vector of the normal component plus the vector of the shear component equals
the vector T. The normal component lies in the direction of the unit normal (1i + 3j +
1k)29/(11V/TT). Let the shear component vector be xi + yj + zk; then 20/(11V/1) + x =
5//11, implying that x = (55 — 29)/36.5 = 0.712. Similarly, y = ~0.274, z = 0.109, and
the shear = (¢ + y* + 22" = 0.771.
3.8 With reference to the x-, -, and z-coordinates, the state of stress at a certain point of
a body is given by the following matrix:

200 400 300
) =l40 0 0|KkPa
W 0 -100

Find the stress vector acting on a plane passing through the point and parallel to the plane
x++2-6=0

Answer: T = 533 + 133 + 33k.
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3.9 Does equilibrium exist for the following stress distribution in the absence of body force?
o, =30+ 4y ~ 8P, 1, =ix - 6xy — 2%,
o, =23 + 1y + 3, 0, =1, =1, =0,

¢

Answer: Yes, according to Eq. (3.4-2).

3,10 The stress at a point is 6, = 5,000 kPa, 0, = 5,000 kPa, 1, = 0, = 1, = 7, = {.
Consider all planes passing through this point. On each plane, there acts a stress vector
that can be resolved into two components: a normal stress and a shear stress. Consider
planes oriented in ail directions. Show that the maximum shear stress in the material
at the point is 2,500 kPa.

Solution: Let a coordinate system be so chosen that the point in question is located
at the origin. A plane passing through this point may be represented by the equation.

_b: +my+nz=190 o)

where (I, m, n) is the direction cosine of the normal to the plane. Hence, (v, v, ») =
(I, m,n) and I* + m* + n* = 1. By permitting the normal vector to assume all possible
directions, we obtain all the planes named in the problem. Now, the stress vector acting on
the plane [Eq. (1)]is (T3, T, Tg) = (5,000/, 5,000m, 0). The normal component of surface
traction is the component of (T}) in the direction of (v), i.e., the scalar product of these
vectors, That is, the normal stress = 5,000(* + m°). Hence, (shear stress)® = (i",)2 -
(normal stress)?* = (5,000)( + m®) ~ (5,000)(* + m®)* = (5,000[ + m® — (I + m)}.
But I* + m* + n* = 1; hence,

(shear stress)* = (5,0001[1 —~ n* - (1 - n®)Y 2
To find the value of n that is less than 1 and that renders the shear stress a relative maximum,
we set
0= % (shear stress)* = (5,000 ~2n + 2(1 — r®)-2u].
The solution is #* = 3. Hence, from Eq. (2), we obtain the maximum shear stress squared,
(5,000)%4, and the final result that the maximum shear stress is 2,500 kPa.
3.11 If the state of stress at a point (x,, Yo, 2p) 18

00 0 0
©E)=| 0 30 0| kPa,
0 0 -100

find the stress vector and the magnitude of the normal and shearing stress acting on the
planex —x+y -y +z-2z=0. :
Answer: T = % (100, 50, —100) kPa, ¢™ = 16.7 kPa, v = 81.7 kPa.
3.12 For the keyed shaft shown in Fig. P3.12, determine the maxirmum permissible value
of the load P if the stress in the shear key is not to exceed 70 MPa.

i
i
i
i
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1em % tem x 2cm shear key

Figure P3.12  Key on a shaft.

ifo,=0,.= 0, = der the coordinate transformation given by
- II;ZVEZTZ‘—B;)% :/:: ;aséxc, ::i}, =0,0?? l:;; that is, in a planar stress distribution, the
surm of the two normal stresses is invariant.
3.14 Two sheets of plywood are spliced together as shown ip fig, P3.14. If the allowat.)le
shear stress in the glue is 1.4 MPa, what must be the minimum length L of the splice
pieces if a 40 kN load is to be carried?

Glue
S S
40 kN
40kN /——_—7ﬁ 25¢m
— — T -

Clue

Figure P3.14  Glued seam.

indmi d for a long time. Suppose that you want
15 A windmill propeller has been safely operate : : .

? to scale it uppfor afactor of R, in size and to rotate Ry times faster, using a geometrically
similar design, but perhaps a different material. How would fhe tensile sfress _due to
the centrifugal force vary with R, and Ry? The acrodynamic force varies with the
square of the relative wind speed. How would the bending stress in the propeller blade
vary with R and Ry? . »

3,16 The set of eight planes with direction numbers (£1, %1, £1), with one of the * signs

' chosen in each case [e.g., (1, 1, —1), corresponding to tht? planex +y -z = 0] ls
called the octahedral planes. Let the state of stress be specified by 7, f‘or which 7; =
0 whenever i # j. Determine the stress vector and the shear stress acting on each of
the octahedral planes. ' ‘

3,17 Have you seen tree branches broken by wind and observed how they split? What does
this tell us about the strength characteristics of the wood? 1 t

i i i terials such as macaroni, celery, carrots,
18 Experiment by attempting to break various mate : ;
’ hig%-carbon steel tools like drills and files, strips of aluminum and magnesium, and
silicone Silly Putty. Discuss the strength characteristics of these materials.
3.9 A circular cylindrical rod is twisted. Describe the stress state in the rod. Use the
. notations shown in Fig. P3.6 or Fig. 3.10. Discuss, in particular, the stress components
at a point on the outer, free surface of the rod.
3.20 A water tower that consists of a big raindrop-shaped tar}k supported on top of a coh?mn
- is hit by an earthquake. The tower shakes. The maximum 1ate:ral acceleratlgm gxn a
direction perpendicular to the column) is estimated to be 0.2 times the g¥av1tat10nal
acceleration. The maximum lateral inertial force induced by th‘e earthquake is tl.lerefore
equal to 20% of the weight of the tank and water and acts in a horizontal direction.
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The maximum vertical acceleration is about the same magnitude. Discuss the stress
state in the column.

3.21 Discuss the state of stress distribution in an airplane wing during flight and during
landing.

3.22 Couette Flow. The space between two concentric cylinders is filled with a fluid (Fig.
P3.22). Let the inner cylinder be stationary, while the outer cylinder is rotated at an
angular speed w radians/sec. If the torque measured on the inner cylinder is T, what
is the torque acting on the outer cylinder? Why?

7
e

[t
| p——

B Figure P3.22 Couette flow meter.

3.23 In designing a tie rod, it is decided that the maximum shear stress must not exceed
20,000 kPa (because of possible yielding). What is the maximum tension the rod can
take? Use steel.

Answer: 40,000 kPa.

3.24 Take a thin strip of steel of rectangular cross section (say, 0.5cm X 1cm X 100 cm).
Using a handbook, find the ultimate strength of the steel. Let the strip be used to
sustain a compressive load in the direction of the longest edge. On the basis of the
ultimate strength alone, how large a force should the strip be able to resist?

Now try to compress the strip. The strip buckles at a load far smaller than is
expected. Explain this phenomenon of elastic buckling.

3.25 Roll a sheet of paper into a circular cylinder of radius about 3:or 4 cm. Such a tube
can sustain a fairly sizable end compression.

Stand the tube on the table and compress it with the palm of your hand. The
cylinder will fail by buckling. Describe the buckling pattern. How large is the buckling
load compared with the strength of the paper in compression if buckling can be avoided?

Since the paper does not tear after buckling, nor does it stretch, the metric of
the deformed surface is identical with that of the original one. Hence, the transfor-
mation from the cylinder to the buckled surface is an isometric transformation.

It is known in differential geometry that if one surface can be transformed
isometrically into another, their total curvature must be the same at corresponding
points. Now, the total curvature of a surface is the product of the principal curvatures.
For a flat sheet of paper, the total curvature is zero; so is that of the cylinder, and so
also must be the postbuckling surface. In this way, we expect the postbuckling surface
to be composed of areas with zero total curvature, namely, flat triangular portions that
are assembled together into a diamond pattern. Compare this with the experimental
findings.
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"'Nofé. The subject in this problem isof great interest to aeronautical and astronautical
engineering. Thin-walled structures are used extensively when light weight is mandatory.
Elastic stability is a main concern in designing these structures.

3.26 A rope is hung from the ceiling. Let the density of the rope be'2 g/em’. Find the stress
in the rope.

Solution: Let the x-axis be chosen in the direction of the rope. The _o.nl)'r stress of
concern is o,. We shall assume that 7, = 7. = 0. Then the equation of equilibrium is

do,
—Z4pg=10
o P

where g is the gravitational acceleration. The solution is

\,

g, = —pgx + const. ~

But ¢, = 0 when x = L, the length of the rope. Hence, the constant is.b'gL,\»'I’hus, g =

pg(L — ). The maximum tension is at the ceiling, where o, = pgL. :

3.27 Consider a vertical column of an isothermal atmosphere that obeys the gas Ifaw plp =
RT, or p = p/RT, where p is the density of the gas, p is thfa pressure, R is thc; gas
constant, and T is the absolute temperature. This gas is subjected to a gravitational

acceleration g so that the body force is pg per unit volume, p?inting to the ground. If
the pressure at the ground level z = {is p,, determine the relation between the pressure

and the height z above the ground.

Answer: p = poexp [—(g/RT)z].
i ion given i i isti he earth’s atmosphere.
3.28: Discuss why the solution given in Prob, 3.27 is un{ealxsnc fort :
If the temp};rature T'is a known function of the height z, what would the solution be?
3.29 Consider a two-dimensional state of stress in a thin plate in which 7., = 7., = 7oy =
0. The equations of equilibrium acting in the plate in the absence of body force are

o o M O
ax 8y a3y
Show that these equations are satisfied identically if o, 0,, 0., are derived from an
arbitrary function ®(x, y) such that
FR P 9'®
- 0, ===, Ty = =TT
ay*’ Tt axdy
Thus, the equations of equilibrium can be satisfied by infinitely many solutions.
3,30 In a square plate.in the region —1 =x,y =1, the following stresses hold:

0. =

oy = & + dy,
v, = ax + by, (a, b, c, d are constants)

O = Oy = 0y = 0.

What must the shear stress o, be in order to assure equilibrium? Assume th:{t the material
the plate is made of is isotropic and obeys Hooke’s law. What are the strains? Are they
compatiblé? What kind of boundary conditions are satisfied if the constant a = b =0,but

¢ and d do not vanish?



NCIPAL STRESSES

AND PRINCIPAL AXES

Principal stresses, stress invariants, stress deviations, and the maximum shear
are important concepts. They tell us the state of stress in the simplest numer-
ical way. They are directly related to the strength of materials. One has to
evaluate them frequently; therefore, we devote a chapter to them.

4.1 INTRODUCTION

We have seen that nine components of stress, of which six are independent, are
necessary to specify the state of material interaction at any given point in a body.
These nine components of stress form a symmetric matrix

oy O On
g =0y On Onl (O-ii = 0-’.'.)’
0y On Oy

the components of which transform as the components of a tensor under rotation
of coordinates. Later we shall show that because the stress tensor is symmetric, a
set of coordinates can be found with respect to which the matrix of stress com-
ponents can be reduced to a diagonal matrix of the form

0y 0 0
o=10 o 0L
0 0 a3

The particular set of coordinates axes with respect to which the stress matrix
is diagonal are called the principal axes, and the corresponding stress components
are called the principal stresses. The coordinate planes determined by the principal
axes are called the principal planes. Physically, each of the principal stresses is a
normal stress acting on a principal plane. On a principal plane, the stress vector
is normal to the plane, and there is no shear component.
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To know the principal axes and principal stresses is obviously useful, bec.ause
they belp us visualize the state of stress fzt any point. ?n fact, the mattell') 12 50
important, that in solving problems in continuum mechanics, we rarely stop betore
the final answer is reduced to principal values. We need_ to k_noyv, therefore, not
only that the principal stresses exist and can be found in principle, but also the
practical means of finding them. We shall show t_hat' the symmetry of the siress
tensor is the basic reason for the existence of pn.nmpa'l axes. Other' symmetric
tensors, such as the strain tensor, by analogy and an identical mathematical prﬁce.ss,
must also have principal axes and principal values. In_deed, t.he' proof we sl.xa 1glve
for the possibility of reducing a real-valued symmetric matrix info a principa c;lnﬁ
is not limited to three dimensions, but can be extended to n dxmer}sxons. Wes ha
find that such an extension is of great importance when we 9on51fier mechanical
vibrations of elastic bodies, or acoustics in gener‘a}. Ip the vxbranon_ th'eory, the
principal values correspond to the vibration frequencies, and.the principal coor-
dinates describe the normal modes of vibration‘. We shgll not'dlscuss these sub )ect;
now; rather, we merely point out th%}t the subject we are going to study has muc

ications than to stress alone. .
bmadgnagglgiﬁgr hand, if a tensor is not symmetric, thgn neith?r the existence
of real-valued principal values nor the possibility o§ reduction to diagonal form by
rotation of coordinates can be assured. Symmetry 18 th}ls a g.reat asset.

As an introduction, we shall consider the t\_NO—dnmenS}onal case in greater
detail. Then we shall proceed to the three—di'mensmnal case in apndged notation.
Finally, we shall use the principal stresses to discuss some geome'tr_lc. representations
of the stress state, as well as to introduce some additional definitions.

4.2 PLANE STATE OF STRESS

Let us consider 2 simplified physical situation in which a thin memb.rane is strgtcg.ed
by forces acting on its edges and lying in its plane. An example is shown in Fig.
4.1. We shall leave the faces z = hand z = —hfree (unstressed). In this casg,
we can safely say that since the stress cOmpONEnts Oz, Oz Uz are zero on the

Figure 41 An approximate plane
state of stress.
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surface, they are apprdximately zero throughout the membrane because the mem-
brane is very thin; that is,

O = 00 = 0y = 0. 4.2-1)

The state of stress in which these equations hold is called a plane state of stress in
the xy-plane. Obviously, in plane stress we aré concerned only with the stress
components in the symmetric matrix

G: Ty O
Ty oy 0]
0 0 ¢

Here, for clarity, we write o, for o,,, o, for o,,, and 7., for a,,.
We shall now consider a rotation of coordinates from xy to x'y’ and apply
the results of Sec. 3.5 to find the stress components in the new frame of reference;

0 Ty O
Tey Oy 0].
0 0 0

In this case, the direction cosines between the two systems of rectangular Cartesian

coordinates can be expressed in terms of a single angle 6. (See Fig. 4.2.) The matrix
of direction cosines is

Bu Bu Bu cosf sing 0
Ba Bz Bu|=|-sind cosd 0} 4.2-2)
Ba Bn Bs 0 0 1

Figure 4.2 Change of coordinates
y in plane state of stress.

Writing x, y, and x', y' in place of x, x, and ¥}, x}; g, for 7y; Ty fO1 Ty, etc., and
identifying direction cosines B;; according to Eq. (4.2-2), we obtain, on substituting
into Eq. (3.5-3), the new components:

0y = 0, c08" 0 + o, sin* 6 + 2, sin 6 cos 6, 4.2-3)
oy = 0, 5in* § + a, cos* § — 2, sin 4 cos 6, (4.2-4)

Tey = (=0 + a,) sin 6 cos 6 + ,,(cos? § — sin® §). (4.2-5)
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Since
sin? § = 3(1 — cos 26),  cos’ 6= (1 + cos 26),

we may write the preceding equations as

oy = g‘——}ﬂ + U—’éﬂ cos 20 + T, sin 20, (4.2-6)
oy = E‘—;-ﬂ - %ﬂ cos 20 — T, sin 26, 4.2-7)
%= B §in 26 + y cos 26, (4.2-8)

Tyy = —

Y
\

‘ \
" From these equations, it follows that \

o t oy =\}'y-,_\+ oy 4.2-9)
30, do, ‘
2 o Yy, L= —Ony, 4.2-10)
a0 Py a0 T2y (
2y 4.2-11
Ty = 0 when tan 20 = . (4.2-11)
ox — Oy

The directions of the x'-, y'-axes corresponding to the particular values of 8

 given by Eq. (4.2-11) are called the principal directions; the axes x' and y' are

inci incipal stresses.
then called the principal axes, and oy, oy are called the principa .
I x', ' are principal axes, then 7o, = 0, and Eqs.'(4.2-10) sl'{ow that g is
cither a maximum or a minimum with respect to all choices of 6. Similarly, so is

6y On substituting 6 from Eq. (4.2-11) into Egs. (4.2-6) and (4.2-7), we obtain

the result

2
Ous _ 02t 0y (c: - ffy) ey A (42-12)
O min 2 : 2 ' N

© On the other hand, on differentiating 7, from Eq. (4.2-8) with respect to 6 and
~ setting the derivative equal to zero, we can find an angle 6 at which 7., reaches

its extreme value. It can be shown that this angle is +45° from t?e principal
directions given by Eq. (4.2-11) and that the maximum value of 7.y i8

2
ax — YUmin 0 — 0, 2 -
o S e (_.._2 y) r2, A (4213

This is the maximum of the shear stress acting on all planes parallel to the z-axis.
When planes inclined to the z-axis are also considered, some other planes may

* have a shear higher than this. (See Sec. 4.8.)’ :
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4.3 MOHR'S CIRCLE FOR PLANE STRESS

A peometric representation of Egs. (4.2-6)~(4.2-13) was given by Otto Mohr
(Zivilingenieur, 1882, p. 113). An example is shown in Fig. 4.3. The normal and
shear stresses acting on a surface are plotted on a stress plane in which the abscissa
represents the normal stress and the ordinate the shear. For the normal stress, a
tension is plotted as positive and a compression as negative. For the shear, a special
rule is needed. We specify (for Mohr’s circle construction only) that a shear is
taken as positive on a face of an element when it yields a clockwise moment about
the center point O of the element. (See Fig. 4.2.) A shear stress yielding a coun-
terclockwise moment about the center O is taken to be negative. Thus, 7., in Fig.
4.2 is considered negative, and 1y is considered positive. Following this special
rule, we plot, in Fig. 4.3, the point A whoge abscissa is o, and whose ordinate is
-1,y and the point B with abscissa o, and ordinate 7,,. Then we join the line AB,
which intersects the o-axis at C. Next, with C as a center, we draw a circle through
A and B. This is Mohr’s circle.

y
%y
\ Ty
Ox
9 X
5%
Ay
T.
axis
Tmax
P loy's 1oy
Omin Tmax
e
0 axis

Figure 4.3 Mohr's circle for plane
stress.

To obtain the stresses acting on a surface whose normal makes an angle 6
with the x-axis in the counterclockwise direction, we draw a radius CP that makes

! RO s N R
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an angle 26 with the line CA, as shown in Fig. 4.3. Then, the absci_ssa of P gives

the normal stress on that surface and the ordinate the shear‘. The point located on

the other end of the diameter PQ represents the stress acting on a surface whose
ormal makes an angle 8 + (m/2) with tt.xe x-axis. -

' To prove that this construction is valid, we note that Mohr's circle has a center

located at C, where

0C = "——;-9—’ (4.3-1)
and a radius
AC=TCP= (‘—’-—;—ﬁ) + 7, , (4.3-2)

\ o
From Fig. 4.3, we sce that the abscissa ‘qf Pis
= OC + CP (cos 26 cos 20 + sin 20 sin 20).

But we see also from the diagram that

=D = 4.3-4)
cos 2o = Tk sin 2a TP (
Substituting these results into Eq. (4.3-3), we get
g = 0 %" T 0520 + 1y sin 26, (4.3-5)
* 2 2

which is exactly the same as Eq. (4.2-6).
Similarly, we have the ordinate of P:

Tyy = CP sin (26 — 2a) = CP(sin 26 cos 2o — cos 20 sin 20) (4.3-6)

= ; % §in 20 — 7y €05 26,

i ith Eq. (4.2-8) in magnitude but differs in sign. The sign is fufed
‘g;l lttljlt; igixev?ng(lm ad(cl)pt(ed her)e for Mohr’s circle. A positive-valued 'r,-g., acccirc::ng
to Eq. (4.2-8), would be a counterclockwise moment an;i would haved eﬁn p ;)i dfty
with negative ordinate on Mohr's circle. Hence, everything agrees, and the va

s circle is proved. . . '
. M(;\t/llr();r?srgfciz Igfirves a visual picture of how tt}e §tress varies with the om:;ltat\tlt(})lr;
of the surface. It tells us how to locate the pnngxpal axes. Iﬁ shows ;s at | ¢
planes on which the maximum shear occurs are oriented at 45 frou;ts e3p{1nc§;;c
planes. In practice, however, 2 direct c.alculatlon by solving Eq. (4.5-3) in Sec.
4.5 is a faster way to compute the principal stresses.
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4.4 MOHR'S CIRCLES FOR THREE-DIVIENSIONAL STRESS STATES

Let 01, 03, 03 be the principal stresses at a point. The components of the stress
vector acting on any section can be obtained by the tensor transformation Jaw, Eq.
(3.5-3). Otto Mohr has shown the interesting result that if the normal stress O
and the shearing stress r acting on any section are plotted on a plane, with o and
7 as coordinates as shown in Fig. 4.4, they will necessarily fall in a closed domain
represented by the shaded area bounded by the three circles with centers on the
g-axis.

This result is very instructive in showing that, indeed, if o, = o, = a3, then o,
is the largest stress and (o ~ 03)/2 is the largest shear for all possible surfaces. The
plane on which the largest shear acts is inclined at 45° from the principal planes on
which o, and o act.

The meaning of the three bounding circles in Fig. 4.4 can be explained easily.
Let x-, y-, z-axes be chosen in the directions of the principal axes. On a plane
perpendicular to the x-axis, there acts a normal stress, say, oy, and no shear. On
a plane normal to y, there acts a normal stress, say, o3, and no shear. Now consider
all planes parallel to the z-axis. For these planes, the normal and shear stresses
acting on them are given exactly by Egs. (4.2-3) through (4.2-5) or Egs. (4.2-6)
through (4.2-8). Hence, the Mohr-circle construction described in Sec. 4.3 applies,
and the circle passing through o, o, represents the totality of all stress states on
these planes. Similarly, the other two circles (one passing through o3, o5 and the
other through o3, o) represent the totality of all stress states acting on all planes

- parallel to either the x-axis or the y-axis. It remains only to show that the stresses
on all other planes lie in the shaded area. The proof is given in earlier editions of
this book. It is quite lengthy and is omitted here.

T

| Shear
stress
Normal
stress
0'3 2% 0'1 <2

Figure 4.4 Mohr’s circles.

4.5 PRINCIPAL STRESSES

In a general state of stress, the stress vector acting on a surface with normal v
depends on the direction of v. At a given point in a body, the angle between the
stress vector and the normal v varies with the orientation of the surface. We shall
show that we can always find a surface so oriented that the stress vector is exactly
normal to it. In fact, we shall show that there are at least three mutually orthogonal
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surfaces thatfulﬁllrthis~requirement,Aat,v,any,,ppin;t“in the body. Such a surface is
called a principal plane, its normal a prilncipal axis, and the value of normal stress
i incipal plane a principal stress.
actmgL?:t] it:hgepl':r\lm% vgctor in'lihe direction of a princigal axis, and let o be the
corresponding principal stress. Then the stress vector acting on Fhe surfacs: normal
to v has components ov;, referred to a set o.f ref:tangulat cartesian 'coordmatetsl X1,
X3, %3. On the other hand, this same vector is given by the expression 'r,,-llll,-, Wl t(:,;e
7; is the stress tensor. Hence, writing v; = 3;:v;, we have, on equating these two
expressions and transposing to the same side,

('fji - 0'5,',')'11,‘ = 0, (l = 1, 2: 3) (45”1)

These three equations, with i =/1, 2, 3, are t(? pe solve_d for Vi, Vs and vs.
Since v is a unit vector, we must find.;’a set of nontrivial soluhqns for which v} +
¥ + % = 1. Thus, Egs. (4.5-1) pose} an eigenvalue problem. Smf:e T;asa matm;
is real valued and symmetric, we nced only to recal'l a result in the theory o
matrices to assert that there exist three real-valued principal stresses .a'nd a set of
orthonormal principal axes. Wheiher the princip({l stresses are a'll positive, all neg-
ative, or mixed depends on whether the quadratic form Tyx;%; is positive definite,
negative definite, or uncertain, respectively. However, because of the importance
of these results, we shall derive them anew below. . ‘ .

The system of Egs. (4.5-1) has a set of nonyanxsh}ng solutions vy, vy, v; if
and only if the determinant of the coefficients vanishes, i.e.,

iTii - 0'8,'," = 0. (45—2)
Equation (4.5-2) is a cubic equation in o7 its roots are the principal stresses.

For each value of the principal stress, a unit normal vector v can be determined.
On expanding Eq. (4.5-2), we have

T Tz T3
l‘T,‘ik"‘ 0'8,',‘] = Tt T — 0 T2
31 T2 ™3 — 0 (4_5_3)
= "0'3 + 110'2 - Izﬂ' + 13 = 0,
where
11 = Ty + T t+ T, (4.5—4)
T T3 T3 Tal T T2
L= + + , (4.5-5)
T T3 Tz Tu T T
Tu- Tz T3
: I3 = Ty Tz Tui. (45—6)
Ty Tz T3
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On the other hand, if oy, 03, 03 are the roots of Eq. (4.5-3), which can then
be written as

(o~ o)(oc—o)(c —05) =0, (4.5-7)

it can be seen that the following relations between the roots and the coefficients
must hold:

L=a + 0+ 03, (4.5-8)
L = 010, + 0,03 + 090, 4.5-9)
13 = 0107:03. (4.5"'10)

Since the principal stresses characterize the physical state of stress at a point,
they are independent of any coordinates of reference. Hence, Eq. (4.5-7) is inde-
pendent of the orientation of the coordinates of reference. But Eq. (4.5~7) i exactly
the same as Eq. (4.5-3). Therefore, Eq. (4.5-3) and the coefficients I, L, I are
invarient with respect to the rotation of coordinates. I, I, I are called the invariants
of the stress tensor with respect to rotation of coordinatés.

We shall show now that, for a symmetric stress tensor, the three principal
stresses are all real and the three principal planes are mutually orthogonal. These
important properties can be established when the stress tensor is symmetric, i.e.,

(4.5-11)
The proof is as follows. 1Le; v, ¥,  be unit vector in the direction of the principal
axes, with components v;, v, ; (i = 1, 2, 3) that are the solutions of Eq. (4.5-1)
corresponding to the roots, o, 03, 03, respectively; then

e e

Tij = Tie

(15 - 015,-,-)1‘1,' =0,
(15 — &:8y)%; = 0, (4.5-12)
(v — o3dy) %',- = (),

Multiplying. the first equation by 3 and the second by Vi summing over i, and
subtracting the resulting equations, we obtain

(0'7_ - 0'1)11),'121,' = 0 (45"'13)
on account of the symmetry condition {4.5-11), which implies that
T,-fll)i'lz),- = T,ﬂl)j%’,‘ = T,‘,"f’fll),', (45‘*14)

the last equality being obtained by interchanging the dummy indices i and j.
Now, if we assume tentatively that Eq. (4.5-3) has a complex root, then,
since the coefficients in that equation are real valued, a complex conjugate root

must also exist, and the set of roots may be written as
a=a+if, o=a-i8, o

where o, B, o3 are real numbers and i stands for the imaginary number V' ~1. In
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this case, Eqgs. (4.5-12) show that 111,- and 121i are conjugate to each other and can be
written as

1 . 2
Vi E G + lbi, V= lb,.

Therefore,
vy, = (g + iby) (g — iby)

e+ad+a+bl+h+hB#A0
Tt follows from Eq. (4.5-13) that o, — 02 = 2iff = 0.SoB = 0. But this cpntra;h;lt:
the original assumption that the roots are complex. Thus, the assumption 10
existence of complex reots is untenable, and the roots o1, o2, f’3 are all real.

When o, # 0, # 03, Bq. (4.5-13) and similar equations imply that

12 23 31

Wy = 0, {"V,'v,‘ = 0, vy = 0,

v : f = gy F O
i.e., the principal ectors are mutuz}lly or‘thogf)nal to each Othe.l'. I (151 “t 2 17- 4
311 will be fixed but we can determine an infinite number of patrs of vectors v; an
i 3 h I a (l

¥; orthogonal to b Ilo =0 = o3, then any set of orthogonal axes may be taken

as the principal axes. o o
pr the reference axes X, X, s are chosen to coincide with the principal axes,

then the matrix of stress components becomes

]

i

(4.5-15)

(s 53 0 0
(’T,'i) =10 ay 01 (4.5—16)
0 0 03

4.6 SHEARING STRESSES

We have seen that on an element of surface with a upit outer normal ¥ (with
components v;), there acts a traction T (with components T; = 7;;;). The component

of T in the direction of v is the normal stress acting on the surface elemen.t. L;t
this normal stress be denoted by 0. Since the component of a vector mn the
direction of a unit vector is given by the scalar product of the two vectors, we

obtain ,,
O = T,~v.~ = 'I','I'V,"Ui. (4.6—1)
On the other hand, since the vector T can be decomposed into two orthogonal

components 0, and T, where 7 denotes the shearing stress tangent to the surfgce
(see Fig. 4.5), we see that the magnitude of the shearing stress on a surface having

the normal v is given by the equation
2 =T - oy (4.6-2)
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—

{a)

Figure 4.5 Notations.

Let the principal axes-be chosen as the coordinat
. e axes, and let oy, 0y, ©
principal stresses. Then ’ 1, G, 03 be the

v ¥ M
Tl = 01, T2 = OV, T3 = 0373,

y 4.6~
T = (oum) + (020) + (05w, 63)
and, from Eq. (4.6-1),
o = o9 + 00 + oy, (4.6-4)
oty = [0 + 099} + oyl (4.6-5)

Or substituting into Eq. (4.6-2) and noting that
@) - @)* = P[1 - O] = Pl + @), (4.6-6)

we see that

? = PO - o + o - o
+ () ) o5 — o) : (4.6-7)

For example, if v, = v, = 1/V2and v; = 0, thent = +3(c; — o).

PROBLEMS

//
§/1 Showﬂ th?t Toas = %(Uf"“‘ ~ O.,) and that the plane on which T, acts makes an angle
/7 of 45° with the direction of the largest and the smallest principal stresses.

’ Solution. The problem is to find the maximum or minimum of . Now, +* is given
by Eq (4.6—7).’We rqnust find the extremum of +* as a function of v,, v,, v, under the
restriction that v} + v; + v} = 1. Using the method of the Lagrangian multiplier, we seek

to minimize the function
f=vhi(o — o) + (o, — o) + vhi{os — o2 + M+ ) + v = 1).

By the usual method, we compute the partial derivatives 3ff3v, af/o\, equate them to zero
and solve for v,, v,, v, \. This leads to the following equations: ’
of

5: =0 2"’11'%(0'1 - 0'1)2 + 21’;1!;(0'3 —' (Tl)z + 2)\1)l = 0’ (1)
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-;’vi S0 deni(en = o + (@ = o + 2wy = 0, ®

2

g— =0 v yvi(o, — a5) + Wwyvioy — o) + 2wy = 0, 3
3

g 5

5{=0: v+ +r=1 6)]

One of the solutions of Eq. (1) is obviously », = 0. On setting v, = 0, Egs. (2) and (3)
become
o — o) + A =0, o — o) + A =0.

These equations are consistent only/if v, = vs. On setting v, = v, Eq. (4) becomes 0 +
v+ir=1lorn= 1. Hence{ the first set of solutions is
| 1 o, — o)
v1=0’ yzl—_‘v:i:%’ )\;-_g_i..z_i)—.
i
Substituting this back into f, or Eq, (4.6-7), we find the extremum of T

2
P (0'2 - U:) 0, — 03
T = OF T OF T =75

Other sets of solutions of Egs. (1), (2), (3), and (4) can be obtained by setting, in
turn, v, = 0 and v; = 0. We have then the relative maxima or minima

0, — 0y 03 — 0y gy — 0y

27 2’ 2

The largest of the three is the absolute maximum of .
The direction of the normal to the plane on which the absolute maximum shear occurs

is given by the appropriate ¥'s. Whichever the solution is, we have
1 s
w=y=15  (#D,

which implies a 45° inclination the x-, x-axes.

4.7 STRESS-DEVIATION TENSOR

The tensor
T,"i =T 0'08,']‘ (4.7"‘1)

is called the stress-deviation tensor, in which §;; is the Kronecker delta and oy is
the mean sfress:
00 = 3o + 0 + 09 = 3( + T2 + ™) =3, (4.7-2)

where I, is the first invariant of Sec. 4.5. The separation of 7; into a hydrostatic
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part o,8;; and the deviation 1j; is very important in describing the plastic behavior
of metals, B
The first invariant of the stress-deviation tensor always vanishes:

L=+ +1=0. (4.7-3)

To determine the principal stress deviations, the procedure of Sec. 4.5 may be
followed. The determinantal equation

l’f,!i - 0"5;]') = (4‘7"4)
may be expanded in the form
('J"3 - JzO" - ]3 =,

(47-5)

It is easy to verify the following equations relating ]2,, J; to the invariants 5,
defined in Sec. 4.5:

L=33-h (4.7-6)
J'_; = I3 - 120'0 + 20’8 = 13 + Jzo'o - 0'3, (4.7"‘7)

It is also easy to verify the following alternative expressions on account of Eq.
(4.7-3):

o= =TTl — Thth — Tl + (712)2 + (tn)* + (ra)*
= §[(t — ) + (12 — ) + (tn — )] + (1) + () + (13)
= 3 + () + (5 + (rf + () + () (4.7-8)
Hence,
Jy = 3t (4.7-9)

To verify all four equations, we note first that since J,, J; and I, I; are all invariants,
it is sufficient to verify Egs. (4.7-6) and (4.7-7) with a particular choice of frame
of reference. We observe that the principal axes of the stress tensor and the stress-
deviation tensor coincide. We choose xi, Xz, ¥s in the direction of the principal
axes. Then if o}, o3, 03, are the principal stress deviations, we have

ol =0,—-0p O3=03— 0y 03 =03~ O 4.7-10)
), = =(o10y + 0103 + 0301), (4.7-11)
s = ojoz03. 4.7-12)

Note the negative sign in Eq. (4.7-11) because of our choice of signs in Eq. (4.7-
5). The reason for this choice will become evident if we observe, from the last two

i
|
§
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lines of Eq. (4.7-8), that J so defined is indeed positive definite. From Eq. (4.7-
11), by direct substitution, we have

L= (o — o) (02 — oo) — (02 - oo) (o3 = o) ~ (05 ~ o0) (01 = o)
= —-((Il()'z 4+ 0,03 + 0301) + 200(0-1 + 0y + 0'3) - 30-%
= I, + 603 — 30} = 308 — L,

which verifies Eq. (4.7-6). A similar substitution of Eq. (4.7~10) into Eq. (4.7-
12) verifies Bq. (4.7-7). Now we revert fo an arbitrary orientation gf frame of
reference. A direct identification of the coefficients in Eq. (4.7-5) with those of

Eq. (4.7-4) yields, as in Eq. (4.5-5),
T s ~ ™ TH _ Th 'riz. 47-13)

! '] '
T3 T T2 T2

Jz=_

o s
Expansion of the determinants yields the first line of Eq. (4.7-8). The primes in
', Th, T4, Can be omitted because these quantities are equal to Ty, Tas, Ty, 1€ ec,-
tively. The third line of Eq. (4.7-8) is obtained if we add the null quantity (s
+ 1l + mjs)” to the first line and simplify the results. To obtain the second line of
Eq. (4.7-8), we note first that

™m — T2 & (Tn - 0'0) - ('722 - 0-0) =T~ T
Hence,
(i = ™) + (12 — )+ (T3~ )’
= 2( + 8 + 1) = 2(thrh + TRk + THTI)-

i ity (m1 2 3 ight- ide reduces the sum
Adding the null quantity (my + 2 + )" to the right-hand side red
to 3(71? + 2 + 7i2). The equality of the third line of Eq. (4:7~8) with the second
line is then evident. The last equation, Eq. (4.7—9_), is. notmng but a restatement
of the third line of Eq. (4.7-8). Thus, every equation is verified.

Example of Application: Testing of Material
in a Pressurized Chamber

t a simply supported steel beam [Fig. 4.6(a)] in the laboratory by a lateral
g:?}t’e:lt the cigter,p lt)he relationship between P and the deflection 8 under the
load will be a curve such as that shown-in Fig. 4.6(b). The spot at whncl} Fhe: P-%
curve deviates by a specified amount from a straight li.ne th'rough the origin is the
yield point. If the beam is designed to support an engineering st'mcture, it shopld
1ot be loaded beyond the yield point, because beyond this point the deflection
increases rapidly and irreversibly, and “permanent set” occurs.
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@
Q
‘g \Yield point
- Figure 4.6 Testing of a steel beam
in a pressurized chamber. (a) The
beam. (b) The load-deflection
(b) 0 Deflection, 8 curve,

Now, let us ask these questions: If we are going to build a beam to be used
as an instrument in the Mariana trench in the Pacific Ocean, 10,911 m. under the
sea, what would the load-deflection curve be? Would the hydrostatic pressure of
the ocean depth change the load-deflection curve of the beam?

Questions like these are of great interest to seismologists, geologists, engi-
neers, and material scientists. Although nobody has performed such a test in the
ocean depths, a simulated test was done by Percy Williams Bridgman (1882-1961)
at Harvard. He built a test chamber in which high pressures that approach those
in the ocean depths was achieved. The test results indicate that the P-3 curve of
steel beam is virtually unaffected by the hydrostatic pressure.

The yielding of steel, then, is unaffected by the hydrostatic pressure. In other
words, yielding is related to stress or strain, but only to that part of the stress tensor
that is independent of hydrostatic pressure. This leads to the consideration of the
stress-deviation tensor vj; defined in Eq. (4.7-1), for which the hydrostatic part
Taq 18 2610, Yielding of most materials is related not to r;, but to 7.

4.8 LAME'S STRESS ELLIPSOID

On any surface element with a unit outer normal vector v (with components v;),
there acts a traction vector T with components given by

v

T,’ = TV

Let the principal axes of the stress tensor be chosen as the coordinate axes xi, %z,
x3, and let the principal stresses be written as &y, o3, o3, Then,

T,',' = 0, ifi#j,
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and "

' i’l =01y, i’7. = Gal, il"s = O3V 4.8-1)

Since v is a unit vector, we-have
)P ) ) =L B (48-2)

On salving Eq. (4.81) for % and substituting into Eq. (4.8-2), we see that the
components of f;’, satisfy the equation

(0_1)2 + (02)2 + (0_3)7_“\ 1, ( )

\

\
which is the equation of an ellipsoid with reference to a system of rectangular

coordinates with axes labeled ’.7',, 5’2, ’}’3. This eﬂipsoid‘is\\the locus of the end points
of vectors T issuing from a common center. (See Fig. 4.7:) o

X3

Figure 4.7 Stress ellipsoid as fhe
locus of the end of the vector T as
v varies.
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PROBLEMS

42 Lett, = 1,000 kPa, 1,, = —1,000 kPa, 7., = 0, 7,, = 500 kPa, 7,. = ~200 kPa,
7., = 0. What is the magnitude of the traction acting on a surface whose normal vector
is

v =010i + 030§ + V0.90 k?

What are the three components (in the x-, y-, and z-directions) of the stress vector
acting on the surface? What is the normal stress acting on the surface? What is the
resultant shear stress acting on the surface?

Answer. () = (250, —440, —60), traction = 509 kPa, normal stress = —164 kPa,
shear = 481 kPa.

43 Tn 1850, George Stokes gave the solution to the problem of a sphere of radius 2 (Fig.
P4.3) moving in a (Newtonian) viscous fluid at a constant velocity U in the direction
of the x-axis. On the surface of the sphere, the three components of the stress vector
are

R
3.

o

W
® |

- _* J
P a

: z
Py L=~ ;Pu €3]

where p, is the pressure at a large distance from the sphere. What is the resultant force
acting on the sphere?

Solution. The total surface force acting on the sphere is

F.= § T.dS, F,= 35 T.ds, F.= § T.d5. @)
By symmetry,
‘ﬁx,dS=§de=§zdS=O. 3
Hence, the only nonvanishing émnponent of the resultant force is
43 Ve 43U
F,—§2pad8~4mzpa—61maU‘ @

Note. Robert Andrew Millikan, who won the Nobel Prize in 1923, measured the
charge of an electron with a cloud chamber. A chamber was sparsely filled with tiny,
approximately spherical oil drops. Two parallel condenser plates in the chamber were
charged, creating an electric field. Uncharged drops fell in the direction of gravity. Any
drops with an electron attached also moved in the direction of the electric field. By shining
a light on the drops, the tracks of the charged drops were photographed and their velocities
measured. Millikan used Stokes’s formula, Eq. (4), to compute the resultant force acting
on each particle due to fluid friction. This force was balanced by the electric force acting
on the electron. Millikan showed that the electron charge came in a definite unit—that it
was quantized—and then measured what that unit was. In this way, he obtained a basic
physical constant.

Nobel prizes were first given in 1901. Millikan was the second American to win the
Nobel Prize in physics. Stoke’s formula, however, is not entirely satisfactory from a theo-
retical point of view. Many improvements have been suggested in the literature.

|
i
.
i
i
i
H
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z Figure P4.3 A sphere in viscous
— fluid (Stokes’s problem).

44 A thick-walled elastic circular cylindrical tube with an inner radius 4 and an out.er
radius b is subjected to an internal pressure p; and an external pressure p,. (See Fig.
P4.4.) The stresses in the cylinder are

_@(p, = p) | P~ Pob
O = '.z(bz _ 2) bza\__ @

. azbz(pn - pl) + piaz\“' pvbz
T = ,:(bz . 2) [ _‘ 2

2

3

o, = 0.

where r is the radial location of a point in the fube. Find the radiu§ for whif:h .the
maximum. principal stress occurs and the value of the gbsolute maximum principal
stress in the tube wall. What is the average value of oy, in the wallf? )

This solution was due to Lamé under the hypotheses qf thfa hr!eanzed theory of
elasticity (Chapter 12). The nonuniformity of the stress cAixst'rx.bunon in the wall should
be noted. The stress concentration at the inner wall is significant.

Pe

A

Figure P44 Thick-walled cylinder
subjected to internal and external
pressures.

4.5 Suppose that you are designing a high—prgssure chamber,. such asa gun bar.rel. The
pressure generated by the explosive is so high that the maxxmum‘mrcumferentlal s.tress
o, exceeds the allowable tensile stress o.. To reduce the tensile stres§ at the inner
wall, you may shrink-fit an outer shell on the barrel. The outer shell is put on hoté
and then, as it cools, it subjects the out§id&? of the gun barrel.to.a compressive loa
of pressure p, that tends to reduce the tensile stress oy at the inside of the gun bore‘i
Suppose Gu > Ters i.e., the stress exceeds the alk.)wz?ble stress. Present a .multl—layere
gun barrel design that will make the maximum principal stress <o, by using the results

given in Prob. 4.4, . .
4.6 A human blood vessel is a remarkable organ. It has considerable residual stress when
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there is no load acting on it. If a segment is cut in vivo, its length will shorten by 30

to 40%. If the segment is then cut radially, it will open into a sector. The open sector
is a good approximation to the zero-stress state of the blood vessel because any further
cutting of the specimen yields no further measurable change of strain in the vessel
wall. The meaning of the open-sector shapéd zero-stress state has been investigated
(see Y.C. Fung, “What are the residual stresses doing in our blood vessels?”, Annals"
of Biomedical Engineering 19:237-249, 1991.) It is shown that because of the existence
of residual strains, the distribution of the circumferential strain in the vessel wall is
quite uniform throughout the vessel wall at the normal living condition. In the full
range of strain from zero stress to physiological condition, the stress-strain relationship
of the blood vessel is nonlinear. But, if one considers only small changes of stress and
strain from the normal living condition, then the incremental-stress-strain relationship
can be linearized. Now, if we assume further that the elastic constants of the linearized
stress-strain relationship are constant throughout the vessel wall, then under the restric-
tion to small changes from the normal condition, the Lamé solution given in Prob. 4.4
applies. Now suppose a normal, healthy person suddenly becomes hypertensive, he or
§he incurs an abnormally higher blood pressure by an increment of Ap,. Plot the
fncremental stresses in the blood vessel wall. Are they uniform? Where is the largest
fncremental stress? In Chapter 13, we shall see that the blood vessel will remodel itself
in response to the incremental stresses.

Stre:ss concentration. Describe the boundary conditions for a plate with a circular hole
subjected fo a static uniform tensile loading with the normal stress o, = const. = p
acting on the ends. (See Fig. P4.7.)

It is known that if this plate is made of a linear elastic material, the solution is

_Pp _a_z)
g, 2(1 2

A P a
Ua—i{l + ,‘3— (1 + 3’_—4)COSZG},

2\
1+ (1 - 3%) cos 29};

_p a al .
Tpp = —E(l - F)(l + 3;;) sin 24.
(@ C.heck the stress boundary conditions to see whether they are satisfied.
() F}nd the location of the point where the normal stress o, is the maximum.
(c) Find the maximum shearing stress in the entire plate.

(d) Obtain the maximum principal stress in the plate.

Note. You see that the maximum stress is increased around the hole. This is the

phenomenon of stress concentration.

Answer. (a) The horizontal edges and the circular hole are stress free. On the hole,

boundary conditions are

o,=0, 1,=0 whenr=a

(b) o, reaches the maximum 3p when 6 = w/2,
() The maximum shear equals 3p/2 and occurs at r = a, 8 = /2, acting in a plane

inclined at 45° from the z-axis.

(d) The maximum principal stress is 3p.

(]
=3
o
©
N

4.8

fetttttt

. What do you learn from this result?

. Would the holes help stop the spreading of the crack?
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— Figure P4.7 _Circular hole in a thin

}«20-»1 t plate.

Windows on the sides of airplanes are stress raisers. Suppose that you were given the
job of designing the windows for the passengers to look out. To help you make design

_ decisions, consider an idealized problem of placing an elfiptical hole in an infinite plate

of aluminium alloy under a tensile stress S, Witl‘l the minor axis of the ellipse parallel
to the tension, Fig. P4.8. This problem has been solved, and the result states that the
tensile stress in the wall-at the ends of the majo'{ axis of the hole is

A

o=sb+2ﬂx

where 2a is the major axis and 2b is the minor a\ygis of the ellipse. (See Fig. P4.8.)

1

A crack in the wall of the airplane may be simulated as an elongated elliptical

. hole. Why is it very dangerous if the crack is perpendicular to the direction of tension?

Explain the benefit that can be derived by drilling holes at the ends of the crack.

e —- e —
- —_ - —
— —m < —_—
- 21;»{ — — —
— — —— —_—

Figure P4.8  Elliptical hole in plate; stress-relieving drilling.

49 An earthquake is initiated at time ¢ = 0 at an epicenter C. (See Fig. P4.9) Analyzing

seismic waves around thie world following an earthquake is not simple, but a formulation
of the mathematical problem is not difficult. Leaving the equations of motion and

/Eo\rthucke
epicenter

Figure P4.9 Earthquake.
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continuity till after Chapter 10, formulate all the boundary conditions involved: at the
surface of the earth, at the boundary of the mantle, at the boundary of the core, and
at the epicenter. Earthquakes are usually caused by shear fracture at the epicenter,
releasing residual strains and an associated strain energy.

4.10 Suppose you are an engineer responsible for an important project, and you must test
the strength of the materials you are using. One of the most important tests is to
determine the strength of the materials in uniaxial tension. Design a testing machine
to do this. Design the shape and construction of the test specimen. Explain in detail
the rationale of your design. Fig. P.4.10 shows a test specimen. Is it good? In this
discussion, the stress distribution in the specimen must be considered, and the way the
force is transmitted to the specimen is important.

Suppose you are designing this equipment for a biologist who is interested in
the strength of soft tissues such as muscles, tendons, skin, and blood vessels. To make
a test specimen in the shape of Fig. P.4.10 is then impractical. What would you do
instead?

“)) Figure P4.10 Tension test
Gz  specimen.

4.11 Concrete, rocks, and bone are strong in compression and usually function in com-
pressive mode. To test their strength in compression, some considerations quite dif-
ferent from those used in answering Problem 4.10 must be taken into account. Design
specimens of these materials to be tested in compression.

4.12 For the impact of a hammer on a semi-infinite elastic body (Fig. P4.12), what boundary
conditions apply?

Solution: Initial condition. The deformation equals zero everywhere. When the
hammer strikes, the boundary conditions are:
(a) On the flat surface, but not under the hammer:

T,=0 (i=123).
(b) For the conditions at infinity in the semiinfinite body, let # be the components
of displacement caused by the deformation of the body, and let o;; be the stresses; then

=0 (o)=0 (,j=1273).

{c) On the surface under the hammer, the traction and the displacement normal to
the interface must be consistent. Hence, if we denote the table and the hammer by (T) and
(H), respectively, we must have, on the common interface,

Y = B 7 U
ui = ui, ﬂT)= ﬂ"-

The normal v is the normal to'the interface, which may be described by the equation
z = f(x, y, f). Then v,:v;:v, = dffax: 3ffdy: — 1. However, we do not know the function
f(x, y, 1), which can be determined rigorously only by solving the whole problem of stress
distribution in the hammer and the table together.

In lieu of an exact solution, one may propose an approximate problem. For example,
we may assume that when the hammer strikes the table, the component of the stress vector
normal to the table is much larger than the tangential components. Hence, if we ignore the

N
!
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é yj—”

T A7 77  Figure P4.12 Hammer.

Jatter components (in a case that might be called a “lubricated” hammer), then the boundary
condition under the hammer may be written as

fo=0, T,=0, T.=F&x30)
where 8(¢) is the Dirac unit-impulse function, which is zero when £ is finite, but tends to
when t — 0 in such a way that the integral of 8(¢) for ¢ from —e to +e is exactly equal to
1, € being a positive number. F(x, y) is unknown. A simplifying assumption could be
F(x, y) = const.

Note. Perhaps there are uneven contacts betwéen the hammer and the tablctf)p, local
failure, slippage, etc. If one is serious about thes{é possibilities, one must specify them
precisely and then investigate their consequences.

4.13 Suppose that the semi-infinite body of the p’receding problfam is a large expanse 9f
water and the load is a package dropped from an airplane '(Flg. P4.13). The water will
surely splash. What boundary conditions are known in this case?

A
e e
— — Figure P4.13  Package drop.

434 A palm tree support its own weight. (See Fig. P4.14.) .
(a) Assume that the treetop weighs 100 kg, the cross-sectional area at the top

is 100 cm?, the tree trunk has a mass density of 2 gramsfcm’, and the tree is 10 m tall.
I the tree trunk is a uniform cylinder, what is the stress in the tree trunk at a distance
x from the top due to the weight of the tree alone? Solve this problem by means of
the equation of equilibrium 7y, + X =0 . -

(b) The stress due to the weight of the tree can be reduced by increasing the
cross-sectional area of the trunk toward the base. Consider such a trunk of circular
cross section with variable diameter. Compute the average stress by means of a free-

body diagram.

Figure P4.14 A palm tree
L supporting its own weight.
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{c} Solve part (b) by means of the differential equations of equilibrium. What
additional consideration is needed? .

(d) How should the diameter of the tree trunk vary with x if we want the
longitudinal stress due to the weight of the tree to be uniform throughout?

(¢) In Prob. 1.19 (Chap. 1) we considered the wind Joad acting on a palm tree
and determined a diameter D as a function of x that will make the bending stress o,
computed from Eq. (1.11-31) uniform in the tree. Now, consider both the wind load
and the weight. Let the strength of the tree trunk material be o, in tension, and o, in
compression. When the maximum principal stress equals o, the material breaks. When
the compressive stress exceeds o, the material is crushed, If the tree is “designed” to
have a uniform maximum tensile stress (independent of x), what should D(x) be? I
the “design” is for uniform maximum compressive stress, what D(x) should be?

4.15 What is the physical meaning of the sum Taa?

Answer. 1t is the sum of the normal stresses in three orthogonal directions, If we
consider a cube of water in static condition, so that all its sides are subjected to a pressure
, and there is no shear stress acting on the surface, then T = =3p,0rp = —1.f3,
If a uniform tension of equal intensity acts on each side of a cube, then T, ./3 represents
the tension. :

If the three stresses 7,,, Tyys T:z 1€ TIOL equal, then 7,./3 represents the mean normal
stress.
4.16 The stress at a point in a body has the following components with respect to a set of
rectangular Cartesian coordinates x,, Xy X3t

1 0 -
((r,-,)z( 0 -1 o).
-1 0 1

Find the values of the invariants 1, L, I, and the principal stresses.

Answer. I, = 1,L, = -2, = 0. (01,05, 05) = (0, 2, -1).

4.17 Let v, be a stress tensor. Evaluate the products (a) e;e7, and (b) e;,e,,,7,..

4.18 A plate is stretched in the x-direction, compressed in the y-direction, and free in the
z-direction. There is a flaw in a plane that is parallel to the z-axis and inclined at 45°
to the x-axis. If the shear stress acting on the flaw exceeds a critical stress 7, the plate
will fail. Determine the critical combinations of o and o, at which the plate fails.

4.19 Consider a rod that has a cross-sectional area of 1 cm’:

(a) Assume that the material has the following strength characteristics, beyond
which the rod breaks: maximum shear stress, 400 kPa; maximum tensile stress, 1.0
MPa; maximum compressive stress, 10.0 MPa, Let a tension P act on the rod. At what
value of P will the rod break? What is the expected angle of inclination of the broken
section?

(b) Answer the same questions as in part (a) if the strength characteristics are

maximum shear, 500 kPa; maximum tension, 0.9 MPa; and maximum compression,
10.0 MPa.

4.20 A circular cylindrical rod is stretched by an axial load, bent by a bending moment,

and twisted by a torque, so that the stresses in a little element at a point on the surface
of the cylinder are

06,=0, 1,=1,=0, o=1 kn/m?, . 1, = 2kn/m?, o, = 0.
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What are the principal stresses at that point?

4.21 In the earth, there is hydrostatic pressure due to the earth’s weight and therf_: is a shear
stress due to strain in the earth’s crust. At a-point in the earth, the hydrostatic pressure
is 10 MPa, and the shear stress, evaluated with respef:t _to a chosen frame of reference
X1, Xz, X3, 18 Tp = 5 MPa, 75 = 7, = (. Find the principal stresses and planes at that
point.

Answer. ¢, = —5 MPa acts on a plane with a normal \(ecfor n= -y = \/5{2,
v; = 0, which is inclined at 45° to the negative x,-axis. The pm'xcxpal axis associated with
the principal stress o; = —10 MPa is the x,-axis, and that associated with o; = —15 MPa
is a vector inclined at 45° to the positive x,-axis.

4.22 A driver of a moving car that weighs 1,600 kg made a sudden pan‘ic stop by slafnming
on the brakes; this promptly locked the wheels. Assume a maximum_coefficient of
friction between the tire and the ground of , and assume that each of the car wheels
is attached to the hub by four bolts. 7 .

(a) Compute the shear force that must act in each bolt. The l_)olt.has a diameter
of 1 cm, and its axis is 6 cm away from the axis of ghe wheel; which is 36 cm above

d. ‘ 4 -
e gr(()ll)l)n The allowable shear stress of the bolt material is 150 Mo/m? Are th.e .si‘lear
stresses in the bolts within the allowable limit? (Assume that the bolts are initially
stress free).

{c) The garage mechanic who put on the wheels fo.r the car used a large wgench
and tightened the nuts most vigorously, so that a tensile st{ess of 140 Mn/m* was
imposed on the bolts. This tensile stress was the initial stress in tht_: !?olts. Now when
the brakes are applied and a shear stress as computed in part (b) is induced, are the
bolts still safe? To answer this question, compute the maximum shear stress in the
bolts under the combined tension and shear; then compare it with the allowable shear
stress.

Answer. (a) 1,470 n. (b) shear stress due to braking = 18.71 Mn/m". Shear stress

 due to car weight = 12.47 Mn/m’”. Shear in most severe configuration = 31.18 Mn/m LIt

is less than the allowable 150 Mn/m*; hence, the bolts are safe. (c) By Mohr’s circle con-

struction, or by Egs. (4.2-12), 7., = 76.63 Mn/m*and 6., = 146.63 Mn/m’. The bolts are

clearly safe with respect to shear. But better check the handbook with regard to tensile
stress to see whether o, is allowable.

- 4.23 The foundation of a deep-sea drilling platform is subjected to a hydrostatic pressure
p, an additional stress ¢ in the vertical direction due to the weight ?f the platform,
and a shear stress 7 due to an earthquake. Determine the three principal stresses and
the maximum shear.




ANALYSIS
OF DEFORMATION

Forces applied to solids cause deformation, and forces applied to liquids

cause flow. Often, the major objective of an analysis is to find the c;lefor-

mation or flow. It is our objective in this chapter to analyze the deformation

Zf quld bodies in such a way as to be relevant to the state of stress in those
odies.

5.1 DEFORMATION

If we pull a .rubber band, it stretches. If we compress a cylinder, it shortens. If
benq a rod,. it bends. If we twist a shaft, it twists. See Fig. 5.1. Ténsile stress .ca s
tensile strain. Shear stress causes shear strain. This is common sense. To e !;ZBS
these phenpmena quantitatively, it is necessary to define measures of strainxp )
Cfmsxfier a string of an initial length Lo. If it is stretched to a length 'L as
22:}\?1; ;nLljig. 5(.2(&1), }'f ;j Lnatural to describe the change by dimensionless raiios
ch o {L = Lg)/Ly, and (L ~ Lg)/L. The u i i i
ehr.nmates the absolute length fronEl conside)ration. It isS Zo(:rflrggﬁ;lffg? ltilsfft T:}’EOS
ratios, a'nd not the lengths L, or L, are related to the stress in the strin, Thsie
exgectauon can be verified in the laboratory. The ratio L/L, is called th g z
ratio and is denoted by the symbol . The ratios 0 oot

:_Ii_:ﬂ I___L_LO

€ LO g = L

(5.1-1)

are strain measures. Either of them can be used, altho i

; ; , ugh numerically, th
iiﬁferent. For example, if L = 2,and Ly = 1, we have A = 2, ¢ = ly anr;3 };’af
3. We shall have reasons (to be discussed later) also to introduce the r;leasures

P 2~ ]2
e= , g =——"
212 22 (5.1-2)

IfL=22mdL0=1wehavc:e—-2 =3 i
; =1 =jsande =35 Butif L = 1.01 and L, = 1.00
then ¢ =0.01, £ = 0.01, e = 0.01, and ¢’ = 0.01. Hence, in infinitesimal eloongations:
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e (e

(o) (b}

{c) . {d)

Figure 5.1 Patterns of deformation. (2) Stretching. (b) Bending.
(c) Twisting. (d) Simple shear.

all of these strain measures aré approximately equal. Infinite clongations, however,
they are different.

The preceding strain measures can be used to describe more complex defor-
mations. For example, if we bend a rectangular beam by moments acting at the
ends, as shown in Fig. 5.1(b), the-beam Will deflect into an arc. The “fibers” on
top will be shortened, and those on the bottom will be elongated. These longitudinal
strains are related to the bending moment acting on the beam.

To illustrate shear, consider a circular cylindrical shaft, as shown in Fig. 5.1(c).
When the shaft is twisted, the elements in the shaft are distorted in a manner
shown in Fig. 5.1(d). In this case, the angle o may be taken as a measure of strain.
It is more customary, however, to take tan o Or 1 tan « as the shear strain; the
reasons for this will be elucidated later.

The selection of proper measures of strain is dictated basically by the stress-
strain relationship (i.e., the constitutive equation of the material). For example,
if we pull on a string, it elongates. The experimental results can be presented as
a curve of the tensile stress @ plotted against the stretch ratio A or strain e. An
empirical formula relating o to e can then be determined. The case of infinitesimal
strain is simple because the different measures of strain just presented all coincide.
1t was found that, for most engineering materials subjected to an infinitesimal strain

in uniaxial stretching, a relation like

o = Ee (5.1-3)

where E is a constant called Young’s modulus, is valid within a certain range of
stresses. Equation (5.1-3) i called Hooke’s law. A material obeying it is said to
be a Hookean material. Steelis a Hookean material if o is less than a certain bound

that is called a yield stress in tension.
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Corresponding to Eq. (5.1-3), the relationship for a Hookéan material sub-
jected to an infinitesimal shear strain is

7= Glana (5.1-4)

where G is another constant called the shear modulus or modulus of rigidity. The
range of validity of Eq. (5.1-4) is again bounded by a yield stress, this time in shear.
The yield stresses in tension, in compression, and in shear are different in general.

Equations (5.1-3) and (5.1-4) are the simplest of the constitutive equations.
The more general cases will be discussed in Chapters 7, 8, and 9.

Deformations of most things in nature and in engineering are much more
complex than those just discussed. We therefore need a general method of treat-
ment. First, however, let us consider the mathematical description of deformation.

Let a body occupy a space S. Referred.to a rectangular Cartesian frame of
reference, every particle in the body has a set of coordinates. When the body is
deformed, every particle takes up a new position, which is described by a new set
of coordinates. For example, a particle P, located originally at a place with coor-
dinates (ay, a,, @), is moved to the place Q with coordinates (x;, x, x;) when the
body moves and deforms. Then the vector PQ is called the displacement vector of
the particle. (See Fig. 5.2.) The components of the displacement vector are, clearly,

X — a4y, Xy — O, X3 — .

03,X3

G2,%2

Figure 5.2 Displacement vector.

If the displacement is known for every particle in the body, we can construct
the deformed body from the original. Hence, a deformation can be described by
a displacerpent field. Let the variable (a,, ay, a5) refer to any particle in the original
configuration of-the body, and let (x;, x,, xs) be the coordinates of that particle
when the body is deformed. Then the deformation of the body is known if x,, x.
3 are known functions of ay, a;, a3: A

Xi= X;(al, a,, ﬂ3). (5.1—5)
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" This is a transformation -(mapping). from a;, &, @ t0 x;, X, X;. In continuum

mechanics, we assume that deformation is continuous. Thus, a neighborhood is
transformed into a neighborhood. We also assume that the transformation is one
to one; i.e., the functions in Eq. (5.1-5) are single valued, continuous, and have
the unique inverse ‘ '

& = (X1, Xz, X3) (5.1-6)
for every point in the body.
"The displacement vector u is then defined by its components
» Wi=Xx— 0. : (5.1-7)

If a displacement vector is associated with every parﬁcle in the original posi-*
tion, we may write
(5.1-8)

 If that displacement is associated with the particle in the deformed position,
we write

ui(ai, ay, a:) = xi(al, a, aa) - &

w1, X0, Xa) = X = @il(xy, X, X3). (5.1-9)

PROBLEM

In order that the transformation (5.1-5) be-single valued, continuous, and differentiable,
what conditions must be satisfied by the functions x(ay, @, a3)?

" Note: If the transformation is single valued, continuous, and differentiable, then the
functions x;(a,, 4, 4, must be single valued, continuous, and differentiable, and the Jacobian
|ax,/3a| must not vanish in the space occupied by the body. The last statement is nontrivial.

(See Sec. 2.5.)

5.2 THE STRAIN

The idea that the stress in a body is related to the strain was first announced by
Robert Hooke (1635-1703) in 1676 in the form of an anagram, ceiiinossstiuv. He
explained:it in 1678 as

' Ut tensio sic vis,

or “The power of any springy body is in the same proportion with the extension.”
The meaning of this statement is clear to anyone who ever handled a spring or
pulled a rubber band.

A rigid-body motion induces no stress. Thus, the displacements themselves
are not directly related to the stress. To relate deformation with stress, we must
consider the stretching and distortion of the body. For this purpose, let us consider
three neighboring points P, P’, P" in the body. (See Fig. 5.3.) If they are trans-
formed to the points @, Q', Q" in the deformed configuration, the change in area
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03,43

(x1y %2, x3)

T2,%2
04, Xy

Figure 5.3 Deformation of a body. -

and angles of the triangle is completely determined if we know the change in length
of the sides. But the “location” of the triangle is undetermined by the change of
the sides. Similarly, if the change in length between any two arbitrary points of
the body is known, the new configuration of the body will be completely defined,
except for the location of the body in space. The description of the change in

distance between any two points of the body is the key to the analysis of defor- -

mation.

Consider an infinitesimal line element connecting the point P(a,, a,, a5) to a
neighboring point P'(a, + da), &, + day, a3 + das). The square of the length ds,
of PP’ in the original configuration is given by

ds§ = dai + da} + dab. (5.2-1)

When P and P’ are deformed to the points Q(x;, %, x3) and Q'(x; + dxy, x, +

dxy, %3 + dx,), respectively, the square of the length ds of the new element QQ’
is

& = dé + did + dd. (52-2)
By Eqgs. (5.1-5) and (5.1-6), we have v
ax; _ %

dx; = %, do, da; = ax,~ dx,-.’ (5.2-3)

Hence, on introducing the Kronecker delta, we may write

oa; oa;
dS% = 8,‘,‘ da,- da]' = 8;] 'a_;‘t“l 5;’];‘ dx, dx,,., (5.2'—4)
y 0x; 0%;
ds* = 8,']' dx; dx,- = 8;,' ‘5;[ .(:)Ei da, dﬂ,,,. (52—'5)
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The difference between the squares of the length elc.ments may be written, after
several changes in the symbols for dummy indices, either as

o, 2y . da; 5.2-6
dSz - dS% = (Suﬂ "é;‘l‘ "5{‘1’]' - fi) da, da,, ( )
or as
; . 30\ g, d, 5.2-T
dSz - dS('i = (8,7 - aup'é"x‘; axi) dk, dX]. ( )
We define the strain tensors
1(. ox. oxp ) (52-9)
=z === = s
Bi=3 (S“a da; g
: 5’“—99-9) (529
so that
dst — dsi = 2E; da; da;, (5.2-10)
dsz - dS'(Z) = 26,',' dx,' dxi. (5.2"‘11)

The strain tensor Ei; was introduced\lgz Green and St.-Ve’;zantraii_:;iCi ,z{:t ;t;gzil
Green’s strain tensor. The strain tensor €;; Was mt‘roducec% by Cauchy ﬁ)l e
s and by Almansi and Hamel for finite strains an'd is kno.wn as Alman :
igz(lslg: aI’; arfalogy with terminology in hydrodynamics, E; is often referred to as
Lagfa';‘lﬁitf[nEaﬂ:nﬁ;;S tiziegggr'xed are tensors in the coordinate systems 4; and xﬁ
respecti\?ely ,Ufollow;!from the quotient n%le when itis ap.pp;:: to Egs. (5.2-10) an
(5.2-11). The tensors E;and ¢; are obviously symmetric; 1.¢.,

E," = Ei,-, g = &ji. (5.2—"12)

11) is that ds* — ds§ =

i i equence of Egs. (5.2-10) and (5_.2 1}) is ¢
i Aﬂ nl?midl:-té:o gsagd vice versa. But a deformation 1n which the length of
e cement emains unchanged is 8 rigid-body motion. Hence, the necessary

line element I ‘ n. B necessary
2:lzfir)s’uﬂicient condition that a deformation 0f @ body be a rigid-body motion is th

all components of the strain tensor E;;j or e; be zero throughout the body.

5.3 STRAIN COMPONENTS IN TERMS OF DISPLACEMENTS

Tf we introduce the displacement vector w with components
Uy = X = Oas (@=123), (5.31)
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then
ox, o, ada, ou,
—=_+6ni "'—38,,,""_5 .
0g; aa; ’ 0x; ax; (5 3—2)

and the strain tensors reduce to the simple form

1 all, ou
E; = E[Sgg(a{: + Bai)(-f + 8 i) - 5',’.}
T o (5.3-3)
_ l{"_"z+§ﬁ+ a_ugaun]
- 2 da; aaj daa; aai
and
L Uy dug )
‘“=_8i'~8a-—+ il — — .
K 2[ ' ﬁ( ax; R )( ax; * 8“’} (5.34)

20ox oy ax oyl

In unabridged notations (x, y, z for x;, x,, x3; a, b, ¢ for ay, a,, as; and u, v, w for

W, U, U;), we have the typical terms
2 2 2
R RRC
da - 2|\da a4, da

2 ) 2 2
o 1[(614) (av) (aw” :
(=~ =] + =] +|—|,
S0 2\ox ox dx (5.3-5)
llou gy dudu dvav  owow
Ep=d=+—+|—= 4+ =—+ 22
b Z{Bb Tt (Ga b dadb i ab”’

e :1[@._{,_.‘?1_(6_“6& i‘iﬂ_*_awaW)
T 2dy o \away axay  ox ay))

Note that u, v, w are considered functions of 4, b, ¢, the position of points in the
body in unstrained configuration, when the Lagrangian strain tensor is evaluated,
whereas they are considered functions of x, y, z, the position of points in the
strained configuration, when the Eulerian strain tensor is evaluated.

If the components of displacement w; are such that their first derivatives are
so small that the squares and products of the partial derivatives of w, are negligible,
then e; reduces to Cauchy’s infinitesimal strain tensor,

1[6”} au,]
= 4 2=

& = 0% ax ) (5.3-6)
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In:unabridged notation, -

Cw ~l(a_zf ﬂ)—e
=% Ty T
ey = a_v, by = l(éli + —aﬁ) = €, (5.37
gy oz ax
L 1(61 a_v:) e
=77 T % S dy 4

Ini the case of infinitesimal displacement, the distinction between the Lagrangfan fmd
Eulerian strain tensor disappears, since then it is immaterial whether the derivatives
of the displacements are calculated at the position of a point before or after defor-

mation.
Warning: Notation for Shear Strain

Ih most books and papers, the strain components are defined as

ou _ _ ili 3_v ’
AT Yoy = 2oy = dy

B g W W
P il P

aw _ _ 4_9_1_4: _aﬂ
e = ‘a';" VYex & €2x 3z ox

In other words, the shear strains, denoted by Yey, Vyz» Vzx are tw1cfe as tI)arge as :ﬁz
COMPONENS €y, €z E2xs respectively. We shall not use thx.s notatlonél :lca?seam
COMpORENtS &, Ysy, ©fc., together do not form a tensor, and a great de 0d mth :
ematical convenience is lost. But beware of this difference when you read othe

books and papers!

5.4 GEOMETRIC INTERPRETATION OF INFINITESIMAL STRAIN
COMPOMENTS

i i Consider a line element
Let x, y, z be a set of rectangular Cartesian coordinates.
of leng{h dx parallel to the x-axis (dy = dz' = (). The change of the square of the
length of this element due to deformation is

ds* — dst = Ze.(dx).

Hence,
‘ 2e,.(dr)?

ds — dsy = T+ s
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But ds = dx in this case, and ds, di
, 5 differs from ds only by a i
_ ‘ small
second_orfie:r 1f.we assume that the displacements u, v, w a}rlxd the st o o
e;; are infinitesimal. Hence, - v rein components

ds ~ ds;
ds

m exx, (5 . 4_1)

?flda itis tseen that e, represents ‘the extension, or change of length per unit length

; vector parallel to the x-axis. An application of this discussio e

element is illustrated in Fig. 5.4, Case 1 R 108 volume
To see the meaning of the com :

' i omponent ¢, let us conside

in the body with edges dx, dy. It is evident froym Fig. 5.4, Cas;sazsrgagrfs‘ialtlﬁ;et

li]
u+d—’;dx au

u y

/ \ by * a{\x

e 2 - y
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the sum au/dy + dv/dx represents the change in the angle xOy, which was originally
a right angle. Thus,

ey = 5|70

fow  av| 1
2[6y axl =3 tan (change of angle x0Y)- (5.4-2)

In engineering usage, the strain components €; (i # j) doubled, i.e., 2e;;, are called
the shearing strains O detrusions. The name is particularly suggestive in Case 3 of

Fig. 5.4, which is called the case of simple shear.

55 INFINITESIVAL ROTATION

Consider an infinitesimal displacement fie
sian tensor

1d u; (x4, X2, X5)- From i, form the Carte-

_ Yow _ a_)
Wi = 2(a X ax, I (5.5*—1)
which is antisymmetric; i.¢.,

w; = ~ W (5.5—-2)

has only three independent components—ws, Wa, and

Hence, the tensor oy
are zero. From such an antisymmetric tensor, we can

(3 —because oy, Op, ©a

always build dual vector =
W = %Ekiimii; (5.5~3)

symbol (Sec. 2.3). On the other hand, from Eq.

where €; is the permutation
Eq. (23-19), it follows that &g = Yoy — s

(5.5-3) and the ed identity,
which, by Eq. (5.5-2), is w;;. Hence,

o = kW (5.54)
Thus, w; may be called the dual (antisymmetric) tensor of a vector w,. We shall
f the displace-

call o, and o, respectivcly, the rotation vector and rotation tensor O

ment field u.

~ A slight modification of the proof given at the end of Sec. 5.2 will convince

us that the vanishing of the symmetric sirain tensor Ey; or e; is a necessary and
orhood of a particle o be moved like a rigid body.

sufficient condition for a neighb
A rigid-body motion consists of a translation and a rotation. The translation is &

What is the rotation? We shall show that in an infinitesimal displacement field for
which the strain tensor vanishes at a point P, the rotation of a neighborhood of P
is given by the vector ©: To show this, consider a point P’ in the neighborhood of
P. Let the coordinates of P and P' be x; and x; + dx, respectively. The relative
displacement of P’ with respect to P is

o (5.5-5)

dy; = — ax;.
Bx,-
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This can be written as

= ot 2y ox;

1(au,~ au,-)
AV

l(aui Gui)
je

The first quantity in parentheses is the infinitesimal strain tensor, which is zero by
assumption. The second quantity in parenthesis may be identified with Eq. (5.5-1)
Hence,

= €y dx;

= (@ X dx);

+ [by Eq. (5.5-4)] (5.5-6)
(by definition).

Thus, the relative displacement is the vector product of @ and dx. This is exactly
what would have been produced by an infinitesimal rotation |w| about an axis
through P in the direction of .

It should be noted that we have restricted ourselves to infinitesimal angular
displacements. Angular measures for finite displacements are related to o; in a
more complicated way.

5.6 FINITE STRAIN COMPONENTS

When the strain components are not small, it is also easy to give simple geometric
interpretations for the components of the strain tensors. '

Consider a set of rectangular Cartesian coordinates with respect to which the
strain components are defined as in Sec. 5.2. Let a line element before deformation
be da, with components da, = ds,, da, = 0, da; = 0. Let the extension E, of this
element be defined by

ds - dsy

E, . (5.6-1)
or
ds = (1 + E)) ds,. (5.6-2)
From Eq. (5.2-10), we have
dst — dsk = 2By da; day = 2Eq(dar)" (5.6-3)
Combining Egs. (5.6-2) and (5.6-3), we obtain
I+ E)y-1=12E, (5.64)
which gives the meaning of Ej, in terms of E;. Conversely,
E = V1+2E,; - L (5.6-5)
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Sec. 5.6  Finite Strain Components

This reduces to e —
El = En (5.6—6)

is small compared to 1. .
WhGD’II‘Eo11 gl:tSItIklle physigal significance of the component E, let us consider two

line elements ds, and d§; that are at a right angle in the original state:
dSo: ,d01 = dSo, dag = 0, da; = 0; (5.6—7)
dgo: da; = 0, daz = dgg, : da; = {.

i i ith components dx;) and ds
tion, these line elements become ds (wit
ﬁf&f Ssgxiéts dx,). Forming the scalar product of the deformed elements, we

obtain |
‘ 0xp ., 0%k
¢me=mm=ﬁmam
= zx—k 'a—'xi dso dEg
aa da, !
But according to the definition given in Eq. (5.2-8), we have, since 3,2 = 0,
_limm
TR gy day
Hence, , S
ds d3 cos 8 = 2Ey, dso dS. (5.6—8)
But, from Egs. (5.6-1) and (5.6-5), we have
ds = \/1 + ZEH ng, d§ = Vl + 2E22 dE[).
- Hence, Eq. (5.6-8) yields
| 2hn (5.69)

€05 0 = AR VI F 2B

i i ds and d5 after deformation.
s the angle between the line elements ds and r ¢
~ r’f’hh: ;Illz%rlxeg: c;f angle bgetween the two line elements, which in the ongmal state are
orthogonal, is a, = /2 — 6. From Eq. (5.6-9), we therefore obtain
s = = = (5.6-10)
S0 = A 3 Ey VI + 2B

These equations exhibit the rgiatioqs p of
pretatiog is not as simple as in the infinitesimal case because 0

of Ey; and Ex in these equations.

hip of Ey, to the angles 6 and ay. The inter-
f the involvement

o
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A completely analogous interpretation can be made for the Eulerian strain
components. Defining the extension e, per unit deformed length as

ds — ds
a= =g (5.6-11)
we find that
a=1-vI-2e (5.6-12)

Furthermore, if the deviation from a right angle between two elements in the

original state which, after deformation, become orthogonal is denoted by By, we
have

. _ 2812 ’
s Be = = VT e (5.6-13)

In case of infinitesimal strains, Eqs. (5.6-10) and (5.6-13) reduce to the familiar
results

e, = ey, E = Eu, ap = 2E,, BlZ = ¢, (56—-14)

5.7 PRINCIPAL STRAINS: MOHR'S CIRCLE

Without much ado, we can extend the results of Secs. 4.1 through 4.8 to the strain,
because these properties are derived from the simple fact that the tensor concerned
is symmetric. All we have to do is to exchange the word stress with strain. Thus:

(a) There exist three principal strains e, e, e; that are the roots of the
determinantal equation

[6,',' - € 81,'] = (. (5.7—1)
The roots of this cubic equation are all real numbers.
(b) Associated with each principal strain, say, e,, there is a principal axis,
with direction cosines v{", 18, §" that are the solutions of the equations

i —eadp=0 (i=123) (5.7-2)

The three sets of solutions (v{", 1§, "), (WP, v§, v, (WP, v8, v§¥) are com-
ponents of three unit vectors. If the roots ey, e, e; of Eq. (5.7-1) are distinct
{e1 # e, # e3), then the three principal axes are orthogonal to one another. If two
of the principal strains are the same, then Eq. (5.7-2) has infinitely many solutions,
out of which an infinite number of pairs of orthogonal vectors can be selected and
regarded as the principal axes. If all three roots are the same, then any set of three
mutually orthogonal unit vectors may be regarded as principal.
(c) A plane perpendicular to a principal axis is called a principal plane.

Sec. 58 Infinitesim

al Strain Components in Polar Coordinates

(d) ¥ the coordinate axes X1, £, x; coincide with the principal axes, then the

strain tensor assumes the canonical form

ee 0 0
0 23 0
0 0 e

1
jati = @ — 3 oo Osj 1CNSOLS &)
(¢) We can define a strain deviation tensor efj = &; ~ 3 fa d;;. Ten ;i

and ¢; have the following independent strain invariants:
if

! .
L= CﬁS,‘}‘. 5= e;iS;i = 0,
eie 5.7-3
L= %eikeiky J, = 3€ikeies ( )
J GV I
I3 = %eikekmemi- JB - 3@ikekmem1-

(f) Mohr's circle may be used for the graphical analysis of strain. Lame's

ellipsoid is also applicable to strain.

5.8 INFINITESIMAL STRAIN CDMPONEI?!ITVS’ IE\!POI:AR
COORDINATES e -

A lnates

- ; e
of reference oriented in the direction of the curvilinear coordinates. For example,

inates 7, 8, z, the strain components may be designated &r, €u, €225
b 3 b

i 1 y xx x x y tensor transfor-
€0, Crzs €20 aﬂd the are related toe 3 eyy, €2 Exyr ey,, e, b the
l‘o, rzy zty

i i es. (See Sec. 3.6.) ' .

M ever l?fg;: izzzfnzflst\rlziiors Eue resolved into components in th.e dxiec-

i Hfo gxevgfl’rvilinegr coordinates, the strain-displacement galgtxonshlp dml;/o :;,:
Jorvatives ¢ the displacement components and therefore is m.ﬂuence y
e g the coor(ﬁnate system. The strain-displacement relations may appear
cur‘vatu.re ) from the corresponding formulas in rectangular cqordmates. |
e il oral method for handling curvilinear coordinz.ltes is thi.lt of genera
t ’ trullysigsel'll?he reader is referred to more advar.:ced treatiges. An mgrorfiucttlicir;
ogive 3@&; . thor's Foundations of Solid Mechanics, (Y. C. Fung, 1965, Prent
g?lfeg%exsd Clifs, N.J.). Limiting ourselves in the present book to Cartesian

3

ors . . :
Wi { eat eﬂ(;h Set Of cur Vlhnear COOIdlIlatCS i an dd hOC manner

We shall illustrate two ad hoc a;()jPro?ches énb;hge::islz domumeratiorL our
i : tion of coordinates an
coordinates: by transforma

former will be discussed in this section, the latter in Sec. 5.9.
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In the first approach, we start from the relations between the polar coordinates
r, 6, z and the rectangular coordinates x, y, z:

¥ oz=z (5.8-1)
y=rsiﬂ9, r2=x2+y2’
T s, Y, (5:82)
ax  r y r
_ _y_ _snf 30 _x cosé
x F oy o (5.8-3)

It follows that any derivative with respect to x and y in the Cartesian equations
may be transformed into derivatives with respect to r and 6 by

_a__il:j)— a—'ei—cos i_il_n_ﬁi
ox dxar dxaf ar r 38 (5.8
d drd dfa . 9 cosfa

= + = sin § — .
dy dyor dyab ar r o 90

o = 8l

Now, in polar coordinates, we denote the components of the displacement vector
u by u,, ug, u,, as shown in Fig. 5.5. The components of the same vector resolved

y
S
Y .
.\(@G c;\\0(‘
8/6‘ 6\‘?’
\) 7,
+
U
U
ly o’
Uy
r
8 -x Figure 5.5 Displacement vector in

0 polar coordinates.

in the directions of rectangular coordinates are u,, u,, u,. From the figure, it is
seen that these displacements are related by the equations

Uy, = U, cos 6 — u,sin 0,
u, = u, sin.0 + i cos 4, (5.8-5)

U, = U,
The strain components in polar coordinates are designated as
[ €rg €z

€or (7] €o2z (5 8—6)

ezr €9 [,

Sec. 5.8 Infinitesim

These are really-the sir
coordinates x'y’ z', wi
g-direction, and 7' with
are:
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' ar

ain components referred to a }ocal f’ranfe o§ rec;e:_::ﬁxfhe

h x' coinciding with the r-direction, y' comnciding it e
, szhe direction cosines between the two sets of coor

z
cos-8 sing O
—gin g cost 0

0 0 1

rorx
gory'
zorz

(5.8-7)

) fon law Ve
The tensor transformation law holds, and we ha

e = ey 08t 0.+ €y sin 0 + €y sin 26,
T

g + e,y cos” 0 — € sin 26,
< 5in 0 + e, (cos® 0 — sin* 6), (5.8-8)

o2
€ = Exx Siny

- 0
€ = (eY.V e"‘) c
= ¢, c08 0 + e, sin b,

Cr =
g, = —€uSi0 0 T Ey cos 6,
‘ezz = ezz'
Finally, we have ——
. TR _le’ e”__é_b_‘g,
Cex & _5;’ Eyy a}' 9z
o,
ou, ), - 1(?_“1 N __), (5.8-9)
,exy::'i'é;,“*' w28z W

1{ou, Ql_tf)
€zx = .i(ax + az .

'( ) ( * ) ( ) 1 S

4 iir—l—gf—)ucos()—uoSiﬂ{’)
e,,=(c0595;- " 66('

‘ dug O, o
u, 10ug| : 9(.,._ b= ==

= costf au, + sinzﬂ(’r‘ + ;_8—5) cos 0 sin o e T
ar

auﬂ aur uO
3o nfl—+ -7
du o b ) + cos  sin 9( r)
gy, = sin’f ar' + cos G(r a0 ar  rao

2 ou, aur y_ﬂ_
ey =" \gr ro0 rl 2\

(5.8-10)
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Substituting these and similar results into Eq. (5.8-8) and reducing, we obtain

au,
by =
ar
oty 100
Ty T o
1(1 ou,  du, u,,)
erl?=.'”-_+——_'—‘-:
2\r 06 ar T (5.8~11)
o= Y, 21
TNz o/
e_$%+%
T Nr a0 oz/
N o
¢4 az

Thus, we see that the method of transformation of coordinates is tedious but
straightforward. Note that the structures of Egs. (5.8-11) and (5.8-9) are different.
In the language of tensor analysis, the difference is caused by the differences in
the fundamental metric tensors of the two coordinate systems.

The reader should be warned again that we have adopted the tensor notations
for the strain, so that the shear strain components e, e,., €., are one-half of those
ordinarily given as 7,4, .z, Yz in most books.

5.9 DIRECT DERIVATION OF THE STRAIN-DISPLACEMENT
RELATIONS IN POLAR COORDINATES

The results of the preceding section can be derived directly from the geometric
definition of the infinitesimal strain components. Recall that the normal strain
components mean the ratio of change of length per unit length, whereas the shearing
strain components mean one-half of the change of a right angle. For infinitesimal
displacements, these changes can be seen directly from drawings such as those
shown in Fig. 5.6.

Consider first the displacement in the erirection, u,. We see from Fig. 5.6(a)
that

. + (ulor)dr — u, _ ou,

i dr ar 65D

From the same figure, we see also that a radial displacement of a circumfer-
ential element causes an elongation of that element and, hence, a strain in the 6-
direction. The element ab, which was originally of length r d6, is displaced to a’b’

Sec. 5.9

Direct Derivation 0

f the Strain-Displacement Relations in Polar Coordinates

f\/—__ --\"u, + %‘r{i dr ~,
l/
oy o
y v Ug ]\u +8U9 dé
A\ d8 AT
8
0
{o)

@ o
col-.:

[+%)

o8
15

¥ (74

g 6 D Splﬂcﬁment n CyhﬂdIlCal polax €00T1 dlnates. (FIO“] E. E.
Fl ure 5- 1

i echler.) A
Sechler, Elasticity in Engineering, Courtesy Mrs% Maiar{ig; Snd two)

. b c,i diagram of an infinitesimal element ol ma e Rl
e yf o%rdinates are shown at the lower left _compr,h Red
Shain duc tc ariation of the radial displacement ﬁleld in the r dil
St‘ram‘due g VC'rcumferential strain due to variation of cxrc:jurrlx/ iy
i o lthe circumferential direction. (c) du,lor an .( r)au,
dlspl:csir:;n 2tlrrztin e,,. (d) du./or and du, 10z cause shear strain €.
ESJS(Ur)au,IaG and au,/dz cause shear strain €.
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and becomes of length (r + u,) d6. The tangential strain due to this radial dis-
placement is, therefore,

+u)dd —rde u
o) = (r_flrd?L_ = u7 (5.9-2)

On the other hand, as shown in Fig. 5.6(b), the tangential displacement 1, gives
rise to a tangential strain equal to

o _ Yot (0u,/060) A — uy 1w,
ggg = T e —

rde ra (5:53)
The total tangential strain is
u, 1 du
g = + a0 . (5.9‘4)
The normal strain in the axial direction is
du,
€, = P (5.9-5)

as in the case of rectangular coordinates.

The shearing strain e,, is equal to one-half of the change of angle £ZC'a'b’

= £LCab, as illustrated in Fig. 5.6(c). A direct examination of the figure shows
that

1(1 du, a_uq u,,)

2

rad  or ¢/

o = (59—6)
The first term comes from the change in the radial displacement in the 6-direction,
the second term comes from the change in the tangential displacement in the radial
direction, and the last term appears since part of the change in slope of the line
4'C" comes from the rotation of the element as a solid body about the axis through
0.

The remaining strain components, e, and ¢,, can be derived with reference
to Figs. 5.6(d) and (e). We have

_ 1}(3u./96)do (aug/az)dz} 3 1{_1_ u, aqu '
0 2[ rdo * dz T 2Arae ez (.8-7)
and .
_ 1(du /6z)dz (au,/ar)dr} _ 1[611, auzJ
bor = 2{ dz * dr T ez arS (5:5-8)

These equations are, of course, the same as Eq. (5.8-11). Indeed, the direct geo-
metric method of derivation provides a much clearer mental picture than the alge-
braic method of the preceding section.
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510 OTHER STRAIN MEASURES ~-- -~

We must not think that the strain tensors we have defined are tlhe only cl)lr:;s stt:tg:;:
ipti , ion. They are the most natural ones w
for the description of deformation p e baso
i i f the square of the distances
s of deformation on the change of : : . .
zﬁ; 2tivnwa)l}{lelrticles (Sec. 5.2). The-square of distances is a convenient s;atmitu;lg pgégt
: hich states that the square of the hypoth-
se we have Pythagoras’s theorem, Wi : 1
:;C;z: of a right triangle is equal to the sum of the squares of the }e%s. L?:igxthf
the distance between two points x; .
rem, we state that the square of ) : :
:itifowith coordinates referred to a rectangular Cartesian frame of reference, 18

ds* = dot + d + dd,

InSec. 5.2, we based our analysis on this equation; the result wasa natural definition
5.2, ’
in tensors. . _
o Str‘g::formation does not, however, have to be described thflsd»;/zz;y. For exsz;;r;gl;ag,
insi i distance ‘ds (instead o as our
insist on using the change of anc 1 :
SSmTa(y)r on using the set of nine first derivatives of the displacement field:

du u du
ax ay a9z
CLA L | (5.10-1)
ox ay ax

tw -ow v
ax ay 9zl
Indeed, these derivatives, called “deformation gradients,” are qu?te cortlve::ier;;
We m:::y separate the matrix (9u;/dx;) into a sum of a symmetric part a
antisymmetric part:

o g ) o o
ax A0y w29z &
o o) @ A 0
2Nox Ty 3y 2Nz dy
F aw
How 93) l(a—‘f + l) P
Nox  8z) 29y oz z
1fou av) }_(Ql_t _w
0 Ny ~ax) 2z ax
fou ov 0 l(i’l _ ?_.“i) . (5.10-2)
+1 - 55; s 20z 3y ‘
1(au aw) ) 1(a_v _ _aﬂ)
ez + ax N9z dy
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Then it is evident that the symmetric part of the deformation gradient matrix is
the matrix of the infinitesimal strain, as defined in Sec. 5.3.

Other well-known strain measures are Cauchy’s strain tensors and Finger’s
strain tensors. When the mapping is given by Egs. (5.1-5) and (5.1-6), Cauchy’s
strain tensors are

oay 04, — 9xy 0Xp
i T Ao i Lo 5.10-3
! ox; ax,- ! aa,- ad; ( )
whereas Finger’s strain tensors are
ox; ox; = 0a; 9
=, bt .10_4
g oay 0ay ! dxy 0xg (5 )

For these tensors, the absence of strain is indicated, not by the vanishing of G;; or
B,-j, but by Cfi = 8[,', B,-i = 8;]'.

We shall not discuss these strain measures any further, except to note that
they may be convenient for some special purposes in advanced theories of continua.

PROBLEMS

5.1 A blood vessel is incompressible, i.e., its volume does not change. Under normal
conditions, a blood vessel can be considered as a circular cylinder. Suppose a person
has his or her blood pressure increased for some reason, and the inner radius of the
blood vessel increases from a to @ + A, while the axial length is unchanged. Compute
the changes in the circumferential and radial strains throughout the blood vessel due
to the increase in blood pressure.

5.2 (a) A state of deformation in which the displacement field u, is a linear function of the
coordinates x, is called a homogeneous deformation. What is the equation of a surface
that will become a sphere x* + y* + 2* = r’ after a homogencous deformation? [Use
an equation of the type f(x, y, z) = 0, in which x, y, z are rectangular Cartesian
coordinates.]

(b) As a special case of homogeneous deformation, consider the following linear trans-
formations of coordinates from (x, y, z) to (x', ¥, 2'), both of which refer to the same
Cartesian frame of reference. (See Fig. P5.2.)

(1) Pure shear: x' = kx,y' = k7', 2" = z.

(2) Simple shear: x' = x + 25y,y' = y,2' = z.

-

i

Pure shear Simple shear Figure P5.2  Pure shear and simple
(k>h (s >0} shear.

We may regard (x, y, 2) as the coordinates of a material particle before a defor-
mation’is imposed on it and (x', ', ') as the coordinates after deformation. Show that
a pure shear may be regarded as a simple shear referred to axes inclined at tan™ (k™)

|
i
|
|
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with Ox, Oy ifs = (R Equivalently, a simple shear may be regar'dedl as a pure
shear wi,th k= \/(s.2 T 1) + s and the major axis of the strain ellipsoid inclined at 3

1 “l o = -1 (-1 with
~ lign~'s = tan™* (k) with Ox. '

' (Drawings of the strain ellipses for these two cases can be found in J. C. Jaeger,
Elasticity, Fracture and Flow. London: Methuen & Co., 1956, p. 32.)

Solution: We define a homogeneous deformation as a deformati_on in .which the dis-,
placement field u; is a linear function of the coordinates, so that a point x; 18 moved to x;
under the transformation

0=xtu=xT u® + ayx, )

. H 3 1?2 12 L 2
where u® and aj, are constants. Under this transformation, a sphere x + y* + 27 =71

corresponds o an ellipsoid
[u® + x + apxlu® + x apx) =1’ 0]
Now, pure shear and simple shear are deﬁneq by the following equations and can be
represented graphically for a square, as shown in Fig. P5.2.
Pure shear:
=k, ¥ =Yk 7' =z, 3

Simple shear:
Y=xt+2y, Y=y =t @

The two transformations appear quite different in the figures. But in fact, they are similar.

imilarity i ider train ellipsoids.
The similarity is best shown by considering the s : . .
Since } = g, it is sufficient to consider transformations of curves 1n the xy-plane. By

Eq. (3), a circle x4+ y?=1is transformed into an-ellipse_

prag=1 ©)
whereas by Eq. (4), the same circle is transformed into another ellipse
24doy + (1 +H4)y =1 (6)

Let us simplify Eq. (6) by a rotation of coordinates. By Eq. (2.4-2), i x, y is rotated to &,
+ through an angle 8, we have
x = Ecos § ~ msin b, y=§sin6+'qc050. )
On substituting into Eq. (6) and simplifying, we obtain
gcos” § + 4s cos O sin g + (1 + 4s9sin’ 6] + Wsin® 6

—4ssin 0 cos § + (1 + 48°)cos” 6] + &n[~2 cos Bsin 6 ® .

+ 4s(cos? § — sin’f)) + 2 cos gsin 61 + 45 = L.
The coefficient of £n vanishes ifs = —cot2§,0r8 = ~ 1 tan™" (1/s). With this value of 0,
the coefficient of £ in Eq. (8) becomes

cos? @ — 2cot20sin20 + (1 + 4 cot? 28)sin’ 6.
=1~ 2co0s20 + cos® 20/cos’ § = tan’ 8.
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Similarly, the coefficient of ' in Eq. (8) can be reduced fo cot? 8. Therefore, Eq. (8)
becomes :

tan’ 0 £ + cot’ 6’ = 1. )]

If we write & = tan 6, then Eq. (9) is reduced exactly to Eq. (5). Therefore, these two
strain ellipsoids are equal; one is rotated from the other by an angle 6. This verifies the
equivalence of pure shear and simple shear.

To find the relation between k and 5, we note that

‘g —sinf 1
cos 20 cos® § — sin = Yot 6 - tan 6],

cot26 = sin26  2sinfcosf 2

Therefore, since s = —cot 26 and k = tan 6, we have

-5 = %E - k}, and  k =5+ VE+F 1) (10)

5.3 A steel pipe of length 60 cm, diameter 6 cm, and wall thickness 0.12 cm is stretched
0.010 cm axially, expanded 0.001 cm in diameter, and twisted through 1°. Determine
the strain components in the pipe.

5.4 For the truss shown in Fig. P5.4, determine
(a) The loads in the rods.
(b) The stresses in the rods.
(c) Assume a one-dimensional stress-strain relationship e = o/E for the rods, and assume
that Young's modulus for steel is E = 207 GPa (3 X 10 psi). Determine the longitudinal
strain e in the rods,
{d) Determine the displacement vector at the point of loading, B.

Answer: (b) o, = 503 MPa (72,000 Ibfin?), o5c = —88.2 MPa (—12,800 Ib/in?)
(©)ews =24 X 107, €pc = —4.25 x 10™
(d) 0.640 cm (0.252 in)

Solution: The loads in the rods are determined by static equilibrium, as in Chapter
1. We obtain a tension of 6428 kg (VZ X 10° Ibs) in AB and a compression of 4545 kg
(—10,000 Ib) in BC. The stresses are obtained by dividing the loads by the cross-sectional
area of the members. A further division by Young’s modulus gives the strains e,, = 2.405
X 107 and epe = —0.425 x 1072,

To determine the displacement at B, we note that the steel rods are pin ended. Asa
consequence of shortening the rod BC, the point B moves to the left, but the rod B can
swing around C, so that the locus of the possible location of B lies on an arc of a circle with
C as center and BC as radius. For very small A BC (as compared with BC), this locus is a
line segment perpendicular to BC. Similarly, the bar AB extends A AB in length, and the
locus of B on AB lies on an arc perpendicular to AB. The intersection of these arcs, B¥, is
the final location of the displaced joint B. :

PP [N [AUE——
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1.27 cm diam,
steel rod

Locusof
Bon BC pL

2.54 cm diam
steel rod Locus of
545 kg Bon BC
{a} ‘
B*
/ ' )

~ T

5

"l

Displacement. = el

(c)

Figure P5.4 A simple truss and a method of determininig the
displacement at the joint B. (a) A simple truss. (b) The locus of the
movement of the point B on the arm BC, namely, BB'B*; and that on
the arm AB, namely, BB"B*. (c) The area of the shaded‘regton is
proportional to the strain energy stored in a bar when it is stretched.

To compute the displacement BB*, we see from Fig. PS.4(b) that

=[5+ T = B+ (B + P

- 5+ P+ Py = [ + (BF + 7O + 0B

=J§§=+(§a+ﬁ+®z.
Now,
BB’ = |esc| 121 cm = 5.26 X 107 cm
E = BB" cos 45° = e,mZE cos 45° = 0.293 cm

135

Similarly, 0B" = BQ = 0.293 cm. Hence, we obtain BB* = 0.640 cm by substitution.
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Note: Alternative Method of Finding Displacement at B. The work done by the load
is equal to the strain energy stored in the rods. When arodis subject to a gradually increasing
tension from zero to T, its length changes by amount eL, = TL/EA, where L is the length
of the rod and A is its cross-sectional area. The strain energy stored in the rod is equal to
YTLIAE). [See Fig. P5.4(c).] Now, when a load W is gradually applied onto the bracket,
the work done by it is equal to 3W3 where 8 is the displacement in the direction of the load,
i.e., the vertical component of the displacement. The factor } is necessary because, the
structure being linearly elastic, the force-deflection relationship is linear, so that the area
under the curve, which represents the work done, is § of load x deflection. Hence, on
equating the work done with the strain energy stored, we obtain

1 1 TiBLAD + 1 TZIICLBC

W= EA, T2 EAw

On substituting numerical values into this equation, we obtain 8 = 0.635 cm. The total

displacement of the joint B is (8 + A BC*)"™ = 0.640 cm.

5.5 A rocket-launching tower is affected by thermal deflection caused by nonuniform heating
of the rocket under the sun (Fig. PS.5). Assume that the body of the rocket is a circular
cylinder, and estimate the horizontal displacement of the tip A if the following assump-
tions hold:

(a) The linear thermal coefficient of expansion is & = 107F = 0.555 x 10-%°C.
(b) The maximum temperature on the body of the rocket on the side facing the sun is
20°F hotter than the minimum temperature on the shady side.

(c) The temperature distribution is uniform along the length (longitudinal axis) of the
rocket, but varies linearly along the x-axis.

(d) As a consequence of (c), a plane section of the rocket remains plane in thermal
expansion.

(e) The rocket is unloaded and is free to deform.

Hint: Compute the thermal strain and then integrate to obtain the deflection.

Answer: Thermal strain difference from two sides = oT = 20 x 10~°. Tip deflection
= 263 cm.

r4
A
’ Hot Y Cold
1
l 3601t
l 90°F 70°F
X
s ft
‘r diom.
T B/// X
@ (b)

Figure P5.5 Thermal deflection of a launching tower. (a) The
dimensions of the rocket. (b) The temperature distribution.
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5.6 Derive an expression for the change in volume of an element of unit volume subjected
to small strains e;. Show that the invariant [, = e, + €n + ¢y represents the change
of volume per unit volume when the strains are small.

Solution: According to Sec. 5.7, we can find a set of rectangular Cartesian coordinates
with respect to which the strain tensor assumes the form ekﬁ,-k‘(k not 'summed), where e
e,, e are the principal strains. Let us consider a body undergO{ng strain and cho'os.e a unit
cube whose edges are oriented along the principal axes of strain. Each edge, originally of
length 1, becomes 1 + & after deformation. The new volume is, therefore,

Q+e)l+e)l+e)= 1+ e, + e, + e, + higher order terms.

Hence, on ignoring the higher order terms, we see that the change of volume per unit volume
ise, + e + e _ o . _
We know from Eq. (5.7-3) that I, = e;;;; is invariant. Itis equal to g, + ¢ + s with
reference to the principal axes. Hence, L=ctete with reference to any Cartesian
frame of reference. Thus, [, = ¢;8;means the change of volume per unit volume when the
strains are small. .
5.7 Given a stress field o;;, with components referred to a system of coordinates X, %, X
(2) What is the definition of principal stresses?
(b) What is the definition of principal axes? o o
() Describe briefly how the principal directions (i.e., the directions of the principal
axes) can be determined in principle. ‘
(d) Consider a strain tensor &; referred to the same coordinate axes. How do you
determine the principal strains and the corresponding principal directions?
‘() If the stress and strain tensors are related by the relatio

oy = heydy + PATT

where \ and . are constants, prove that the principal axes of stress coincide with the
principal axes of strain. .

5.8 In a study of earthquakes, Lord Rayleigh investigated a solution of the linearized
equations of elasticity in the form

u = Ae™ explik(x — )},
y = Be™ explik(x ~ ¢f)],
w= 0.

If the plane xz represents the ground, while y represents the depth into t!xe ::arth, a.nd
u, v, w are the displacements of the particles of the earth, then Raylelgh§ solution
represents a wave propagating in the x-direction with a spet?d ¢ and an amplitude that
decreases exponentially from the ground surface. The wave is assumgd to be generated
inside the earth. The ground surface is free; i.e., the stress vector acting on the gf(?und
surface is zero. After checking the equations of motion and the boundary conditions,
Rayleigh found the constants A, B, b, and ¢ and obtained the solution

u = A — 05773 cos k(x — cal),
y = A(~0.8475¢"™ + 146797 sin k (x — caf),

w=0.
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The constant c, is the so-called Rayleigh wave speed, which is"equal to 0.9194 times
the shear wave speed if Poisson’s ratio i 1. This solution satisfies the conditions of a
wave propagating in a semiinfinite elastic solid with a free surface y = 0. The particles
move in the xy-plane, with amplitude decreasing as the distance from the free surface
increases (see Fig. P5.8). The Rayleigh wave represents one of the most prominent
waves that can be seen on a seismograph when there is an earthquake.

(a) Sketch the waveform.

(b) Sketch the path of motion of particles on the free surface y = 0 at several values
of x. Do the same for several particles at different values of y > 0.

(c) Show that the motion of the pasticles is retrograde.

(d) Determine the places where the maximum principal strain occurs at any given instant
and the value of this strain,

Partial Solution:
(d) Since w = 0, only the strain compOnents &y, éy,, &, are not identically zero. The
exponential function €%, with b > 0, shows that the largest values of u, v, w and their

derivatives will occur at y = 0. On this plane and at £ = 0, we have

e = %o _Ak(L - 0.5773) sin k,

ax
6 = Z—; — AK[(0.8475)" — 14679 x 0.3933] sin k,

Ak _
6, = BE[(~0.8475 + 0TT3 x 03538) + (~08475 + L4679 cos ks = 0.

Hence, the maximum principal strains are
= 204227 Ak, e, = +0.14094 Ak.

[

5.9 Consider a square plate of unit size deformed as shown in Fig. P5.9. Find the strain
components.

Solution: The deformation can be described by the following equations:

1
X =a + 7“2; X2 = X = 4
or

1
m=x - %xz, 0 = Xy 7 X

y ; Figure P5.8 Rayleigh surface wave.
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G .. X2

e B o/ % Figure P5.9 Deformation of a
0 10 0 1 i square plate.

Hence,

ds* - ds

2

93&)_1

[

=ﬂ1 - (%”dx—;—zﬁ‘ﬁ“‘dx,dm [1— 1- ("”’

a ' N 2 2
i+ 2 e, + H?i) 4 (ai) - 1] da;]

a, da, 0a, ada,
2
[

ax ax, ox, i
2 )2 1,
f\/gda,dqz+(3)daz—\/§dx,dxz 3dx§;

But by Eq. (5.2-10) thisis 2 E,;daf + 2(Ey, + Ey) da, da, + 2 Epdd, Hence,

1 11 ~
E, = W3 Ep= & €y ‘_“2\/31\ ez.zf

[= NIy

whereas all other components of strain are zero. ;
5,16 Consider the square plate again, but this time shear to the right only a very small
amount, so that

n=a+00a a=x-000xn xn=8 5=a
Then ‘
ds* — dsi = 0.01 da, da, + (0.01)* da3 = 0.01 dx, dx, — (0.01)* dxk.

Hence, ;
E,=00025, Ep,=5x107  e,=00025 @e=-5x10"

In this case, the E; and ; measures are approximately the same,

5.11 A square plate is deformed uniformly from configuration (a) to configuration (b), as
shown in the three cases in Fig. P5.11. Determine the strain components E,;, Ey, E,,
and ey, €n, €n-

Answer: The transformation that leads from configuration (a) to configuration (b)
in Case 1is x, = 1.4a;, x, = 1.2a,, x, = a,. That in Case 2is x, = 1.2¢; + 0.54;, x, =
1.26,, x, = a,. In Case 3, we have x, = 1.01a, + 0.02a,, x, = 1.01a,, x, = ;. From these,
the strain components are obtained from Eq. (5.3-5). Case 3 qualifies for “infinitesimal”
strains, as given by Eq. (5.3-7).
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02 X2
(1.4,1.2)
i .2
X3 = 03
Cose 1
(a) oy (b) X
0 1 0 1.4
g2
R 12
X3 = 03
Case 2
{a) | (b)
0 1 0 05 12
0 X2
02, 1.
1) 1 “{o02,1.01)
1 LOIF {103,1.01)
Case 3 3=0s
(0} ay (b) x
0 1 0002 10

Figure P5.11 Three patterns of deformation of a square plate.

5.12 A unit square OABC is distorted to OA'B'C’ in three ways, as shown in Fig. P5.12.
In each of the cases, write down the displacement field u,, u, of every point in the
square as a function of the location (., a,) of the point in the original position. Then
determine the strains E;;, e;. Assume that 1, = 0 and that u,, u, are independent of
x, and a,. In Cases (b} and (c), assume that the lengths of O4, OA’, OC, and oc
are all 1. Also, obtain the simplified expressions of the strains ey if &, &, 8, { are

infinitesimal.
X202 X2 0z %02
_.,__4_ g '
A Eg‘.]! A B 2 A
WP 7 B .
i 8 ¥ /A .
i B
—b= -t——'E‘ C‘ 7
vl 1
0 ¢ 1C W0 4 g > X0 Oy 0 ¢ X Gy

lo) (b {c)
Figure P5.12 Deformation of OABC to OA'B'C'.
5.13 A unit square OABC is first subjected to a stretching, as shown in Fig. P5.12(a), then

to a distorsion, as shown in Fig. P5.12(b), and finally to a rotation, as shown in Fig.
P5.12(c). After the three steps in succession, what are the values of the strains E;;, e;7
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Answer this problem first for finite values of e, €, 6, | and then for infinitesimal
values of €, &, 0, §.

5.14 Find the strain components E;; and ¢; when one of the wedges in Fig. P5.14 is trans-
formed into the other. The first wedge has an apex angle of 30%; the other is 50°. The
radii are the same.

Figure P5.14 Wedge changing
angle.

5.15 Let ABCD be a unit square in the xy-plane (Fig. P5.15). ABCD is a part of a large
deformable body subjected to a small strain that is uniform in the entire body and is

given by
1 2 3
2 1 0
3 0 2

What is the change in length of the lines AC and AE?
Answer: AC changes by 0.00423; AE changes by 0.00290.

x 1073,

Figure P5.15 Change of length of
line segments in a plate of known
%1 strain.

5.16 A square membrane, ~1<=x=1, ~1=sy=], is stretched in such a manner that
the displacement is described by

u=alx+yy,
v = bxy,
w=0.

What are the strain components at (x, y)? What is the principal strain at the origin (0,
0). Assume the constants 4, b to be infinitesimal.

5.17 A pin-jointed truss is shown in Fig. P5.17, where L is the length of the vertical and
horizontal members. The cross-sectional area of all the members is the same, namely
A. The material of all the members is the same, with Young’s modulus E. The truss
is loaded at the center by a load P. What would be the vertical deflection of the point
under the load?

Answer: Solve the problem by the strain-energy method illustrated in Prob. 5.4. The
deflection is 5.828PL/AE.
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What are the strain components and strain invariants of this displacement field?

Consider a special case
L L
b= E + DR
Hy L L L L ‘ 2
g 7% Figure P5.17 Calculation of the
vertical deflection of a joint of a where
P {russ. R2=X§+x§'+x§

and C, D are constants. Apply it fo.a hollow sphere whose inner radius is 4 and outer
radius is b. What are the values of the strains in this sphere?

5,21 Figure P5.21 is another classical drawing from Borelli’s 300 year old book (see Prob.
1.23). Here is shown Borelli's observations on the arrangement of muscle fibers on

5.18 The following may happen in a number of situations, such as the flow of water, the
forming of metals, and in cell membranes. The material is incompressible. The dis-
placement component w in the z-direction vanishes. The displacements u, v ar¢ infin-
itesimal and are functions of x, y. If, in a certain domain, we know that

u=(1-y)a+bx+cxr)

where a, b, ¢ are constants, compute the displacement v in the y-direction.
Hint: Use the facts shown in Prob. 5.6.

5.19 In the problem of the torsion of cylindrical bar of steel with an elliptic cross section :
(Fig. P5.19), it was found that the displacement can be described by the equations

£ -b

w=ozy, V= azE, WE oy O
Y , RS y

where o is the angle of twist in radians pet unit length of the bar. Leta = 2 cm and
b = 1 cm. Compute the strain that acts at the point A (x =0,y = b). What s the
maximum shear strain at A? On what plane do the maximum tension and maximum

shear act?
Partial Answer:
8 . 8 8
e, = =3 a, &, = 0, max shear strain = 3 o, max normal strain = igx.
Y Figure P5.21 A classic drawing by
. Borelli.
A ) ‘
/ LL\ the surface of the heart. Muscle fibers contract or lengthen, change the shape and
strain of the organ. Geometric arrangement of fibers has a great influence on the
X g
function of the muscle. If a muscle is shaped like a parallelogram shown in the “simple
p ! p g p
] Figure P5.19  An elliptic cross shear” case of Fig. P5.2 (Problem 5.2), with fibers parallel to the inclined borders,
se%?ion. ) then a contraction of the muscle which turns the muscle block into a rectangle would
leave the volume and width unchanged. On the other hand, if the muscle fibers were
52 . . . ) ) . . parallel to the y-axis as shqwn in Fig. P5.2’s “pure shear” case, then on contraction
0 Bl):; dlfferen;llagng an arbxtra;yﬁana(;yglc iunctlonﬁd)(x 1 %2, %), one can obtain a dis the width of the bundle will bulge out. When the heart works to pump blood, the
placement field (i, , ;) defined by the equation chambers of the left ventricle and right ventricle should expand and contract, but the
b myocardium does not change its volume, nor bulges out locally (unlike the biceps flexor

U muscle of the front of the upper arm). Borelli thought he knew how it could be done.

s

[NOT—
D RS-

st
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Take up this suggestion and discuss it. Add theoretical or experimental details as far
as you can, Modemn data on heart muscle fiber structure can be found in Streeter, D.
Ir., “Gross morphology and fiber geometry of the heart,” In Handbook of Physiology,
Sec. 2 Cardiovascular System, Vol. 1 The Heart, (Berne, R. M. and Sperelakis, N.,
eds.), American Physiological Society, Bethesda, MD, pp. 61-112. Expand the obser-
vation to explain how a crab or lobster can move its powerful claws by muscles encased
in a rigid shell. What kind of strains these muscles must have?

AND COMPATIBILITY
CONDITIONS

We shall consider the velocity field and define the strain-rate tensor. Then
we shall study the question of compatibility of the strain components or the
strain-rate components.

6.1 VELOCITY FIELDS

For the study of fluid flow, we are generally concerned with the velocity field, i.e.,
with the velocity of every particle in the body of the fluid. We refer the location
of each fluid particle to a frame of reference O-xyz; then the field of flow is described
by the velocity vector field v(x, y, z), which defines the velocity at every point {x,
y, 2). In terms of components, the velocity field is expressed by the functions
wlx, 3, 2),

ux, y,2), v, 2),

or, if index notations are used, by vi(xi, Xz, X3).

For a continuous flow, we consider the continuous and differentiable functions
vi{x1, X», X3). There are occasions, however, in which we must study the relationship
between velocities at neighboring points. Let the particles P and P’ be located
instantaneously at x; and x; + dx;, respectively. The difference in velocities at these
two points is '

dv; = — dx;, (6.1-1)

where the partial derivatives dv;/0x; are evaluated at the particle P. Now,

v _ 1w, 9_&) _ l(f’_"z _ é.v_) (6.1-2)
6x,~ 2 axi 0x; 2

145
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Let us define the rate-of-deformation tensor V;; and the spin tensor Qy; as

_ Yow év_)
Vii B Z(Gx; * ax; ’ (61 3)
_ Yoy 9._)
i Z(Gx; ax,' (61_4)
Then
av; _ _
3)5,- - Vii ﬂq- (61 5)

It is evident that V;is symmetric and {}; is antisymmetric; i.¢.,
Vi = Vi, Q= -y, (6.1-6)

Hence, the (); tensor has only three indepéndent elements, and there exists a
vector © dual to €;;; that is,

Qk = Ekfjﬂi]‘; i.e., Q= curl Y, (6.1—7)

where ; is the permutation tensor defined in Sec. 2.3, Eq. (2.3-16). The vector
€) is called the vorticity vector.

Equations (6.1-7) and (6.1-1) are similar to Egs. (5.5-3) and (5.5-5). Their
geometric interpretations are also similar. Therefore, the analysis of the velocity
field is very much like the analysis of an infinitesimal deformation field. Indeed,
if we multiply v; by an infinitesimal interval of time dt, the result is an infinitesimal
displacement u; = v; d. Hence, whatever we learned about the infinitesimal strain
field can be immediately extended correspondingly to the rate of change of strain,
with the word velocity replacing the word displacement.

6.2 THE COMPATIBILITY CONDITION

Suppose we were given a set of two partial differential equations for one unknown
function u(x, y), such as

- L
ax—x+3y, ay—x. 6.2-1)
We know that these equations cannot be solved: We have too many equations that
are mutually inconsistent. The inconsistency can be clarified if we compute the
second derivative 3%u/ox dy from the two equations: The first yields 3, the second
2x. They are unequal.

Therefore, when partial differential equations are given, the question of
integrability arises. The differential equations

d ou

Tl 5= sk) (62-2)

—
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cannot be integrated unless the condition

o o
o 6.2-3)
is satisfied. This condition; a condition of integrability, is also called an equation
of compatibility.

Now consider a plane state of strain, such as may exist in the solid propellant
grain of a rocket. Suppose that an engineer made a laboratory model and obtained,
by various instruments such as strain gauges, photoelastic equipment, laser holog-
raphy combined with Moire pattern analysis, etc., a set of strain data that may be

 presented as

€ =f(x,Y), Eyy = g(xd’), €y = h(x,y), € = € =. Ey = 0. (62—4)

' The question arises whether the data are self-consistent. Could the consistency be

checked? And if they are consistent, can we compute the displacements u(x, y)
and v(x, y) from these data? '

If the strain is small, the last question can be formulated as a mathematical
question of integrating the differential equations

ou

e (e
poE e (629
%% Yo dhey) (= 2e0)

Now, if we differentiate the first equation with respect to y twice, the second with
respect to x twice, and the third with respect to x and y once each, we obtain

Fu I v g ;
xyp o  atdy o (62-6)
Fu &y o
oyt oxtay o ay (6:2-7)
Substituting Egs. (6.2-6) into Eq. (6.2-7), we have

’f o &*h
— +. —_— = . .
8yt ot T axdy (6.2-8)

The experimental data must satisfy this equation. If not, the data are not consistent
and there must have been errors.
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Expressing the preceding results in terms of strain components, we have

Ve O, , ey
By 2o 3y’ (6.29)
which is the equation of compatibility for a plane state of strain.

A similar discussion applies to a two-dimensional velocity field of a fluid. The
components of the rate-of-strain tensor may be measured, for example, by the
method of optical birefringence, if the fluid is birefringent. Or a set of strain rates
may have been obtained theoretically. To check the consistency, we must have

V. &V, V.,
) o— = 3
ay an? ax dy

(6.2-10)

where V; are the components of the rate-of-strain tensor. (See Sec. 6.1.) In fluid
mechanics, however, this equation is referred to as the condition of integrability.
Thus, compatibility and integrability mean the same thing.

6.3 COMPATIBILITY OF STRAIN COMPONENTS IN THREE
DIMENSIONS

Extending the question discussed in the previous section to three dimensions, how
do we integrate the differential equations
1 dy; au,»] )
g = o — i
! Z[Gxi ax; (6.31)

to determine u;?

Inasmuch as there are six equations for three unknown functions u;, the system
of Eq. (6.3-1) will have a single-valued solution only if the functions e; satisfy the
conditions of compatibility.

By differentiation of Eq. (6.3-1), we have

Cijxt = %(ui,jkl + Ujin), (6.3-2)

where the indices k and ! following a comma indicate successive partial differen-
tiations with respect to x; and x,. Interchanging subscripts, we get

e = %(uk,lii + Uy i),
Guix = %(uj.lik + i),
ik jt = %(ui.kil + Uy i)
“From these, we verify at once that
it T i — Cigt — i = 0. A (633)

This is the equation of compatibility of St. Venant for infinitesimal strains.
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Of the 81 equations represented by Eq. (6.3-3), only 6 are essential. The rest
are either identities or repetitions, on account of the symmetry of e;; with respect
to i, j and of e; with respect to k, I The 6 equations, written in unabridged
notation, are

3

? 0 de,, Oe. Oey
MRS

dy oz T x ox ay 0z
_aieﬂ‘:.?_(~§fﬁ+a_eﬁ+%z),
dzax dy ay 0z ox
2
e = i( - desy + ?.e.ﬁ + é‘iﬂ),
dxdy 0z 0z ax ay A (6.34)

2 2 v
dey de.  0€y

axdy 8y o '

2 2
o'y | 06
e

o,
dyoz 8t 3y

Pen _ den azen.
pzox o 02

For finite strains, a compatibility condition can be derived from Riemann’s
theorem by the fact that the deformed body remains in a Euclidf:an space. Riemann
has given the necessary and sufficient conditions for the metric tensor (related to
strains) to represent a Euclidean space. See Ref. at en‘d. of chapter. B

Equations (6.3-3) or (6.3-4) are necessary conditions. Are they s‘uf:ﬁcnen.t?
That is, would the six compatibility conditions, together with the six dlﬁercntlal
equations given by Eq. (6.3-1), guarantee the existence of'a set o_f functlox}s uy(x,
¥, 2), Uslx, ¥, 2), Us(X, ¥ z) that are single valued and continuous in contmuufn?
To answer this question, we note first that since strain components only gietermme
the relative positions of points in a body, and since any rigid-bod){ motion corre-
sponds to zero strain, we expect that the solution u; can I_Je deter.mmfad only up to
an arbitrary rigid-body motion. Next, if e; were specified arbitrarily, we copld
expect cases similar to those shown in Fig. 6.1 to exist. Here, a rectangular portion
of material is given, of which the legs AB, BC, AD, and DE (C and E are the
same point) are composed of successive small rectangular elements (eacl} element
similar to those illustrated in Fig. 5.4). Each element is deformed according to the
specified strains. By glueing the deformed elements together, first along AB and
BC and then along AD and DE, we might end at the points C an.d E separated,
either with a gap between them or with an overlapping qf ¥natena1 sorr;ewhere.
For a single-valued continuous solution to exist {up to a rigid-body xpotxon), the
ends C and E must meet perfectly in the strained configuration. This cannot be

guaranteed unless the specified strain field obeys certain conditions.

" Following this kind of reasoning, one may construct a line integral starti}]g
from an arbitrary point A in the body to find the displacement (w1, ua, us) at point
C along two arbitrarily different paths and demand that the results are the same.
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Figure 6.1 Illustration for the requirement of compatibility. The figure on the left
consists of a sequence of rectangular elements making up a continuous region in the
unstrained state. If strains were specified for each of the little rectangles, and they
deformed according to the specifications, then on putting the deformed little rectangles
together, the conditions illustrated in the middle or right-hand figure might occur. A
sufficient condition, discussed in the text, is necessary to prevent these situations from
happening.

Cesaro (1906) has shown that the sufficient conditions for the uniqueness of a
solution are exactly Eqgs. (6.3-4) if the region enclosed by the arbitrary paths is
simply connected. However, if the region is multiply connected, additional con-
ditions of sufficiency are required. (See Fung, Foundations of Solid Mechanics,
Englewood Cliffs, N.J., Prentice Hall, 1965, pp. 101-108, for details.)

PROBLEMS

6.1 Consider the motion of a body fluid with velocity components u and v derived from a
potential ®

L@
ax’ oy

while the component w is identically zero. Sketch the velocity field for the following
potentials:

F=2+y)

(9 = tan~" -)
X

N S
(a)@-%log(r+y)~2ﬂlogr,
b)d=x

(c) @ = Ar®cos né,

cos 8
@@ =—
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Note:" A flow field whose velocity components are derived froma potential function
®(x, y, z) is called a potential flow. In the examples given in this problem, we have several
cases in which @ is expressed in terms of the polar coordinates r, 6. If we notice that the
velocity vector (u, v) is exactly the gradient of the scalar function ®(x, y) (see Chapter 2),
we see from vector analysis that the velocity components in the polar coordinates are

_ 8d(r, 0)

1 99(r, 6)
- = - ! 1
tr ar T o0 M
in the radial and tangential directions, respectively. (See Fig. P6.1.)
These relations can be derived formally as follows. Since
Pegty, f=tal @
X =rcos b, y = rsiné. (3)
~a—x=c030, 2)—’='si116,
ar ar
g—=—rsin9, —y=rcos(9,
a0 d
we have
a—(I’-r-a—qia—":+gg=ucos()+vsin(). ' @
or  dxadr dyor.
1@=—@sina+@cos()=—usin(‘)+vcos£). 8]
rab ax ay .
But it is seen from Fig. P6.1 that
= ycos @+ vsinh, U, = —usinf + vcosd. (6)
Hence, Eq. (1) follows from Eqs. (4) and (5).
y
- v “‘
Y v
r p v
g ,  Figure P6.1 Velocity components
0 in polar coordinates.

6.2 The motion of an incompressible fluid in two dimensions may be derived from a stream
function ¢ as follows:
' N a

‘ = =y = =y w=0.
" - dy Y ox :
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Sketch the lines § = const. for the following functions, and compare them with the
results of the preceding problem:

(@ =co
- D=y
(¢) & = Ar"sin nf
sin 0
@ =-—

6.3 For the flows described by the potentials listed in Prob. 6.1 and stream functions listed
- inProb. 6.2,

(a) Show that the vorticity vanishes in every case.

(b) Derive expressions for the rate-of-strain tensor.

" Solution: The vorticity Q, given by Eq. (6.1-7), has the components given in Eq.
(6.1-4). In a two-dimensional flow, there is only one component of vorticity Q,, =
(avlax — duldy)2, that is not identically zero. If # = a/ox and v = dd/dy, then {1y, = 0.
Hence, all potential flow is irrotational. If .

U= E)y V= 5;: ’ (1)
then O, is
ity = 70 @)
vorticity = 2( 2 + o @)
«In polar coordinates, we have
ay - 00 126,189
vorticity = i(a',_ + rar T PaF ©))

That all the cases in Prob. 6.2 are irrotational can be verified by direct substitution.

For part (b), the components of the rate-of-strain tensor in polar coordinates can be
derived by the transformation of coordinates shown in Sec. 5.8, p. 126, or by direct deri-
vation, as shown in Sec. 5.9, p. 128. By a slight change of notations, we obtain, according
to Eq. (6.1-3).

_ o,
T

_1fléu, | au, uﬂ)

Va = E(r @ a T

With these equations, the problem is easily solved.

6.4 Suppose we were given the following displacement field defined in a unit circle,

u, 1y
Vo, =~ + =—2,
" r  roag

"

u=a*+bxy+ec
v=0+ o+ mz,
w = mz,

Is there any question of compatibility?
6.5 Suppose the displacement field in a unit circle is the following. Is it compatible?

u=arlogé,
v =ar + csin 6,

w =0
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6.6 In a two-dimensional, plane-strain field, the displacements are described by u(x, y),
v(x, y), whereas that along the z-axis, w, is identically zero, x, y, z being a set of
rectangular Cartesian coordinates.

(a) Express the strain components e, &, e,, in terms of u, v.
(b) Derive the equation of compatibility for the strain system e, e,,, e,
(c) Is the following strain system compatible?

e = k(@ -y, e, =k, e, =kxy,
where k, k' are constants. All other strain components are zero.

Answer to (c): Ttis,ifk' = ~k.

6.7 A rectangular plate of width a and height b rests on a rigid base, Fig. P6.7. The plate
material is isotropic and obeys Hooke's law. Its density is p. The plate is subjected to
a uniformly distributed pressure on top and gravitational load in the vertical directifm.
() State a set of possible boundary conditions. (b) Derive a possible stress distri.butlon
that satisfies the equation of equilibrium and those boundary conditions in which the
stress is specified. () Compute the strains and check whether the conditions gf com-
patibility are satisfied. (d) Determine the displacements in the plate. Are the dlSPlBC?-
ments continuous and single valued? (e) Are all the boundary conditions speciﬁefi in
(a) satisfied? If they are, can you claim that the stress distribution you have just obtained
an exact solution of the problem? If all the boundary conditions are not satisfied, then
obviously you did not obtain a solution. Two things can be done. First, can you mo@ify
the boundary conditions in such a way that you can now claim to have found a solution
of a different problem? Next, returning to the original problem, and step (b), can you
find a different stress distribution that has a chance to be an exact solution? Is there a
general method to obtain an exact solution? Are there restrictions to the statement of
boundary conditions in step (a)? Can we §ay that some boundary-value problems are
well posed, whereas others are not well posed? What should be the criterion for well-
posedness? For (c), use Hooke’s law, Eq. (7.4-7), p. 158.

LT

- Figure P6.7 A plate loaded by
M ETTTETETETETTETEOESS weight and pressure.

FURTHER READING

Emivcen, A. C., Nonlinear Theory of Continuous Media. New York, McGraw-Hill, 1962,
pp. 44-46. ‘
TruespiLL, C., aNp Tourm, R., The Classical Field Theories. In Handbuch der Physik,

Vol III/1. Springer-Verlag, Berlin, 1960, Art. 34, footnotes.



CONSTITUTIVE

EQUATIONS

The three most commonly used constitutive equations are presented. They
are .m'ather{zatzcal abstractions and are given here in the barest outline to
exhibit thfzzr 'similarities and differences. They can be simplified greatly if
{he material is isotropic. Since the concept of isotropy is very important and
is Lfsually passed over too lightly by beginners, we shall devote Chapter 8
to it. The properties of some real materials are discussed in Chapter 9.

7.1 SPECIFICATION OF THE PROPERTIES OF MATERIALS

Tfhe properties .of materials are specified by constitutive equations. A wide variety
0 {natenals .ex1sts. Thus, we are not surprised that there are a great many consti-
tutive equations describing an almost infinite variety of materials. What is sur-
gzxssérrlli,t:(s) Itlhsfftahc; that ltlhreje simple, idpalized stress-strain relationships give a good
dese] o mechanical properties of many materials around us, namely, the
nony 1Cslcou§ ! uid, thq Nevytoman viscous fluid, and the perfectly elastic solid. We
th: ¢ :scnt be th;:se 1deahzec.1 rela.tions in this chapter, but we hasten to add that
by tgesge;i ;Zs'hzoe drt;al materials dlffer. more or less from the properties described
oy these \dea Viscaows. f\{Vl‘le_n tl?e dlfferénces are great, we speak of real gases,
o Chapte:s9 . wids; viscoelastic solids, plasticity, etc., which will be
equau%le z%utzlilt;(tm mt:tzt 'dfsilbes a property of a ma'terial is called a constitutive
ety o a mato lnad.. stress-strain re%am')nshlp describes the mechanical
propery ol d‘a and is therefore a constitutive equation. Our main objective
inthisc p : o discuss the §tr.ess-stram relationship. There are other constitutive
quations, such as those describing heat transfer characteristics, electric resistance
mass transport, etc., but they are not our immediate concem., ,

154

Sec. 7.2  The Nonviscous Fluid 155

72 THE NONVISCOUS FLUID .

A nonviscous fluid is a fluid for which the stress tensor is isotropic, i.e., of the
form
0';,; = —pS,-,-, A (7.2—1)

where 9 is the Kronecker delta and p is a scalar called pressure. In matrix form,
the components of stress in nonviscous fluid may be displayed as

p 0 0\ .
(o) =10 -p 01 (1.2-2)
0o 0 -

The pressure p in an ideal gas is related to the density p and temperature T

by the equation of state

% = RT, (12-3)

where R is the gas constant. For a real gas or a liquid, it is often possible to obtain
an equation of state

; fo.0, D =0 . (7.2-4)
An anomaly exists in the case of an incompressible fluid, for which the equa-

tion of state is merely R , ’
= cons;mw : (7.2-5)

Thus, the pressure p is left as an arbitrary variable for an incompressible fluid. It
is determined solely by the equations of motion and the boundary conditions. For
example, an incompressible fluid in the cylinder of a hydraulic press can assume
any pressure, depending on the force applied to the piston.

Since hydrodynamics is concerned mostly with incompressible fluids, we shall
see that pressure is controlled by boundary conditions, whereas variations in pres-
sure (the pressure gradient) are calculated from the equations of motion.

‘Air and water can be treated as nonviscous in many problems. For example,
in problems concerning tides around the earth, waves in the ocean, the flight of
an airplane, flow ina jet, and combustion in an automobile engine, excellent results
can be obtained by ignoring the viscosity of the medium and treating it as a non-
viscous fluid. On the other hand, there are jmportant problems in which the viscosity
of the medium, though small, must not be neglected. Among such problems are
those of determining the drag force acting on an airplane, whether a flow is turbulent
or laminar, the heating of a reentry spacecraft, and the cooling of an automobile

engine.
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7.3 NEWTONIAN FLUID

A Newtonian fluid is a viscous fluid for which the shear stress is linearly proportional
to the rate of deformation. For a Newtonian fluid, the stress-strain relationship is
specified by the equation

o = —pd; + DyuVi A (7.3-1)

where o;; is the stress tensor, Vy, is the rate-of-deformation tensor, %, is a tensor
of viscosity coefficients of the fluid, and p is the static pressure. The term —pd;
represents the state of stress possible in a fluid at rest (when Vi, = 0). The static
pressure p is assumed to depend on the density and temperature of the fluid,
according to an equation of state. For Newtonian fluids, we assume that the ele-
ments of the tensor @y, may depend on the temperature, but not on the stress or
the rate of deformation. The tensor @y, of rank 4, has 3* = 81 elements. Not all
of these constants are independent. A study of the theoretically possible number
of independent elements can be made by examining the symmetry properties of
the tensors oy, Vi, and the symmetry that may exist in the atomic constitution of
the fluid. We shall not pursue it here, because we know of no fluid that has been
examined in such detail as to have all the constants in the tensor %, determined.
Most fluids appear to be isotropic, for which the structure of %y is greatly sim-
plified, as will be seen shortly. Those readers who are interested in the general
structure of B, should read Sec. 7.4 and the references referred to therein, because
the tensor of elastic constants Cy has a similar structure.

If the fluid is isofropic, i.e., if the tensor By, has the same array of components
in any system of rectangular Cartesian coordinates, then %;;;, can be expressed in
terms of two independent constants A and p (see Sec. 8.4) as

B = A0 + n(Budy + 8Dy, (1.3-2)
and we obtain
oy = —pdy; + Wby + 2uVy
A contraction of Eq. (7.3-3) gives
o = —3p + O\ + 20V (1.3-4)

If it is assumed that the mean normal stress jo. is independent of the rate of
dilation Vi, then we must set

A (133)

I+ 2 = 0 (7.3-5)

thus, the constitutive equation becomes
oy = —pdy; + 20V — uVudy. A (7.3-6)
This formulation is due to George G. Stokes, and a fluid that obeys Eq. (7.3-6)

is called a Stokes fluid, for which one material constant p, the coefficient of viscosity,
suffices to define its property.
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If 2 fluid is incompressible, then Vi = 0, and we have the constitutive equation
for an incompressible viscous fluid:

oy = —pdy; + 2wV A (137)
If p = 0, we obtain the constitutive equation of the nonviscous fluid:
i = "'PB,'I'. (73—8)

The presence of the static pressure term p marks a fuqdamental ’differe.nc.e
between fluid mechanics and elasticity. To accommodate this new variable, it 1
often assumed that an equation of state exists which relates the pressure p, the
density p, and the absolute temperature T,ie.,

f(p> Py T) = 0. (73—9)

le, for an ideal gas, Eq. (7.2-3) applies; for a real gas, Eq. (9.1-3) may
};gruzz?gor, fresh water gnd seg water, Tait (1888) and Li (1'967) have (.)btame:d
their equations of state (see refs. at the end of Chap_. 9.) An mcompr«::sszble ﬂmd
specified by Eq. (7.2-5) is again a special case, for which the pressure p1s a variable
1o be determined by the equations of motion and bounda{y copdmons.

Fluids obeying Eq. (7.3-1) or Eq. (7.3-3), whose viscosity effects are rep-
resented by terms that are linear in the components of t.he rate of. deformation,
are called Newtonian fluids. Fluids that behave othfarw1§e are said to be non-
Newionian. For example,  fluid whose coefficient of viscosity dppen@s on the basic
invariants of V;is non-Newtonian. {See Sec. 9.8 for further discussion.)

7.4 HOOKEAN ELASTIC SOLID

A Hookean elastic solid is a solid that obeys Hooke’s la\‘w, which states that the
stress tensor is linearly proportional to the strain tensor; i..,

A (144)

o = CijkiCi,
where o;; is the stress tensor, éx is the strain tensor, and Gy is a tensor of elastic

constants, ot moduli, which are independent of stress or strain. The tensorial quality

of the constants C follows the quotient rule (Sec. 2.9).
As a tensor of rank 4, Ci has 3% = 81 elements; but inasmuch as o;; = oy,

we must have
Ciikl = Ciikl- (7-4'2)

Furthermore, since e, = €, and in Eq. (7.4-1) the indices k and [ are dm?lmies
for contraction, we can always symmetrize Cyi With respect to k and | without
altering the sum. Thus, we can always write Eq. (7.4-1) as

oy = %(Ciikl + Cien = Cipitu, (7.4-3)
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with the property

Cilik, = Cx{jllw (74"‘4)
If such a symmetrization has been done, then under the conditions (7.4-2) and
(7.4-4), Ciji, has a maximum of 36 independent constants.

That the total number of elastic constants cannot be more than 36 can be
seen if we recall that because a; = oy; and e;; = ¢, there are only six independent
elements in the stress tensor o;; and six in the strain ¢;;. Hence, if each element of
o;;is linearly related to all elements of e;;, or vice versa, there will be six equations

- with 6 constants each and, hence, 36 constants in total,

For most elastic solids, the number of independent elastic constants is far
smaller than 36. The reduction is caused by the existence of material symmetry.
(See the excellent discussions on this subject in the classical books on the theory
of elasticity by Love, and by Green and Adkins, listed at the end of this chapter.)

The greatest reduction in the number of elastic constants is obtained when
the material is isotropic, i.., when the elastic properties are identical in all direc-
tions. More precisely, isotropy for a material is defined by the requirement that
the array of numbers Cy, has exactly the same numerical values, no matter how
the coordinate system is oriented. Because of the importance of the concept of
isotropy, we shall discuss it in greater detail in Chapter 8. It will be shown that for
any isotropic material, exactly fwo independent elastic constants characterize the

material. Hooke's law for an isotropic elastic solid reads
O = )‘emxsij + Z}Le,'j. A (7.4“5)

The constants \ and p. are called the Lamé constants. In engineering literature,
the second Lamé constant . is practically always written as G and identified as the
shear modulus.

1t will be useful to write out Eq. (7.4-5) in extenso. With x, y, z as rectangular
Cartesian coordinates, we have Hooke’s law for an isotropic elastic solid:

O = Mo + ¢ + €) + 2Ge,

Oy = )\(eu + Eyy + sz) + ZGeyy A (74—6)
O = Mew + €, + &) + 2Ge,,
Gy = 2Ge,, 0, =2Ge,, 0. = 2Ge..

These equations can be solved for ;. But customarily, the inverted form is written
as

1+ 1
Cry = '—E'[O'xx - 'U(U'yy + 0::)]: e‘)‘ = E 0-\')’ = .QE'U“")"
1 1+ 1
Cy = E[O'yy = (o + 0], b = E O = E-G-Uyz’ A (4)
1 1+ 1
€ = 'E[G'zz - v(qx.t + Uy)’)]’ € = E O = -25 RED

et et Nt [ [Np—)
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Or, in index notation,

1+ v
_E""‘D','I' = = O 8,‘,'.

; A (74-8)

€ij =

The constants E, v, and G are related to the Lamé constants A and G.(or ). (Sfae
Eq. (9.6-9) on p. 000.) E is called Young's modulus, v is called Poisson’s ratio,
and G is called the modulus of elasticity in shear, or shear modulus. In the one-
dimensional case, in which o, is the only nonvanishing component of stress, we
have used the simplified version of these equations in Chapter 5, viz., Eq. (5.1-3)
and (5.1-4). o

It is very easy to remember Eq. (7.4-7). Recall tl}e oge-dlmensmnal case,
Eq. (5.1-3). Apply it to the simple block as illustrated in Flg..1.9, p. 00. When
the block is compressed in the z-direction, it shortens by a strain

1

€y, = EO'ZZ. (74—-9)

" In the meantime, the lateral sides of the block will bulge out somewhat. For a

linear material, the bulging strain is proportional to o, and is in a sense opposite
to the stress: A compression induces lateral bulging; a tension induces lateral
shrinking. Hence, we write
‘ v v

< &= T Om ey = ~ g O (7.4-10)
This is the case in which o, is the only nonvanishing stress. If the block is spb jecte.d
also to Oy, 0y, as s illustrated in Fig. 3.1, p. 00, and if the material is .1sotrop1c
and linear (so that causes and effects are linearly superposable), then the influence
of o, 0N €, € and G,; 01 €y, €,, must be the same as the influence of o, on e,
Hence, Eq. (7.4-9) becomes

&y

v v
O = = 0x — = Oy,

E E

which is one of the equations of Eq. (7.4-7), and similarly for other equations ‘in
Eq. (7.4-7). For the shear stress and shear strain, each component produces its
own effect.

Other Forms of Hooke's Law

For an isotropic elastic material, Hooke’s law may be stated in the form

Oue = 3K, (7.4-11)

0';’. = ZGei’i , (7.4"12)
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where K and G are constants and o and e}; are the stress deviation and strain
deviation, respectively; i.e.,

0.'!!' =0y — %O'uusih (74‘13)

€ = € — ey (7.4-14)

_ We have seen before that 1o, is the mean stress at a point and that, if the
§trmn were infinitesimal, ., is the change in volume per unit volume: Both are
invariants. Thus, Eq. (7.4-11) states that the change in volume of the material is

proportional to the mean stress. In the special case of hydrostatic compression,
i.e., when

Ox = Oy = 0 = —P, 0'_,},:0).1:0'1,:0,
we }'mve Oae = —3p, and Eq. (7.4-11) may be written, in the case of infinitesimal
strain, with V and AV denoting volume and change in volume, respectively, as

AV p
v =k A (7415

Thus, the coefficient K is appropriately called the bulk modulus of the material.

The straxp c.lev1j¢1tion ej;describes a deformation without any change in volume.
The stress deviation is simply proportional to the strain deviation. The relationships
between the elastic constants are*

_ 26y _G(E-126) _, 2. _ Ev
1-2% 3G-E 37 (1+vl-2)
_ 3Kv _3KGK - )

1+v O9K-E

G:z\_(l__gy_}.:%(](__)\): E =3K(1“‘2V)= 3KE ,
2y 2 20+v)  21+v) 9K-E
po N __ N _E . _3K-2G 3K-E
20+G) (BK-) 26 23K+ G) 6K (7.4-16)
g o GG +26) ML+ v)(1-2) _9K(K - )
A G v _~3K_)\)
9KG
=2G(1 +v) = = -2
(L +v) = 55 = 3K - ),
KenslgM+v _260+v) GE _ E
3 £l 31-2) 3B3G-E) 3(1-2)
G A v
'ﬁ=1"’ = .
e SO W e

‘Data can be found in the American Institute of Physics Handbook, New York: McGraw-Hill
Book Company (1957), pp. 2-56-2-60.
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‘When the Poisson’s ratio v is 1/4, A = G. When v = 172, then G = Ef3, /K =
0, and e,, = 0.

7.5 EFFECT OF TEMPERATURE

In the preceding sections, the stress-strain or strain-rate relations are determined
at a given temperature. The viscosity of a fluid, however, varies with temperature
as does the elastic modulus of a solid. In other words, the coefficients B, in Eq.
(7.3-1) and Cy, in Eq. (7.4-1) are functions of temperature and are determined
under an isothermal experiment. :

Heat induces thermal expansion and affects the zero-stress state of a solid or
liquid. If a body has no stress at a temperature Ty, and the stress remains at zero
when the temperature is changed to T, then the linear law

€ = Oy (T - Tg) (75’—1)

states that the body will have a strain e;; relative to the state at To. Conversely, if
the configuration of the body is so restrained that e; = 0 when the temperature
changes from T, to T, then a stress

o = —B; (T - Ty) (1.5-2)

is induced in the body. a; and fj; are symmetric tensors of material constants
measured at zero stress and zero strain, respectively, at temperature T,

When Eq. (7.5-2) is combined with Hooke’s law, we obtain the Duhamel-
Neumann law for thermoelasticity:

\ Gij = Cijribrr =~ Bii(T - To), A (7-5—3)

For an isotropic material, the second-order tensor B; must also be isotropic. It
follows that B;; must be of the form Bd;; (see Sec. 8.2). Hence, for an isotropic
Hookean solid,

Gij = )\ekk5,~,- + 2GC;,‘ - B(T - To)&,'i. : (7.5"4)
Here, \ and G are Lamé constants measured at constant temperature. (Further

details can be found in Fung, Foundations of Solid Mechanics, Chapter 12, esp.
p. 355.)

7.6 MATERIALS WITH MORE COMPLEX MECHANICAL BEHAVIOR

As we have said before, the nonviscous fluids, the Newtonian fluids, and the
Hookean elastic solids are abstractions. No real material is known to behave exactly
as any one of them, although in limited ranges of temperature, stress, and strain,
some materials may follow one of these laws quite well. ‘
Real materials may have more complex behavior. For fluids, household paints
and varnish are non-Newtonian, as are wet clay and mud. Most colloidal solutions
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are non-Newtonian also. For solids, most structural materials are, fortunately,
Hookean in the useful range of stresses and strains; but beyond certain limits,
Hooke’s law no longer applies. For example, virtually every known solid material
can be broken (fractured) in one way or another, under sufficiently large stresses
or strains; but to break is to disobey Hooke’s law.

Nevertheless, the vast literature on continuum mechanics is centered around
these idealized materials, and the results have been remarkably useful. We shall
discuss more complex behavior of liquids and solids in Chapter 9, but we shall
leave the mathematical treatment of the non-Newtonian, nonlinearly elastic or
inelastic solids to specialized treatises.

PROBLEMS

7.1 You were given a fluid and asked to determine whether it is Newtonian or ideal. What
experiment would you do to provide an accurate answer?

7.2 The viscosity of a fluid can be measured in a number of ways. Propose two ways to
do it, and in each case present a sketch, an explanation of the design, the method of
calculating the coefficient of viscosity, the applicability of the instruments, and pIOS
and cons of the two instruments in comparison.

7.3 To a civil engineer building a large dam, the viscoelastic behavior of the concrete is a
very serious matter. Make a speculative assessment of the possible consequences of
the “flow” of the concrete in a large dam. Design an experiment to verify the consti-
tutive equation of the concrete. Propose an instrumental system to do this.

74 Much can be learned of the constitutive equations of materials by looking into things
in our kitchen. Take a stalk of fresh celery, or a fresh carrot. Bend them and they
snap crisply. Let the celery and carrot dry out a few days. Then bend them and they
would not break. Why? How would the constitutive equations of the carrot and celery
reflect these observations?

7.5 Sour dough and spaghetti are two excellent materials for rheological investigation.
Feel them with your hands and fingers and propose a mathematical description of their
constitutive equations. '

7.6 Take a string and a pair of scissors. If the string is slack, and the scissors are dull, you
may find that the string is not easily cut. Now, stretch the string taut, and then apply
the scissors, The cutting is then very easy. Why?

7.7 A group of physiologists climbed Mt. Everest, the highest peak of the world. They
wanted to collect samples of Himalayan air at high altitude to bring back to their
laboratories for detailed analysis. How can you do that? Please invent a way. One
suggestion was to bring a number of glass pipettes, and use an electric current to seal
the ends. Could that be a practical way?

7.8 Getting the constitutive equations and equations of state of fresh and sea water is very
important for the understanding of oceanography. How can you obtain samples of sea
water at great depth and over a wide area of the sea for testing in the laboratory? One
of the earliest to do it was P. G. Tait. See references to Tait (1888) and Li (1967) at
the end of Chapter 9. Design a modern way to do it yourself.

Discuss the importance of the data with regard to wave motion, marine life,
underwater acoustics, antisubmarine warfare.
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7.9 The explosions-of great volcanos are-nature’s display of con-tinuum mechanics. What
are the materials involved? What are their constitutive equations? How to study these
constitutive equations?. .

7.10 People living in. the Gobi desert in Sinkiang and Mongolia describe th‘e OFCESIOHB.I
terrible sandstorms. How can sand flow like a fluid? Speculate on a constitutive equa-
tion, and design an experiment for testing. Design an instrument that can be taken
there to do some measurements.

7.1 1 trust that you have visited a sand dune somewhere. Now, \.vith the knowledge .of
continuum mechanics, formulate a mathematical problem that will enable you to predict
the shape of the sand dune. . '

7.12 In geological terms, glaciers flow, rock beds be.nd, mour}tams move, continents cplhde.
All depend on forces, structures, and constitutive equations. Desx.gn some experiments
to investigate the constitutive equations of the ice, rock, mountains, ocean floors; and
the continents.

7:13 We would certainly like to know the constitutive equations of the earth’s ma}ntle and
core, and of the planets, the sun, and stars. How can we get a handl'e on this? What

“~" kind of observations would help us deducing information on the constitutive equations
of the materials of these objects?

7.14 An astronaut went to the moon and brought back some rock samples. We are interested
in the mechanical properties of these rocks. Design a program of experiments to get
as much information out of the small amount of rocks as possible.

7.15 A way to explore the moon is to use unmanned rockets with rem.ote-controllfad instru-
meats. Suppose that a landing is planned to study the mechamca} prf)pertles of_the
materials of the lunar surface. Design an instrument package that will yield the desired
information.

7.16 Arth;itis of the knee, hip, elbow, and finger joints afflicts many people. In terms of
the consfitutize equation of the articular cartilage, what happens?

7.17 Suppose that yourare, planning a biome.chanics.laboratory to inyestigate the me::hamcgl
properties of the muscles from the point of view of_ deterqumg th_at muscles consti-
tutive equations. Make a list of the desired properties to be mvest'lgated. Make a list
of the experiments that should be done. I am pretty sure that all the mstrUfnents r.xeeded
for all the desirable experiments do not exist. Here is your opportunity to invent.
Select some instruments of key significance and go ahead to invent. Make sketches,
designs, calculations. Consider the feasibility, the cost, and the pay-off.

718 Tﬂere are three very different kinds of muscles: the skeletal, the.heart, and the smooth
muscles of the blood vessels, ureter, bladder, uterus, and other internal organs. There

are differences in the availability of test specimens from animals;a.nd 'from hu.mzms.
There are differences between the testing of isolated specimens and in vivo specimens.
So the answer to the preceding problem has to be narrc?wed down to'more spea.ftc
categories. As an investigator, this narrowing down i§ indeed a crucm'l step which
requires wisdom, experience, and ambition. The selection of an appropriate ?arget of
research will reflect one’s training and personality. Give some thought. to FhlS, make
your selection, explain the reasoning to yourself, write it down, and review it one year
from today.

7.19 A similar problem can be formulated for other tissues for investigation in a biomg-
chariics laboratory. No living tissue is unimportant. People take the health of their
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bodies for granted until disease strikes. Realizing this, plan an investigation of a tissue
other than the muscles.

7.20 Every constitutive equation must be tensorially correct. Based on this requirement,
consider the question of generalizing Starling’s hypothesis, which is well known in
physiology, but is formulated without regard to stresses other than pressure. Starling’s
hypothesis states that the rate of transfer of water across a membrane is governed by
the following formula:

m=kp—p—~mF m)

where 7t is the rate of movement of water (g/sec/m®), p, and m, are, respectively, the
hydrostatic and osmotic pressures on one side of the membrane, P, and , are those
on the other side, and k is the permeability constant, with units of seconds per meter.
In considering water movement across the endothelium of the blood vessel, we realize
that the flowing blood will impose a shear stress on the membrane, and the endothelial
cells will respond to the shear stress with internal stresses. Many recent papers have
reported the important effects of the shear stress on blood vessel remodeling, and on
the transport of ions and enzymes across the endothelium. It may play a role on the
transport of water also. Hence, propose a generalization of Starling’s law to include
the stresses in the media on both sides of the membrane, and describe a plan to verify
the proposal experimentally.

Discussion. Let 1, be the stress-deviation tensor. Since ri1 is ascalar, any involvement
of 7,; must be in the form of scalar invariants, such as 7w, TV, 7igi, or ¢y, where

i is the rate of the deformation deviation tensor, ej; is the strain deviation tensor,
and c; is a tensorial set of constants. Hence, we might have the hypothetical rela-
tionships

i = k(Ap ~ Aw) + ¢ A

= k(bp — Am) + ¢ AtiVi,
or

m = k(Ap — Aw) + ¢ Arjgj.

i = k(Ap - Aw) + Acgr),

Here, A means the difference of the quantities on the two sides of the membrane.
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Lovg, A. E. H., A Treatise on the Mathematical Theory of Elasticity. Cambridge: University
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esp. pp. 151-165.

The concept of isotropy is used frequently as a simplifying assumption in
continuum mechanics. First, we shall define material isotropy and isotropic
tensors. Then we shall determine isotropic tensors of ranks 2, 3, and 4 and
apply them to the constitutive equations of isotropic materials.

8.1 THE CONCEPT OF MATERIAL ISOTROPY

Materials whose mechanical properties do not depend on directions are said to be
isotropic. For example, if we make a tension test on a metal and find that the result
does not depend on the direction the tension specimen was cut from the ingot and
that the lateral contraction is the same in every direction perpendicular to the
direction of pulling, we may suspect that the metal is isotropic.

To give a precise definition, we make use of the constitutive equation: A
material is isotropic if its constitutive equation (the stress-strain-history law) is unal-
tered under orthogonal-transformations of coordinates (Sec. 2.4). For example, if
the constitutive equation is a;; = Cjuew, we demand that, after an orthogonal
transformation, the law read G; = Cyu €., where the barred quantities refer to
the new coordinates.

Since orthogonal transformations consist of translations, rotations, and reflec-
tions of coordinate axes, the definition requires that the mathematical form of the
constitutive equation remain unchanged, no matter how the axes are translated,
rotated, or reflected. In particular, the array of material constants must have the
same values in any right-handed or left-handed system of rectangular Cartesian

coordinates.

8.2 ISOTROPIC TENSOR

Definitions

An isotropic tensor in Euclidean space is a tensor whose components in any rec-
tangular Cartesian system are unaltered by orthogonal transformations of coor-
dinates.

165
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By definition (Sec. 2.4), an orthogonal transformation from x,, x,, % 0%,

X2, X3 IS
=P te  (=1,2,3) 8.2-1)
where f; and o, are constants, under the restriction that |
BB = iz : 8.2-2)

An orthogonal transformation is said to be proper if a right-handed system
of coordinate axes is transformed into a right-handed one. For a transformation
to be proper, the Jacobian must be positive (see Sec. 2.5). For the orthogonal
transformation (8.2-1), the Jacobian is the determinant |B;|, which, according to
Eq. (8.2-2), must have the value =1. Hence, for an orthogonal transformation to
be proper, we must have

det [B;) = 1. (8.2-3)

For example, all rotations of coordinate axes are proper, but a reflection in
the x,x;-plane

Xy = —Xy, -1 0 0
H=xn @)= 0 1 0, [Bl=-1 (8249
fg = X3, 0 0 1

is orthogonal, but improper, because it turns a right-handed system into a lefi-
handed one.

Connecticn between Isotropic Tensors and Isotropic

" Material

We shall prove that if the relation
Gij = Lijuiu (8-2"5)

is isotropic, then Cyy, Is an isotropic tensor.

Proof: By the quotient rule (Sec. 2.9), Cy is a tensor of rank 4. Hence, Cyy
transforms according to the tensor transformation rule. Now, transforming Eq.
{8.2-5) into new coordinates ¥, we have

7y = Cyulur (8.2-6)
But the definition of material isotropy requires that

T = Cyutu 8.2-7)
Hence, by comparing Eq. (8.2-6) with Eq. (8.2-7), we obtain

Ciut = Cyur 8.2-8)

Thus, C;j; is an isotropic tensor.
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Isotropic Tensors of Ranks 0, 1, and 2

Al scalars are; of course, isotropic: But there is no isotropic tensor of rank 1. For,
if the vector A; were isotropic, then it would have to satisfy the equation
Z{ = A,‘ = BiiAi (8-2—‘9)

for all possible orthogonal transformations. In particular, for a 180° rotation about
the x-axis, we would have

1 0 0
0 -1 o (8.2-10)

= —X, 0 0 -1

fl = Xy
B=xn, ()=

Eg. (8.2-9) then Eecomes ,
Al = Al; Av = —Az, A3 = —A3.

Herice, A, = A; = 0. Similarly, by the same process but with the role of x;, x;,
xy permuted, we obtain A; = 0. Thus, the nonexistence of any isotropic tensor of

rank 1is proved. ‘ , '
For tensors of rank 2, the Kronecker delta 3; is an isotropic tensor, because

8 = BinBindun (by the definition of a tensor)

= BimBjm : (Since 8,,, il Qiftm+ ll)
=5 [byEq. (82-2)]-

We propose to show.that every isotropic tensor of rank 2 may be reduced to the

form pd;;, where p is a scalar. ‘
For the proof, we note first that if a tensor By;is isotropic, it must be diagonal.
For, imposing the 180° rotation about the x,-axis, as specified by Eq. (8.2-10), we

obtain
Ez = BuBuBum = —Bp.
But isotropy requires that By, = By,. Hence, By, = 0. Similarly, By = 0if i # J.

Hence, B;; is symmetric and diagonal. .
Next, let €, be the permutation tensor, and consider the transformation

)‘c,- = (8,‘; + d0€3,'i)x,~,

1 do 0
(By) = By + dOex) = |—-d6 1 0}, (8.2-11)
0 0 1
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which represents a rotation about the x;-axis with an infinitesimal angle of rotation
d6.* The definition of tensors furnishes the relation

—Eii = (8;,,, + d(‘)e3,-,,,)(8,-,, + dee3j")Bm"
= 6imsjann + de(ESimﬁiann + 63}115imBm11) + d62€3im€3jann (&2_12)
= B; + ab(esinBm; + €nBin) + o(d8?).

But if B;; is isotropic, we must have By; = By;. Hence, for small but arbitrary as,
we must have

E3l'mBm] + eBinBin = 0 (82—13)

Take i = 1,j = 1; then we have
€&2By + €nBn = By + Bp = 0.

But B;; is symmetric, as we have shown. Hence, By, = By = 0. This agrees with
what we have just learned, but no new knowledge is gained.
Now take i = 1, j = 2; then we have

e2Bn + €uBu = B — Bu = .

Hence, By; = By. It is evident that an entirely similar rotation about the X-axis
would yield By = 0, B = By, and a rotation about the x.-axis would yield
B, = 0, B;; = By, Hence, the isotropic tensor By; is reduced to the form Byd;;.
Writing p for By, we obtain By; = pby;.

Now any rotation from one rectangular Cartesian coordinate system to
another can be performed by repeated infinitesimal rotations about coordinate
axes. Hence, the conditions just examined are the only conditions imposed by
isotropy with respect to proper orthogonal transformations. Thus, B;; = pd;; for
all proper orthogonal transformations. .

For the second-rank isotropic tensor pd;;, a reflection in the x,x5-plane, Eq.
(8.2-4), does not change the value of the tensor. By the argument of arbitrary
rotation, we conclude that a reflection in any plane would not affect its value.
Hence, the form we have found is isotropic with respect to all orthogonal
transformations. QE.D.

This proof is due to Jeffreys, see Ref. on p. 180. Note that for an isotropic
tensor, the coordinate axes may be labeled in an arbitrary order. Thus, a cyclic
permutation of the indices 1, 2, 3 cannot affect the values of the components of a
tensor that is isotropic with respect to rotation of the coordinate axes. Hence, By,
= 0 implies By, = 0. If the tensor is isotropic also with respect to reflection, then
an arbitrary permutation of the indices 1, 2, 3 will not affect the values of the
components. Use of these arguments may shorten the proof.

*See the rotation matrix of Eg. (2.4-5), and note that when 6 is very small, cos 6 = 1, sin@=0.
Identifying the angle 6 of Sec. 2.4 with d here furnishes the geometric interpretation of the transfor-
mation of Eq. (8.2-11).

|
i
:
|

f Rank 3

8.3 ISOTROPIC TENSORS OF RANIC 3

For tensors of rank 3, we can verify that the permutation tensor e is isotropic
with respect to rotation of coordinate axes (proper orthogonal transformations).
Tt is not isotropic with respect to reflection in a coordinate plane, because a reflec-

tion such as Eq. (8.2-4) turns €3 = 1into &p = —1. _ . '

We can show that with respect t0 all rotations of coordinates, the only isotropic
tensors of rank 3 are scalar multiples of €. The proof can be constructed sunﬂ.arly
to that for the second-rank tensor. Let u;;. be an isotropic tensor gf rank 3. Conmd_er
an infinitesimal rotation of an angle d6 about an arbitrary axis § (a vector with

components £) passing through the origin:
%= (3 + db Ereri) X (8.3-1)
Then, according to the tensor transformation law,
[ (™ A0F €O + ABE ) (i + AOE Esip)hnurp
W + _de{gse,,-,,,u,,,ik + Eglline + EEapllip} + oded).

By isotropy, ije = Uiks hence, for small 49, the quantity in the.br'aces must vanish.
(We can ignore quantities of the higher order.) Thus, for alli, j, k,

g:ﬁsimumik + g:esinuiuk + gseskpuiip = 0 (8.3"2)

Take i = j = 1. Then
A Eptye + Eatie + E€athin
T + Eepathn + £t = 0. (8393
Now put k = 2. Then, since &, &, & are arbitrary, their coefficients must vanish,
and we obtain
U + Wiz = Unny

Uy + Ui = 0, (8.3-4)

Upa = 0.

From the last equation, and by symmetry, i = 0 if two of i, j, k are equal anfi
the third is unequal. Then, by the first equation of Eq. (8.3-4), u is also zero if
all of i, j, k are equal. The second equation shows that
Wijr = Ujik:

I, in Eq. (3.3-3), we put k = 1, then every term vanishes, yielding no new
information. ‘ '

Finally, consider the case in which i, j, k are all different In Eq. (8.3-2). We
note that iy is zero when m = j. Then it is clear that Eq. (8.3-2) holds because

all the coefficients vanish. It follows that the only isotropic tensors of rank 3

(isotropic with respect to rotations, not reflections) are scalar multiples of 5'% 5
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8.4 ISOTROPIC TENSORS OF RANK 4

Isotropic tensors of rank 4 are of particular interest to the constitutive equations
of materials. It is readily seen that since the unit tensor 3;; is isotropic, the tensors

Buduy  Oudp + Budp, Wby — Wby = e (8.4-1)
are isotropic. We propose to show that if u; is an isotropic tensor of rank 4, then
it is of the form

A8d + w(Budy + Budie) + v(8udy — 8udp), - {842)
where \, ., and v are scalars. Furthermore, if u;, has the symmetry properties
Uit = Ujiriy Wik = Uijiks (8-4"'3)
then N
Wi = A3idur + (@b + Budy). - (8.44)

Proof: We shall establish the results for isotropy with respect to both rotation of
coordinate axes and reflections in coordinate planes.

First, we note that the coordinate axes may be labeled in an arbitrary order.
Thus, a permutation in the indices 1, 2, 3 cannot affect the values of the components
of an isotropic tensor. Hence,

Uy = Upn = Usm,

Unn = Upss = Ui = Uys = Hpn = Usn, (8.4—5)
Up = Upgs = Uit = Up = Upn = Wam,

Uy = Upsmy = Usiz = Usiz = Uss = Uz

Next, we note that a rotation of 180° about the x,-axis, corresponding to the
transformation given by Eq. (8.2-10), changes the sign of any term with an odd
number of the index 1. But these terms must not change sign on account of isotropy.
Hence, they are zero. For example,

Ui = Wiz = Upp = 0. (8.4—6)

By symmetry, this is true for any index i.

These conditions reduce the maximum number of numerically distinct com-
ponents of the tensor u;;, to four, namely, Wy, Uiz, Ui, Mz

Now, let us impose the transformation given by Eq. (8.2-11) corresponding
to an infinitesimal rotation about the x;-axis. The tensor transformation law requires
that

ﬁpqrs = Upgrs + de{eliipuiqn + E3igUpirs + €3irupqi.\‘ + ESBupqri} + O(dQZ). (8.4"—7)
Since, for an isotropic tensor Fuy: = Uy, the terms in the braces must vanish,

Eaipligrs + €3iglpirs + E3irllpgis + Expllpgri = 0. (8'4-8)
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- Because there are only three possible values (1, 2, 3) for each of the four indices

pqrs, at least two of them must be equal. Hence, we may consider separately the
cases where (a) all four are equal, (b) three are equal, (c) two are equal and the
other two are unequal, and (d) two are equal and the other two are equal.

In Case a, take p = ¢ = r = s = 1. Then we see that all terms in Eq. (8.4-8)
vanish on account of Eq. (8.4-6). Similarly, p = g = r = s = 2 or 3 yields no
information.

InCase b, takep = g =r = 1,5 = 2. We get

U ~ Yun = Uun + Ugg = 0, (8.4-9)

No new information is obtained by setting p = g = r = 2, 5 = 1, because this
merely amounts to an interchange of indices 1 and 2, which has been considered
in Eq. (8.4-5). The case p = g = r = 3 is trivial because the e, terms vanish.

Cases ¢ and d yield conditions contained in Eqgs. (8.4-5) and (8.4-6).

Since a rotation from one rectangular coordinate system to another with the
same origin can be obtained by repeated infinitesimal rotations about coordinate
axes, no additional conditions are imposed on u,,, by isotropy.

Now let

Upm = N,
e T (8.4-10)
: Uy = b — W
T}Ken ﬁc\f(8:4—9) says
Uy = N + 2. (8.4-11)
There appear, therefore, to be three independent isotropic tensors of order 4,
obtainable by taking each of X, p, v in turn equal to 1 and the others to 0.

The tensor obtained by taking A = 1, p = v = ( has components u;y = 1
if i = j, k = [ and vanishes in all other cases. Therefore, it is equivalent to

Uijet = By D (8.4-12)

In the tensor obtained by taking . = 1;\ = v = (, the component u;;, =

lifi=kj=1Li#j,andifi=1j=k, i#j, whereas uy = 2ifi = j =
k = L. Other components are zero. This is exactly

Uiy = By + 8Dy (8.4-13)

The tensor obtained by taking A\ = . = 0, v = 1 has elements u;;, = 1 when

i=kj=1i#*}anduy, = —1wheni= [ j=k, i+ All other components

are zero. Hence,
Uijgr = aikajl = ¥ Dike . (8.4—14)
The general isotropic tensor of rank 4 is therefore given by Eq. (8.4-2). From

this equation, Eq. (8.4-4) follows under the symmetry condition given in Eq.

8.43). QE.D.
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8.5 ISOTROPIC MATERIALS

If an elastic solid is isotropic, the tensor Cyy, in Eq. (8.1-1),

Gy = Ciji€er, (8.5-1)
must be isotropic (Sec. 8.2). Furthermore, it has been shown generally that Cijut
= Cjy because the stress tensor is symmetric and that Cjy = Cyue because the
strain tensor is symmetric and the sum Cyey is symmetrizable without loss of
generality. Hence, according to Eq. (8.4-4),

Cijpt = M0y + p(8udy + 8abie) (8.5-2)
and Eq. (8.5-1) becomes’ ‘
Gy = )\ekkﬁ,-,- + Z}Le,-i. (8.5—3)

This is the most general form of the stress-strain relationship for an isotropic elastic
solid for which the stresses are linear functions of the strains. Therefore, an isotropic
elastic solid is characterized by two material constants: ) and p..

Similarly, an isotropic viscous fluid (Sec. 7.3) is governed by the relationship

Gij = —pS,-,- + )\.kas,-j + Z}LV,] (85—4)

8.6 COINCIDENCE OF PRINCIPAL AXES OF STRESS
AND OF STRAIN

An important attribute of the isotropy of an elastic body (or a viscous fluid) is that
the principal axes of stress and the principal axes of strain (or strain rate) coincide.
This follows from Eq. (8.5-3) or Eq. (8.5-4), because the direction cosines of the

principal axes of stress and strain are, respectively, the solutions of the equations
(Secs. 4.5 and 5.7) '

(o5 — o8 = 0, oy — o = 0, (8.6-1)
; (e — Sy =0, ey — edyf = 0. (8.6-2)
By Eq. (8.5-3), Eq. (8.6-1) becomes \
(hewd; + 2pne; — oBy)y; = 0, (8.6-3)
or

2|L(€i,' - 0"5,',')11,- = { (86—4)
if we introduce a new variable :

 _ 9~ Ae
=T (8.6-5)

But Eq. (8.6-4) is of precisely the same form as Eq. (8.6-2). Thus, although the
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eigenvalues (principal stresses and strains) are different, the principal directions,

given by the solutions v, are the same. o o
There are other ways of recognizing the coincidence of the principal directions

of stress and strain. For example, we recognize in Mohr’s circle (_:onstruction {Secs.
4.3, 5.7) that the angle between the principal axes and the x-axis does not degend
on ,the location of the center of the circle. The principal angle can be determined

if the center is translated to the origin. Such a translation is accomplishefi by setting
ow = 0,86 =0, under which condition the stress-strain Telationship becomes
x = 0, e

simply

oy = 2pei
The coincidence of principal directions is then evident because 2 is just a numerical
factor.

8.7 OTHER METHODS OF CHARACTERIZING ISOTROPY

There are other ways to characterize isotropy. For examp.le, one may define the
property of an elastic body through the strain-energy functxon.W(en,eu, ey em),
which is a function of the strain components and which defines the stress com-

ponents by the relation

o w (8.7-1)

ae,-,-'

| Then isotropy may be stated as the fact that the strain-energy _fu{lctiox} depends
only on the invarianis of the strain. For example, using the strain invariants

I = &,
L= %ei,-ei;, orJ, = %e,f,-e;i
L= %eiieikeki,
we may specify Weu, ens - - - ex;) to be a function
WL, L, ). (8.7-2)

Since the invariants retain their form (and value) under all rotations of coordinates,
the same attribute applies to Eq. (8.7-1).

8.8 CAN WE RECOGNIZE A MATERIAL'S ISOTROPY
FROM ITS MICROSTRUCTURE?

A material is said to be isotropic if its stress-strain relationship does not change
when the frame of reference is rotated. If you cut a test specimen from an isotropic
material and perform a test (e.g.,astripfora tensile test, a block for a compression
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test, a beam for a bending test, a shaft for a torsion: test, a plate for a biaxial
loading test, a plate with holes or notches for a stress concentration or fatigue
strength test, or a cube or a cylinder for a triaxial loading test), then the results
relating the measured stresses and strains should be the same no matter in which
orientation you cut the specimen, provided that the size of the specimen is large
enough so that the stresses and strains are well defined according to the limit
concept discussed in Secs. 1.5 and 1.6. If the material is spatially nonhomogeneous,
so that its mechanical properties vary from one place to another, then it is usually
advisable to cut the test specimens sufficiently small in size so that the properties
may be considered uniform in each specimen. This wish may not be realizable in
some cases; for example, in biology, the skin, the blood vessel wall, and the cell
membrane are layered materials with different mechanical properties in different
layers, but in general, we cannot peel these layers off by surgery without damaging
the tissue.

Now, one can examine the structure of the material with a light or electron
microscope or an X-ray diffraction machine, a nuclear magnetic resonance equip-
ment, or a positron device. With increasing power of magnification, one can cross
the allowable lower limit of size for the definition of stress and strain discussed in
Sec. 1.6. The details of the ulirastructure at scales smaller than the lower limit that
defines the stress and strain are, however, irrelevant to the mechanics of the
material. Nevertheless, we are often interested in learning about the ultrastructure

of a material to gain a greater understanding of the material’s mechanical properties.

Sometimes it is even possible to derive the constitutive equation of a material at
a given range of sizes from the ultrastructure at a lower level of sizes. To illustrate
this kind of approach, let us consider a few examples.

Example 1. Crystalline Solid with a Cubic Lattice

Consider a crystal with atoms arranged in a cubic lattice, as illustrated in Fig. 8.1
Let the length of each side of the cube be one unit of measure. Let an orthogonal
frame of reference (¥, x,, x3) be chosen, and let the material be subjected to a
stress described by a tensor

T [4F) 013
Gu  On On 8.8-1)

T31 L4573 T3/ .

In response to the stress, the crystal deforms. In particular, the crystal lengthens
in the x-direction due to &, and shortens in the x,-direction due to o» and os.
Suppose that it was found theoretically or experimentally that

v
&n =75

c;;:, 7 (02 + ox), 8.82)
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Figure 8.1 Mechanical model of a
crystal with atoms arranged in a
cubic lattice.

and that, similarly, the deformations in the x,- and x;-directions yield the strains

€y = % - %(0’33 + 0'1;) (8.8—3)
and
€3 = EE?’:?‘ - %(0']!1 + 0'22). . (8.8"4)

The sheaf’sf_tress o;; produces the shear strain e;;. Suppose that it was found that

\.

\A\(flz = ZGelz, U3 = ZGEZ;, g3 = 2G331 (8.8—5)

 where Gisa constant. Now, can we assert that the mechanical property is isotropic?

The answer is, in general, no. We have three material constants: E, v, and G.
According to Sec. 8.5, and isotropic constitutive equation can have only two inde-
pendent constants. Indeed, if the stress-strain relationship were isotropic, then the
constants G, E, and v would have to be related by the equation

E
G"2(1+v)'

(8.8-6)

- (See Eq. 7.4-16.) If experimental results show that Eq. (8.8-6) does hold, then
- Eqgs. (8.8-1) to (8.8-6) coincide with an isotropic constitutive equation in one

particular coordinate system. We can, however, claim more in this case, because
any Cartesian frame of reference can be transformed into the crystal frame of Fig.

. 8.1 by translation and rotation, and a stress tensor in any arbitrary frame of ref-

erence can be transformed into the form of Eq..(8.8-1) in the crystal frame. Thus,
we can claim that if Eq. (8.8-6) holds, the material composed of a cubic lattice of

atoms is isotropic.
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Example 2. Lung Tissue

The lung tissue proper is a composite structure similar to an open-pored foam
rubber. (See Figs. 1.3-1.6 in Chap. 1.) A carefully validated model of the micro-
structure of the lung proposed by Fung (1988) is shown in Fig. 8.2. Each terminal
unit of the airway is called an alveolus. An assembly of alveoli of the same shape
and size fills the entire space of the lung. The walls of the alveoli are called the
interalveolar septa, which are thin membranes enclosing (as in a sandwich) capillary
blood vessels. The capillary blood vessels of the lung fill 80% of the sandwich space

B ¢
g ¢

Generations  Generotions Generations
12,3 4,5 )

(d)

6)

Tigure 82 A mathematical model of the pulmonary alveolar duct
according to Y. C. Fung, “A Model of the Lung Structure and Its
Validation,” J. Appl. Physiology 64(5):2132-41, 1988, (a) Basic unit of
alveolar duct, consisting of fourteen 14-sided polyhedra surrounding a
central 14-sided polyhedron without walls. Each wall is a membrane or
interalveolar septum. (b) Two units stacked together, with one
membrane in contact removed, to form a longer duct. (c) Two basic
units forming a shorter duct by removing a few more membranes in
common. (d) Pulmonary alveolar ducts of generations 1, 2, 3 are made
of three basic units, with each neighboring pair structured as in part
(c). Ducts of generations 4 and 5 are units shown in past (b). Ducts of
generations 6 and 7 are units shown in part (c). (¢) A ductal tree
formed by ducts of various generations. A number of single 14-sided
units, given a generation number of 8, are needed to fill the entire
space. The lung tissue is filled by these trees, which converge on
bronchioles, then bronchi, and, finally, the trachea.

i
i
i
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of the interalveolar septa. A good model of the alveolus is a 14-sided tetrakaideca-
hedron, or 14-hedron. Fourteen 14-hedra enclosing a central 14-hedron whose walls
are all perforated form a second-order 14-hedron, which is the basic unit of the
alveolar duct. All alveoli of the basic second-order 14-hedron unit ventilate to the
central space. Two or three basic units joined together, with a proper number of
interalveolar septa removed for ventilation, make up the branches of the alveolar
ducts of the lung. Ducts are ventilated to bronchioles, which in turn are ventilated
to bronchi, to trachea, and, finally, to the nose and mouth. The lung tissue is an
assemblage of first- and second-order 14-hedra.

For such a structure, stress can be defined with respect to areas with diameters
much larger than the diameter of the individual alveolus. (In humans, the alveolar
diameter is about 100-300 pm; hence, a plane area of 1 cm® will intersect 1,000-
10,000 alveoli, and stress can be defined quite well in such an area.) Similarly,
strain can be defined in bodies with volumes on the order of 1 em®.

In the lung, each interalveolar septum is made of capillary blood vessels and
connective tissues whose main structural components are collagen and elastin fibers.
To maintain the structural integrity, the edges of the interalveolar septa that were
ventilated were seen to be reinforced with additional collagen and elastin. The
quantity, size, and curvature of these collagen and elastin fibers in human lung
have been measured. (See Fung, Biomechanics [1990], pp. 405-416.) Under stress,
these fibers and connective tissues will deform, leading to the overall stress-and-
strain }élationship of the lung tissue. Such a relationship is useful for understanding
the stress and sfrain distribution in the lung under a gravitational load in normal
life, under zé\roxgravity in space flight, under acceleration in sports, and under
conditions of disease, as well as analyzing the distribution of ventilation and blood
flow in the lung.

In spite of the rather complex geometric structure of the lung tissue, the basic
cubic symmetry is clear, because each 14-hedron is obtained by cutting off the eight
corners of a cube, and the assembly retains the intrinsic cubic character. It follows,
from Example 1, that in the small-strain, linear range, the stress-strain relationship
of the lung could be, but is not necessarily, isotropic, depending on whether the
shear modulus, Young’s modulus, and Poisson’s ratio obey Eq. (8.8-6) or not.

The lung tissue, however, is capable of large deformation, and normally works
in a finite strain range relative to the zero-stress condition. At a finite strain, the
constitutive equation of the lung tissue is nonlinear. Knowledge of its initial isotropy
in the neighborhood of the zero-stress state, however, goes a long way, because if
the lung tissue is initially isotropic in the linear, small-strain range, then it is initially
isotropic also in the nonlinear finite-strain range.

PROBLEMS

8.1 Distinguish the words honogeneous and isotropic. Consider the atmosphere of the

earth:
(a) If you are concerned with a high-altitude sounding rocket, would you call the

atmosphere homogeneous or isotropic?
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(b) If the problem is concerned with the flow around the immediate neighborhood of
the rocket, which is flying at such a speed that no shock wave is generated, could the
air be treated as homogeneous or isotropic?

(€) If shock waves are generated in part (b), what then?

Show that the theorem proved in Sec. 8.4 may be restated as “The most general isotropic
tensor of rank 4 has the form

Upjtn = 0084 + P8, + 'Yaimaiks‘
where «, B, v are constants.”

Show that the tensor e;,,, is isotropic. Are there other isotropic tensors of rank 57

Form some isotropic tensors of rank 6. Generalize to isotropic tensors of even order
n,

Name three liquids that are not isotropic.
Name five solids that are not isotropic.

Isotropy is a special feature of the constitutive equation. Hence, an experimental testing
of isotropy would require the same equipment and instruments used in the determi-
nation of mechanical properties. Suppose that you were asked to determine whether
a certain metal is isotropic. Design a testing program that will enable you to provide
a definitive answer.

If you are concerned with a biological material, such as the human skin, the desired
testing program would most likely be different from the one designed for metals. The
skin is obviously not isotropic in three dimensions. But it may very well be “trans-
versely” isotropic: isotropic in its plane. Design a new testing program for the skin.
For industrial materials, such as concrete and plastics, it is very important for the
designer to know whether a material is isotropic or not. Suppose you are establishing
alaboratory for testing structural materials. Present a plan of experiments, and describe
the needed instruments.

A single crystal is usually anisotropic, but polycrystalline material may be isotropic.
A single long-chain molecule is anisotropic, but polymer fluids and solids may be
isotropic. Explain this from the point of view of our definition of  continuum discussed
in Sec. 1.5, with a specified minimum defining dimension, and from statistical char-
acteristics of the structure of the materials. :

From a theoretical point of view, is it possible to formulate some rules about
isotropy based on the structure of the material? In polycrystalline metals, the grain
boundary material is usually amorphous, and dislocations and twinning should be
considered. In polymer materials, the molecular structure should be considered.

An isotropic material can be made anisotropical by mechanical means, e.g., by rolling,
hammering, shot peening, explosive forming, stretching, wire drawing. Use statistical
arguments to provide an explanation of the changes. Design an experimental facility
fo test the results.

Cold work on metal alloys by rolling, pressing, or forging, will deform or crush crystal,
create new grain boundaries, causing large movements of dislocations and creating
new ones. Subsequent heat treatment can change the shape of crystals, grain bound-
aries, crystal structure, and solid solution of inclusions {such as carbon in steel). Would
these processes change the stress-strain relationship below the proportional limit (in
the linear range)? Would the Young’s modulus, Poisson’s ratio, and the shear modulus
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be affected? Would-the yield poiﬁt be changed by cold work and heat treatment?
Would the ultimate stress at failure be affected?

For a material which obeys Hooke’s law, an experimental program for testing isotropy
would include some experiments involving normal stresses and other experiments
involving shear stresses; and in addition, checking whether the relationship between
the shear modulus, Young’s modulus, and Poisson’s ratio is satisfied. Now, turn our
attention to a material that does not obey Hooke’s law, such as the human skin. The
stress-strain relationship is nonlinear. What kind of a test program can we follow to
ascertain isotropy? s ‘

Isotropy of a material is sometimes confounded by the residual stresses in a test
specimen, The residual stresses are stresses in a specimen when there is no extemgl
load acting in the specimen. They can be put in the specimen by previous plastic
deformation, welding, insertion, or other processes. Hammer a nail into a piece of
wood and you put residual stresses.in the wood. Bend a wire into a ring, weld the
ends, and you have a ring with residual stress. Forge a titanium alloy into a fan blade
of a jet-engine and you have residual stress in the titanium blade.

If the stress-strain relationship were linear, and the displacements were infini-
tesimal, then the equations governing the equilibrium or dynamics of the continuum
are linear, and the principle of superposition of solutions apply. In this case, the
response of a body with residual stress to a given load is the same as that of Fhe same
body without residual stress to the same load. In other words, if the mi'ltenal of t‘he
body is isotropic, measurements of load-deflection relationship will show isotropy with
or without residual stress.

s ~The situation is different if the stress-strain relationship is nonlinear. Explain
e /

nonlinear case. We still wish to know if the basic stress-strain relation is isotropic
for the nonlinear, material, at least in the neighborhood of the zero-stress state. How
should we proceed? Make a plan for the nonlinear case.

Residual stresses in composite materials, with some components in tension, other
components in compression, and all together in equilibrium, is a good way to obtain
improved mechanical properties. For example, prestressed-steel-rod reinforced con-
crete, and high-strength-fiber reinforced metals and plastics are important structural
materials. If isotropy or transverse isotropy of the composite material (at a scale mucfh
larger than the diameter of the individual fibers) is desired, the fibers should be lgld
down in some desirable geometric patterns. Design a composite material with high
strength and isotropy as objectives.

Living creatures use cells as basic structure of their bodies. Cell membranes and stress
fibers (actin molecules) can harbor tensile residual stress against the pressure (com-
pressive residual stress) in the cell contents. The matrix material in the interstitial space
between the cells can be stressed in tension, compression, or shear. The overall mechan-
ical properties of the living tissue (at a scale much larger than the indiv%dual cells)
depend on the cellular structure of the tissue. Discuss the isotropy or amsotropy of
the tissue in relation to the three-dimensional geometric shapes of the cells. Discuss
the overall mechanical properties of the tissue (at a scale much larger than the cells)
in relation to the intensity of the residual stresses; i.e., in relation to the degree of
swelling of the cells.

8.17 Animal cells inside the body rély on blood circulation for access to oxygen. The blood

vessels are therefore pervasive: The circulation system supplies blood to within a few
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microns of distance from every living cell. Consider a piece of tissue whose size is i @E@@?EREE@% @E‘ RE &EJ
much larger than the diameters of the blood vessels. The blood pressure and the stresses Ay 2 - EE} g
in the blood vessel wall may be regarded as residual stresses in the tissue. The overall ‘ ; :
mechanical properties of tge tissuge (at a scale much larger than the diameters of the EEEE@% &N@ g@g“
blood vessels), will depend on how much the vascular system is pressurized; i.¢., with
how much the vessel walls are stressed. The vascular system is a continuous hollow
organ. From this point of view, discuss the relationship between the mechanical prop-
erties of the tissue and the blood pressure. Discuss the isotropy of the tissue in relation
to the geometry of the blood vessel system.

8.18 Any test of isotropy is a test of a null hypothesis that there is no directional difference.
Hence, it must be subjected to statistical principles. What is the principle of statistical

g:::ir:ligfgz%%?;gs. Hom cun e P ol b applied (0 (he fss planied (e In this chapter, we consider real materials i{i gr'der to see how the zdeaglze'd
, : constitutive equations of Chaps. 7 and 8 fit .mto the. real world. We e'(g;m
: with gases and liquids from a molecular point f’f view. Then we consiaer
FURTHER READING solids, viscoelastic bodies, and biological materials.
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Fluids are usually classified as gases o liquids on the basis 9f the. pressurg—vog}me

relationship. A typical example of the pregsure—volume relationship of carbon mtx-1

. ide at constant temperatures is shown in Fig. 9.1. The lower curves have htgnzlf)n :ad
stepy/at certain values of the pressure. To the left of the step, we have the hiqui

\state, wherein it takes a large increase in pressure 0 pr.oduce a smal} change 1n

volume. To the right is the vapor o gaseous state. A pomt on the honzor.xta‘l ste;;

(such 5-AB in the figure) actually represents 2 heterogepeous state c.onS}(sitxng 0

a mixture of liquid and vapor. At 31.05°C, the pause in the CO, liqui -v}fpor

isotherm is reduced to zero. At temperatures above this cnt.lc‘a} value, the isotherm

passes steadily from high to low pressure with no mark§d division between gaéegtus
] and liquid states. At a higher temperature t,l,le equation of state becomes better
and better approximated by the “perfect gas’ law, Eq. (9.1-1).

From the molecular point of view, studies qf gases led Avogadro to prolposet
the hypothesis that equal volumes of gases contain equal numbers of r;llolecu es ﬁt
o the same temperature and pressure. A mo!e of molecules (a sample w] osg ggggx
B in grams exactly equals the molecular weight of the molecule) contains f.1 <
S 107 particles. This is known as Avogadro’s numbfar (NUZ. The volgme o lec:
| » of gas at the normal temperature and pressure (ie., 0°C .and 76 fmrg mte;3 r)z'
pressure) is 22,400 cm®, which corresponds to an average distance of a olu o
10~ cm from one particle 0 the next. Whep a vapor is condensed to 2 1qmt
: solid, it shrinks to about one-thousandth‘ of its volume at the normal tgrj;pera ure
- and pressure; i.e., the interparticle spacing 18 refluced to about 3 X.l fc:;a.

I The kinetic theory interprets the pressure in a gas as the reaction 0 tl etgas
molecules impinging on a surface. From the consideration of changes in momentum
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Figure 9.1 Isothermal curves of
B volume-pressure relationship for
CO, near the critical point, C. At
sol- the liquid-gas critical point of CO,,
the temperature is 304.2°K, the
pressure is 72.9 atm, and the

Volume volume is 94 cm® mole ™

in molecular impacts 'and rebounds, the kinetic theory derives the equation of state
of a.perfect gas relating the pressure (p), volume (V), and absolute temperature

pV = RT. (9.1-1)
Here,

R = Nok. (9.1-2)

For 1 mole of gas, k and R are universal constants, the same for all substances
The constant  is Boltzmann’s constant = 1.38 X 10~ erg deg™, and R is thc;
. Bas constant = 8.313 x 107 erg deg™' mole™ = 1.986 cal deg™! m;)le“‘.
For the condensed state, Van der Waals proposed the celebrated equation

(p + %)(V =~ B) = RT, (9.1-3)

in which o/V” represents the attractive forces between the gas particles (not accu-
rately, except at low gas densities), while B represents the molecular volume of
t}le particles. Figure 9.2 shows a family of Van der Waals p-V curves. They are
like Fhe curves of Fig. 9.1, but the horizontal line AB in Fig. 9.1 has become a
continuous curve AEDFB in Fig. 9.2. The patts of the curves below the abscissa,
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P

Figure 9.2 A family of Van-der
Waals isothermals. Here p is
pressure, V is volume, T is
temperature. C is the critical point,
T. is the critical temperature.

where the pressure is negative, are supposed to represent the tensile strength of
the liquid, on account of the short-range attractive forces between the atoms rep-
resented by the parameters o/V* and B. The minima (e.g., the point H on JHK at
temperature T") indicate the ideal tensile strength of the liquid. In the case of water,
this is —1,168 atm at 0°C and —875 atm at 50°C. Many authors have devised
ingenious methods to measure the tensile strengths of liquids. (See D. E. Gray,
ed., American Institute of Physics Handbook, New York: McGraw-Hill Book Co.
(1957), pp- 2-170.) Experimental values are lower than theoretical values, and the
cause is usually thought to be vapor-nucleating agents, small bubbles, and the
liquid’s tearing away from the walls of the container used in the experiments.
The question of the tensile strength of a liquid is important in problems of
ca@ition, cavitation damage to ship propellers, water transport in trees, freezing

A

. damage to trees, and other problems.

\
9.2 VISCOSITY

The concept of viscosity in a fluid was given by Newton in terms of a shear flow
with a uniform velocity gradient, as shown in Fig. 9.3. Here the coordinates x, y,
ztepresent a rectangular Cartesian frame of reference, and u is the systemic velocity
of the fluid (local average of the velocities of the molecules), which points in the
direction of the x-axis, and is a function of y only. The shear stress acting on a
surface normal to the y-axis is denoted by 7. Newton proposed* the relationship

y T

:zl(y)

Figure 9.3 Newtonian concept of
T _ viscosity.

*In the “Hypothesis” just before Prop. L1, Lib. I, of the Principia.
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T “% (9.2-1)

for the shear stress . The coefficient p is a constant called the coefficient of viscosity.
The dimensions of p are [ML™'T™"]. In the centimeter-gram-second system of
units, in which the unit of force is the dyne, the unit of p is called a poise, in honor
of Poiseuille. In the International units, the unit of viscosity is newton second/
meter” (Ns/m?). 1 poise is 0.1 Ns/m

The coefficients of viscosity of air and of water are small—approximately 1.8
X 107* poise and 0.01 poise, respectively at atmospheric pressure and 20°C. At
the same temperature, the viscosity of glycerine is about 8.7 poises. In liquids, p
diminishes fairly rapidly as the temperature increases; in gases, ju increases as the
temperature rises.

An interesting interpretation of the coefficient of viscosity from the kinetic
theory of gases was given by Maxwell. Consider a flow with a uniform velocity
gradient as shown in Fig. 9.3, and imagine a surface AA normal to the y-axis, as
in Fig. 9.4. The shear stress exerted by the gas beneath AA on the gas above has
aretarding effect. The shear stress is equal to the rate of loss of ordered momentum

y <_u—+‘
5 T
L L
pR— -T—L —4
7 ‘ '
2 Figure 9.4 Kinetic interpretation
of the coefficient of viscosity of
gases.

across AA by the random motion of the molecules. A molecule originating at y,
and moving downward through AA will carry with it a positive momentum m (dul
dy)y, where m is the mass of the molecule, u is the ordered velocity in the x-
direction, and du/dy is the vertical velocity gradient, i.e., the shear strain rate.
Similarly, a molecule moving upward through AA and originating at y, will carry
with it a negative momentum m (du/dy)y,. Both of these excursions represent a
loss of ordered momentum from the fluid above AA. The sum of such losses that
occur in 1 second through unit area A4 is equal to the shear stress .

Let there be N molecules per unit volume. Suppose that one-third of the
molecules are traveling in each of the three coordinate directions. If the average
molecular speed is c, and if one-third of the molecules move perpendicularly to
AA, iNc molecules will pass through AA each second. Each of these molecules

i
i
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will carry with it a momentum corresponding to the position y at whi;h it originates.
Let the average value of the height y be L. Then the shear stress is

d
T o= (—13- Nc)m B%L'

The product Nim is the density p. Therefore,

Loer 24 (9.2-2)
T=3 pcL iy
A comparison of Eq. (9.2-1) with Eq. (9.2-2) shows that
i = 3pcL. 9.2-3)

The effective height L is related to the mean free path [ (the average distance 1a
molecule travels before colliding with another molecule), and more accurate cal-
culations by David Enskog and Sydney Chapman* show that

w = 0.499 pcl. (9.2-4)

As the density of a gas decreases, the mean free patp increase§ in such a nt\‘e_méxt_ar
that the product p! almost remains constant. Then p is proportlonil to c',r;lvu ;c : ;12
i i ot of the absolute temperature. ,
turn is proportional to the square 1o _ Thus, the
i iscosi th the temperature but not w

fricient of viscosity of a gas chang.eg wi
;2:ssure For air under standard conditions (sea level, 59°F) the mean free path
. : 2
lecules is approximately 8.8 x 107" cm. - -
Of/theTrlleg argument 'fl)xlzit leads to Eq. (9.2-2) can be used on other transport p}:j
homena. When the molecules cross the plane AA, they carry with them not only

the momentum of their ordered motion, but also their mass and their energy. In
l\\a gas with a density gradient, the transport of mass corresponds to the phenomenon

of diffusion. In a gas with a temperature gradient, the tran§po;t qf enlergtyt ;eog;-

£ the conduction of heat. Thus, in the simples ,

oS b s t of ordered momentum, of heat

the mechanisms of the transport of a component ot o of heat

identical; It, it is found that the coefficien

and of mass are identical; and as a result, it is f ef

er‘fgt’ conduction k is equal to the product of the vnsco§1ty p and t!le specific hte}?t

at constant volume C,, while the coefficient of self-diffusion D is equal to‘ e

viscosity p divided by the density p. Experiments and more accurate calculations
give

k=191pC, D= 1.2%- (9.2-5)

The atomic interpretation of the viscosity of liquids and solids is dlff;ren;
from that of the viscosity of gases. Solids in the crystal form have'long-l ange o(r) e:ﬁ
structures. The atoms are arranged in order by the long-range interaction. On the

*Gee Chapman, S. and Cowling, T. G., The Mathematical Theory of NonUnifonn Gases. Cam-
bridge, University Press, 3rd ed., 1970.
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other hand, gas atoms or molecules interact only when they come “into contact,”
and the interaction depends on the short-range attractive force between two atoms
or molecules. The liquid state is an interpolation between the gas and the crystal.
Generally speaking, other than those properties such as X-ray diffraction, aniso-
tropy, etc., the structure and properties of a liquid, just above the melting point,
are fairly similar to those of its crystal. Metals expand only 3 to 5% on melting
(bismuth, like ice, contracts), so that the packing of the atoms cannot be too
different, It is as if 3 to 5% of the crystal sites became vacant and their free volume
were taken up by neighboring particles in such a way as to destroy the long-range
order of the structure. A picture of the cause of viscosity for a simple liquid is
proposed by Cottrell (1964), as shown in Fig. 9.5. Here two atoms which gained
some free volume are shown as enclosed in a “cage” of other atoms. The figure
shows how a relative motion of the two atoms will allow the cage to have a shear
Figare 9.5 Shear due to internal

o0 o2 S
t in a liquid, ted b
%@ o @*@g Cotell 5 2 mechimism £
‘@ @ @’ viscosity in the fluid. After A. H.
@@- %@ Cottrell, The Mechanical Properties

) of Matter, New York: John Wiley,
Before After 1964. .

deformation while the relative positions of the rest of the atoms of the cage remain
essentially unchanged. The movement of the two atoms distorts the atomic “cage.”
The surrounding liquid offers elastic (shear) resistance to such a distortion, but
this resistance relaxes as similar movements occur nearby.

On the other hand, the atoms in a crystal are arranged in space lattices. The
much greater elastic modulus and viscosity of a crystal as compared with its liquid
phase is due to the fact that the atomic sites in a crystal are defined exactly by the
lattices.

Mixtures, colloidal solutions, suspensions, polycrystalline solids, amorphous
solids or glass, etc., can have many other relaxation mechanisms that reveal their
viscosity. In many cases, it is not easy to say whether a body behaves as a fluid or
as a solid. Silicone putty can be poured slowly from a cup or bounced quickly like
a rubber ball. Conventionally, the distinction between fluids and solids is drawn
at a low-stress viscosity of 10 poises. A material with viscosity less than that value
is called a fluid, while one whose viscosity is greater is called a solid.

9.3 PLASTICITY OF METALS

If a rod of a ductile metal is pulled in a testing machine at room temperature, the
load applied on the test specimen may be plotted against the elongation
I~
h

€= ' (9.3-1)
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where I, is the original length of the rod and /is the length under load. Numerous

experiments reveal typical load-elongation relationships, as indicated in Fig. 9.6. -

When e is very small, the load-elongation relationship iskusual‘ly a straight line.
Mild steel shows an upper yield point and a flat yield region that is caused by many

M
U
Upper yield | Work c
point ; hardening
A :
8l [4 B |
| ]
, : * (Elastic response
Elostic | exaggerated)
; L Pl !
1 T — ;%:(e)}‘_ Elongation
‘ L_: . € .
{a)
o
o
Q
a
\
\ : Elongation
A\ Elongation
A (b) : (C)

\(‘\ . : . " ) . ts of
\ Figure 9.6 Typical load-elongation curves in simple tension tes
\mgtals: (a) onSild steel or structural steel; .(b) of aluminum alloys or
copper; (c) of brittle materials such as cast iron.

microscopic discontinuous small steps of slip along s!ip plan.es of t.he crystals {Fig.
9.6(a)]. Most other metals do not have such a flat yleld region [Fig. 9.6(b)].
Upon unloading at any stage in the deforrpatwn, tt}e strain does not retrace
the loading curve, but is reduced along an elastic unloadugg line such.as the C}lr\;e
UP in Figs. 9.6(2) and (b). Reloading retraces the t.mloadmg curve with relatlvey
minor deviations and then produces further plastic deformatlc?n when agproxx’-’
mately the previous maximum stress is exceeded. T!le. test specimen may ne'ck
at a certain strain, so that its cross-sectional area is reduced in a small region.
When necking occurs under continued elongation, the lOi‘id reaches a mfixxmu;n
and then drops down, although the actual average stress in the neck region (the
Joad divided by the true area of the neck) continues to increase. The maximum M
is the ultimate load. Beyond the ultimate load, the metal flows. At the point C in

the curves of Fig. 9.6, the spegixnen breaks.
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Materials like cast iron, titanium carbide, beryllium, concrete, rocks, and
most ceramics allow minimal plastic deformation before reaching the breaking
point, and are called brittle materials. The load-strain curve for a brittle material
will appear as that in Fig. 9.6(c). The point C is the breaking point.

A fact of great importance for geology is that brittle materials such as rocks
tend to become ductile when subjected to large hydrostatic pressure (large negative
mean stress). This was demonstrated by Theodore von Kérmén (1881-1963) in his
classical experiments on marbles.

Tests of specimens subjected to simple compression or simple shear lead to
load-strain diagrams similar to those of Fig. 9.6.

It is well known that, whereas the elastic moduli of all steels are nearly the
same, the yield stress and the ultimate strength vary a great deal, depending on
the crystal structure (including imperfections, dislocations, vacancies, grain bound-
aries, twinning, etc.), which can be influenced by small changes in chemical com-
position, alloying, heat treatment, cold work, and so on. In other words, whereas
the elastic moduli are “structurally insensitive,” the strengths are “structurally
sensitive.” For materials without a marked yield point, it is an engineering practice
to quote a yield strength as the stress at the proportional limit, which is defined as
the point where a tensile strain of 0.2% is reached. Most engineering structures
use materials within the proportional limit—hence, the strain is truly quite small.
For this reason, the linearized theory of elasticity is useful in engineering practice.

9.4 MATERIALS WITH NONLINEAR ELASTICITY

Rubber, the material most qualified to be called elastic, cannot be described by
Hooke’s law. The stress-strain curve obtained when a rubber band is stretched
uniaxially in a testing machine is shown in Fig. 9.7. It is nonlinear. A linear,
Hookean approximation is applicable only in a range of strain much smaller than
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rubber bands normally undergo. Soft rubber is practically incompressible, in the
sense that its volumetric modulus of elasticity is 10* to 10° times larger than the
incremental Young’s modulus. Strictly speaking, the stress-strain relationship of
rubber is not unique. Features of viscoelasticity exist. Stress relaxation at constant
strain, creep at constant Stress, and hysteresis in periodic oscillation also exist.
Hence, rubber is a ponlinearly viscoelastic material.

 The living soft tissues of humans and animals are also nonlinearly viscoelastic
in the strain range in which they function normally. Human and animal tissues are
generally called elastic if one wishes to emphasize their ability to return to a unique
configuration when all the external load is removed. If one looks at their visco-
elasticity, one finds some special features also. When a living tissue is subjected
to a periodic loading and unloading, it develops a steady-state stress-strain loop
that is not very sensitive to strain rate. The hysteresis (the difference between the
loading and unloading curves in the stress-strain loop) is largely unaffected by the
frequency of the periodic loading. The stress-strain loop is repeatable, i.e., the
Joading and unloading legs have a certain degree of uniqueness. This feature may

. be described by the term pseudoelasticity (Fung, 1971). On the other hand, the

“memory function” that links the present stress with the past stress seems to be
linear, even though the stress-strain relationship is nonlinear; hence, the term quasi-
linear viscoelasticity (Fung, 1971) was introduced.

As an example, let us consider typical connective tissue in an animal: the
mesentery of the rabbit. The mesentery is a thin membrane that connects the
rabbit’s intestines. Nearly transparent t0 the naked eye, it has good, uniform
thicknéss (about 6 X 10~* cm) and is a favorite of physiologists because its two-
dimensional array of small blood vessels is ideal for observation and experimen-

tation. To obtain the gross mechanical property, 2 strip of uniform width was cut

“from the mesentery, tied at both ends with fine silk, and tested in simple tension
while immersed in a saline solution, at room temperature, pH 74, bubbled with
a g‘é‘s of 95% 0,, 5% COs, with concentrations of Ca and other ions similar to
those in blood plasma.

After a few cycles of loading and unloading, a repeatable stress-strain loop
for each strain rate was obtained, as shown in Fig. 9.8. Note the difference between
the shapes of the curves in Figs. 9.7 and 9.8, showing that the constitutive equations
of rubber and the rabbit’s mesentery are Very different. -

Since the stress-strain loop of the tissue is repeatable, we can treat loading
and unloading separately for this tissue and consider it as one elastic material in
loading and another elastic material in unloading, i.e., as two pseudoelastic ma-
terials. ‘ .

Of the two typical hysteresis loops shown in Fig. 9.8, the one marked f‘hlgh”
was produced at a strain rate 10 times faster than that marked “low.” It is seen
that the hysteresis loop did not depend very much on the rate of strain. Thfa gbsmssa
of this figure is extension of the specimen from an arbitrary length. This is df)l'}e
because if the origin of extension were taken at the zero-stress state, the origin
would be far to the left and the scale would be too small. For this specimen, the
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8 ’- II-6 Rabbit mesentery . Low
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Figure 9.8 Hysteresis curves of rabbit mesentery obtained at two
strain rates. The high rate was 10 times that of the low rate. Only a
slight change in hysteresis curves was obtained. From Y.C. Fung,
“Elasticity of Soft Tissues in Simple Elongation.” American J. of
Physiology 213(6): 1532-1544, 1957.

length at zero stress was 0.865 cm, the length in the physiological state was 2.77
cm, and the initial cross-sectional area was 1.92 X 10-? cm?.
In reducing the experimental data to a stress-strain relationship, we use the
- Lagrangian stress T (obtained by dividing the force by the original cross-sectional
area of the specimen at zero stress) and the extension ratio \ (the deformed length
divided by the zero-stress length). The most striking feature of the stress-strain
relationship is revealed when dT/d), the slope of the stress-stretch curve, is plotted
against T. Figure 9.9 shows such a plot of the slope of the loading curves shown
in Fig. 9.8 (the upper curve of the hysteresis loop obtained at the “high” strain

rate of 0.508 cm/min). As a first approximation, we may fit the experimental data
10 a straight line,

% =aT+B) (for A <)), (9.4-1)

where « and B are constants and A, is an upper limit of the applicability of this
equation (about 3.2 in the case of the rabbit’s mesentery).

A simple integration of Eq. (9.4-1), together with the condition that the stress
is equal to T* when \ = A,, yields

T+B=(T"+pet",  (fork <)) (9.4-2)

Several other types of soft tissue, such as the skin, the muscles, the ureter,
and the lung tissue, are found to follow similar relationships. Thus, it appears that
the exponential type of constitutive equation is common to biological tissues. Fur-
ther experiments on these tissues over wide ranges of strain rates has led to the
experience that, within a 10% to 10°fold variation in strain rate, the stress at a
strain in a loading curve in the physiological range does not differ by more than a
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mesentery is plotted as a function
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factor of 2 or 3. Hence, roughly speaking, biological tissues are not sensitive Fo
strain rate. The precise manner in which the strain rate affects the stress-strain
curve of a living tissue, however, is very difficult to say, because it varies from one

-gpecimen to another (i.e., it is sensitive to local and incidental variations) at all

strain rates (i.e., without asymptotic behavior at large or small rates). But an overall
insénsitivity is a justifiable description.

9.5 MONLINEAR STRESS-STRAIN RELATIONSHIPS OF RUBBER
AND BIOLOGICAL TISSUES

In the preceding section, we examined the uniaxial §tress-strain relationship of a
number of soft tissues. Naturally, for a three-dimensional o.rgan, we neeq a th'rf:e-
dimensional stress-strain law. No general constitutive equation .has been identified
for living tissues. But if a pseudoelastic strain energy ﬁtnctzon exists, then thf-: stress-
strain relationship can be obtained by a differentiation. The p§eudoelast1c strain
energy function, denoted by p,W, is a function o.f Green’s strain components E;
and is symmetric with respect to E;; and Ej;. Tahng the partial derivative of ng
with respect to E;; gives the corresponding Kirchhoff stress components 'S.»,~._ Wis
defined for a unit mass of the material, and p, is the density of the material in the

constant as the linear Hooke's law -
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initial state; hence, p,W is the strain energy. per unit volume of the material at the
zero-stress state. Thus,

ad poW
S 3 E;
[See Fung (1965, Sec. 16.7) for theoretical details.] If the material is incompressible,
then it can take on a pressure that is independent of the deformation of the body.
In that case, a pressure term should be added to the right-hand side of Eq. (9.5-1).
The value of the pressure can vary from point to point, and it can be determined
only when the equations of motion, continuity, and boundary conditions are all
satisfied. Hence, the pressure in an incompressible fluid is determined by boundary
conditions and equations of motion.
A material is recognized by its specific p,W. The determination of p,W can
be helped by theoretical considerations. For example, Green and Adkins (1960)
studied the symmetry conditions in all forms of crystals and determined what kind
of terms each crystal should have if their pW’s were polynomials of the strain
components. One conclusion reached is that if the material is isotropic, then pW
must be a function of the strain invariants I, L, ; (see Sec. 5.7); i.e.,

pDW(Il; L, 13)- (9.5—2)

If the material is incompressible, then I; = 1. Soft rubber is incompressible, and
the linear form

(G,j=1273) (9.5-1)

pW = C(I, = 3) + G, - 3) (9.53)
where C, and C, are constants, has been found valuable in the study of large
deformations of rubber.

Most biological tissues (e.g., skin, muscle, blood vessel wall) are not isotropic.
Some (e.g., the lung tissue) are not incompressible. The linear form of strain energy,
Eq. (9.5-3), does not fit experimental data of biological tissues.

Based on known experimental data, several strain energy functions have been
proposed for the blood vessel wall. If the blood vessel wall is treated as an elastic
shell without torsion, then only the average circumferential and longitudinal stresses
and strains are of interest. Hence, the vessel wall can be treated as two dimensional
and the strain energy is a function of only two strains: the circumferential strain
Ey, and the longitudinal strain E,,. Patel and Vaishnav (1972) have used polynomials
of Ey, E,, for p,W. Hayashi et al. (1971) have used logarithmic functions. Fung
(1973) used an exponential function. A detailed comparison of the polynomial and
exponential strain energy functions is given in Fung et al. (1979). In the physio-
logical range, the form

Pl ® = Zexp 0, (9.54)

where

Q = Egu + o Eiz + a4 E@a Ezz, (9.5""5)
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in which ¢, ay, a2, and a, are constants, has been shown to work well. The numbf:r
! 7 0 » a
of material constants in Eq. (9.5-4) is four. The minimum number of material

i i i jon is seven.
constants in the third-order polynomial expression .
Studies of skin, muscle, ligaments, eic., have shown that the exponential form

applies equally well. In the neighborhooq of the zero-stress state, itis f(_mnd that
the experimental data can be fitted to a linear stress-strain law or a str'anflr eneiﬁy
function of a second-order polynomial. Hepce, for the full' range of strain from the
zero-stress state to in vivo values, the strain energy function

pW® =P + ~g-exp 0 (9.5-6)

where
P = b Ef + b E% + b EqE= (9.5—7)

in which Q is the same as in Eq. (9.5-5) and b, b,, and b, are additional constants,
gives a higher accuracy.

9.6 LINEAR VISCOELASTIC BODIES

The features of hysteresis, relaxation, and creep are common to many materials.

i iscoelasticity.
lectively, they are called the features of viscoe ‘ . .
« Mechyanicaly models are often used to discuss the viscoelastic behavior of

ateri i hree mechanical models of material behavior,
Is. In Fig. 9.10 are shown t ; il b
gﬁ)fl? S’che Maiwell model, the Voigt model, and the * standard linear” model,

7
N ™ IJ- N
(o) (b} (c)

Figure 9.10 Models of linear viscoelasticity. (a) Maxwell, (b) Voigt,
(c) standard linear solid.

i composed of combinations of linear spring§ with spring constant
i:lagfl g:slicxl;)oi;ewith c%efficient of viscosity m. A linear spring is suppo§ed to prod;:g
instantaneously a deformation proportional to ttfe load. A dashpf)z is gup;l))oie 110
produce a velocity proportional to the load'at any instant. The relationships betw
the load F and the deflection u at the pomt of loading are,

Maxwell model:

FO)

- (9.6-1)
B

a=E+E, u(0)y =
poom
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Voigt model:

F=pu+n u)=0, (9.6-2)
Standard linear model:

F+1F = E(u + i), 7F0) = Egrou(0), (9.6-3)

where 7, 7, are constants, and a dot above F or  indicates a differentiation with
respect to time. The initial conditions at t = 0 are indicated.

If we solve Egs. (9.6-1) through (9.6-3) for u(t) when F() is a unit-step
function 1(s), the result is called the creep function, which represents the elongation
produced by a sudden application at ¢ = 0 of a constant force of magnitude unity.
The creep functions for these equations are, respectively,

Maxwell model:

1 1
ct=(—+-—t)1t, 9.6-4
) et ® (9.6-4)
Voigt model:
o) = &(1 ~ ey, (0.6-5)
Standard linear model:
O = i[1 - (1 - E)e”’*"}l(t) | (é 6-6)
Y g Ta ’ '
where the unit-step function 1(f) is defined as
1 when > 0,
1(t) = {when t = 0, (9.6-7)
0 when ¢ < 0.

A body that obeys a load-deflection relation like that given by Maxwell’s model
is said to be a Maxwell solid, and analogously for bodies that obey Voigt and
standard linear models. Since a dashpot behaves as a piston moving in a viscous
fluid, the preceding models are called models of viscoelasticity.

Interchanging the roles of F and u, we obtain the relaxation function as a
response F(f) = k(1) corresponding to an elongation u(f) = 1(2). The relaxation
function k(f) is the force that must be applied in order to produce an elongation,
that changes at ¢ = 0 from zero to unity and remains unity thereafter. Relaxation
functions for Egs. (9.6-1) through (9.6-3) are, respectively,

Maxwell solid:

k(t) = pe~t(g), (9.6-8)

-~ Voigt-solidi-—= oo
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k() = md(1) + pl(), (9.6-9)
Standard linear solid:

K(t) = Ek[l - (1 - %)e"”ﬁ}l(t). (9.6-10)

€

Here, we have used the symbol 8(f) to indicate the unit-impulse function, or Dir‘ac-
delta function, which is defined as a function with a singularity at the origin, viz.,.

8() =0 (fort<0, and ¢t > 0),
[ 30 = 0 €>0),

where f(¢) is an arbitrary function that is continuous at ¢ = 0. The functions (%)
and k(¢) are illustrated in Figs. 9.11 and 9.12, respectively.

(9.6-11)
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Figure 9.11  Creep function of (a) Maxwell, (b) Voigt, and (c)
standard linear solid. A negative phase is superposed at the time of
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‘Figure 9.12 Relaxation function of (a) Maxwell, (b) Voigt, and (c)
standard linear solid.
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For the Maxwell solid, a sudden application of a load induces an immediate
deflection by the elastic spring, which is followed by creep of the dashpot. On the
other hand, a sudden deformation produces an immediate reaction by the spring,
which is followed by stress relaxation according to the exponential law given in
Eq. (9.6-8). The factor n/js, with the dimension of time, may be called a relaxation
fime: It characterizes the rate of decay of the force.

For a Voigt solid, a sudden application of force will produce no immediate
deflection, because the dashpot, arranged in parallel with the spring, will not move
instantaneously. Instead, as shown by Eq. (9.6-5) and Fig. 9.11(b), a deformation
will be gradually built up, while the spring takes a greater and greater share of the
Joad. The displacement of the dashpot relaxes exponentially. Here, the ratio W
is again a relaxation time: It characterizes the rate of relaxation of the deflection.

For the standard linear solid, a similar interpretation is applicable. The con-
stant . is the time of relaxation of the load under the condition of constant deflection
[see Eq. (9.6-10)], whereas the constant , is the time of relaxation of deflection
under the condition of constant load [see Eq. (9.6-6)]. As t — w, the dashpot is
completely relaxed, and the load-deflection relation becomes that of the springs,
as is characterized by the constant Ey in Eq. (9.6-6) and (9.6-10). Therefore, Ex
is called the relaxed elastic modulus.

Maxwell introduced the model represented by Eq. (9.6-1), with the idea that
all fluids are elastic to some extent. Lord Kelvin showed the inadequacy of the
Maxwell and Voigt models in accounting for the rate of dissipation of energy in
various materials subjected to cyclic loading. Kelvin’s model is commonly called
the standard linear model.

More general models may be built by adding more and more elements to the
Kelvin model. Equivalently, we may add more and more exponential terms to the
creep function or to the relaxation function.

The most general formulation under the assumption of linearity between cause
and effect is due to Boltzmann (1844-1906). In the one-dimensional case, we may
consider a simple bar subjected to a force F(¢) and elongation u(f). The elongation
is caused by the total history of the loading up to the time ¢. If the function F(#)
is continuous and differentiable, then in a small time interval dr at time 7, the
increment of loading is (dF/dr)dr. This increment remains acting on the bar and
contributes an element du(f) to the elongation at time ¢, with a proportionality
constant ¢ that depends on the time interval ¢ — 7. Hence, we may write

du(t) = ct — ) %@ dr. (9.6-12)
Let the origin of time be taken at the beginning of motion and loading. Then, on
summing over the entire history, which is permitted under Boltzmann’s hypothesis,
we obtain

u(i) = f ot - dfg) . (0.6-13)

See. 97  Quasi-Linear Viscoelasticity of Biological Tissues 197

A similar argument, with the roles of F and u interchanged, gives
' d
F() = J K= ) -—'5? dr. (9.6-14)

These laws are linear, since doubling the load doubles the elongation and.vice
versa. The functions c(t — 7) and k(t — 7) are the creep and relaxation functions,

respectively. -
The Maxwell, Voigt, and Kelvin models are special examples of the Boltz-

mann formulation. More generally, we can write the relaxation function in the
form

N
k(e = 2, o™, (9.6-15)
a=0

which is a generalization of Eq. (9.6-10). If we plot the amplitude %, assogiated
with each characteristic frequency v, on 2 frequency axis, we obtain a series of
lines that resembles an optical spectrum, Fig. 9-13. Hence, o,{v,) is called a spec-
trum of the relaxation function. The examples shown in Egs. (9..6—‘8)—(9‘.6—10) are
discrete spectrums. A generalization to a continuous spectrum is given in the next

section.
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vy v vz ¥ Figure 9.13 A discrete spectrum
Frequency of a relaxation function.

h 97 QUASH-LINEAR VISCOELASTICITY OF BIOLOGICAL TISSUES

Let us clarify the viscoelastic features of biological soft tissues mentioned ‘in Sec.
9.4. Take the lung tissue as an example. Figure 9.14 shows the stress-stram rela-
tionship of the lung tissue in loading at different strain rates. Fach cycle was done
at a constant rate. The period of each is noted in the figure. Over a 36Q—fold Fhange
in strain rate, there was only a minor change in the stress-strain relat‘xo‘nshlp. The
hysteresis H, defined as the ratio of the area of the hysteresis loop divided b.y the
area under the loading curve, is also noted in the figure. H is seen to be variable,
but its variation with strain rate is not large. A similar experience is encountered
with other biological tissues. Records of skeletal and cardiac mu.scles, the ureter,
teniae coli, arteries, veins, the pericardium, the mese_ntery, the bll(.i d‘uct, thg skin,
tendons, elastin, cartilage, and other tissues show simxlgr charac?er{stlcs. Ty[?lcally,
in a 1,000-fold change in strain rate, the stress at a given strain in a loading (or
unloading) process does not change by more than a factor of 2.

)
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Figure 9.14 A set of records of the stress-strain relationship of the
lung tissue subjected to a cyclic biaxial loading are shown in the loading
phase, (the unloading phase was not recorded on this graph to improve
clarity.) The viscoelasticity of the lung tissue is revealed by the effect of
strain rate on the stress-strain relationship. This set of curves cover a
range of strain rates varying over 250-fold. It is seen that the stress—
strain relationship is not greatly affected by strain rate. The energy
dissipated per cycle divided by the work of loading per cycle is called
Iysteresis, and is denoted by H. The values of H at various strain rates
(periods of cycles) are shown in the inset. Hysteresis is due to
viscoelasticity, and is seen not to vary much with strain rate. For
details, see D.L. Vawter, Y.C. Fung, and J.B. West, “Elasticity of
Excised Dog Lung Parenchyma,” Journal of Applied Physiology
45(2):261-269, 1978.

Figure 9.14 shows two features that cannot be accommodated by the visco-
elastic models discussed in Sec. 9.6: the nonlinearity of the stress-strain relationship
and the insensitivity of the material to strain rate. The former can be corrected by
introducing nonlinear springs. The latter is made clear by reference to Fig. 9.15.
The models of Maxwell (a), Voigt (b), and Kelvin (c) are shown, together with
their hysteresis characteristics H, (d) through (f), as functions of the frequency of
the loading and unloading cycle. Hysteresis decreases with increasing frequency in
the Maxwell model because as frequency increases, the dashpot will move less and
less. The trend is reversed in Voigt model because here the dashpot takes up more
and more of the load. The Kelvin model has a bell-shaped curve of hysteresis vs.
the logarithm of the frequency. Each set of constants leads to a characteristic peak.
None of the models has the flat hysteresis curve of living tissue.

Sec. 9.7
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Figure 9.15 * Several standard viscoelastic models are shown in the top
row, and a mathematical model of the viscoelasticity of biological soft
tissues is shown in the third row. Figures in the second row, panels (d),
(€), and (f) show the relationships between the hysteresis (H) and the
logarithm of frequency (In f) of the Maxwell model (a), Voight model
(b), and Kelvin model (c), respectively. The figure in the bottom row
shows the general hysteresis-log frequency relationship of most living
soft tissues; corresponding to the model (g) shown in the third row.
Living soft tissues usually have a nearly constant hysteresis over a very
broad range of frequency. This is modeled in (g) by an assemblage of
Kelvin models, each of which contributes a small bell-shaped curve; the
sum of which is flat over a wide range of frequencies as shown in (#).
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A model suitable for soft tissue is shown in Fig. 9.15(g). It is composed of a
long series of Kelvin bodies whose characteristic times span a broad range. The
characteristic curves of hysteresis of these Kelvin bodies are shown by the ripples
in the bottom of Fig. 9.15(h). The sum of these tipples is a continuous curve which
is flat over a wide frequency range.

To put these observations ito mathematical form, we introduce an Elastic
Stress T (a tensor), which is a function of the strain E (a tensor defined with
respect to the zero-stress state). If the material is in the Zero-tress state until the
time ¢ = 0, and then suddenly it is strained to E and maintained constant at that
value, the stress developed will be a function of time as well as of E. The history
of the stress development may be written as

Gijmn (I)T,,,,,(L')(E), Gijmn(O) = 1, (97"1)
in which Gyulf), 2 normalized function of time, is called the reduced relaxation
function. We then assume that the stress response {0 an infinitesimal change in a
component of strain, 3Ei, superposed on a specimen in a state of strain E at an
instant of time 7, i, for t > 7,

8 T “[E(r
Gl'imu(t - T) BE[ ( )] 8Eij(¢)~ (97—2)
i

Finally, we assume that the superposition principle applies, so that

! a ‘I’I"ﬂ(c) E T a E' T
TfD) = J Gt = 7) ﬂ—-@%ﬂ——aﬁ’ﬁ dt. (9.7-3)

That is, the stress at time ¢ is the sum of the contributions of all the past changes,
each governed by the same reduced relaxation function. Although T*(E) may be
a nonlinear function of strain, the relaxation process is linear. Hence, the theory
is called a quasi-linear viscoelasticity theory. The lower limit of the integral in Eq.
(9.7-3) is written as — to mean the beginning of time.

The reduced relaxation function of a one-dimensional Kelvin model is

1
G(f) = I35 [1+ Se™]. (9.7-4)

where § and ¢ are constants. If we put an infinite number of Kelvin models in
series, we can get a reduced relaxation function in the form

G0 = [1 ¥ L S(g)e™ dq]{l " Jo S(g) dqr. 9.7-5)

S(q) is called a relaxation spectrum, and /g is a frequency. It has been shown that

a specific spectrum, with constants ¢, gi, and g,, namely,

:
!
:
i
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E oforqp=qsq
q

S(g) = (9.7-6)
0 forg<g,q>%

fits the data for the skin, arteries, ureter, and teniae coll.

9.8 NON-NEWTONIAN FLUIDS

Newton’s law of viscosity describes the behavior of water very well, but there are
many other fluids that behave differently. Read the advertisements of some paints:
“No drip [will not flow on the brush], spreads easily [offers little resistance 0
flow], leaves no brush marks [flows to smooth off the surface].” These desirable
features for household paints are not Newtonian. Most paints, enamels, and var-
nishes are non-Newtonian, as are most polymer solutions.

Let us illustrate the subject with a fluid that is most important to our
Jives—Dblood. The viscosity of blood depends on the strain rate. Figure 9.16 shows

10,000—— T T 1 T

Whole biood Pa—4
Defibrinated blood x——x
R Ringer suspension 0--—-0 B
1000 g\ of cells
b \ .
AN 8
» A N
g jo0r ° \\\‘\*\@\ : i
£ " "\ = o ]
E S~ =3} } H=90%
@ ~
U’ \X\\
%‘ 10 O \\\g\\\ -
8 L [ S o-——if } H=45%
0
- g
[
T }H= 0%

0.
0.01 0.1 1 10 100
Sirain rale, sec™!

Tigure 9.16 The variation in the coefficient of viscosity with the strain
rate in human blood, showing data for whole blood, defibrinated
blood, and washed red blood celis resuspended in a Ringer solution at
45 and 90% hematocrit H (red cell concentrations by volume). From s.
Chien, S. Usami, H. M. Taylor, J. L. Lundberg, and M. L. Gregersen,
J. Appl. Physiol., 21 (1966), p. 81, and M. 1. Gregersen, “Factors
Regulating Blood Viscosity: Relation to Problems of the
Microcirculation,” Les Concepts de Claude Bernard sur le Milieu
intérieur (Paris: Masson, 1967).
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the variation in the coefficient of viscosity of blood with the strain rate, as measured
with a Couette viscometer by Chien, Usami, Gregersen, et al. The coefficient of
viscosity increases as the strain rate decreases below about 100 sec™". At very low
strain rate the blood has a finite “yield” stress; i.e., it is visco-plastic. Other visco-
plastic materials are discussed in the next section.

The world of non-Newtonian fluids is so much larger than that of Newtonian
fluids that the landscape is yet largely unexplored.

9.9 VISCOPLASTIC MATERIALS

A material obeying Newton’s law of viscosity must flow under the slightest shear
stress (more precisely, under a nonvanishing stress deviation). Materials such as
sourdough, paste, and molding clay do not follow such a rule. Bingham, who
invented the word “rheology” to describe the science of flow (Greek, peos flow),
formulated a law for a class of materials known as viscoplastic, to which sourdough
seems to belong. A viscoplastic material is often called a Bingham plastic.

A viscoplastic material can sustain stresses with a nonvanishing stress devia-
tion when in a state of rest. See Fig. 9.17. Consider first a body subjected to simple
shear, i.e., a state in which all components of the tensors of stress and strain rate

Rate of flow

Figure 9.17 Comparison of the
— flow rate and stress relationship of
Shear stress  a viscoplastic material with that of
Yield stress a Newtonian fluid.

<
—]

vanish, except the shear stress o, = o = 7 and the shear strain rate Vi, = Vi
= ¢. As long as the absolute value of the shear stress 7 is smaller than a certain
constant K, called the yield siress, the material remains rigid, so that & = 0. As
soon as H exceeds K, however, the material flows, with a strain rate ¢ having the
same sign as 7 and an absolute value proportional to I — K. Thus,

0 if 1| < K,

e = ( 9.9-1)

1—ﬁ)¢ if |t > K,

where p is a coefficient of viscosity. This formulation may be written slightly
differently with the introduction of a yield function F defined as

(9.9-2)
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- Then, a viscoplastic material in a state of simple shear is defined by Bingham
(1922)* with the relations
.o ifF<Q, :
2 = {F'r i F=0. (09-3)
Hohenemser and Prager (1932)! generalized Bingham'’s definition to arbitrary
states of stress in the form

0 for F< 0,
WYy = et for F=0, (0.9-4)
with
K
F=1-—= 9.9-5
Vi 9-3)
where
u = coefficient of viscosity,
V;; = strain-rate tensor (see Sec. 6.1},
ol = stress-deviator tensor = oy; — 10uadiss
K = yield stress,
I = second invariant of the stress deviator

= é[(o‘u - on) + (00 — on) — (on — ou)] + ok + ok + oh.

~.___For simple shear, Egs. (9.9-4) and (9.9-5) reduce to Egs. (9.9-3) and (9.9-2),

respectively.

According to Eq. (9.9-4), the rate-of-deformation tensor of a viscoplastic
material is a deviator; i.e., the material is incompressible. When the yield function
is negative, the material is rigid. Flow occurs when the yield function has a positive
value. The state of stress for which F = 0 forms the yield limit at which viscoplastic
flow sets in or ceases, depending on the sense of direction in which the yield limit
is crossed.

Further generalizations of Bingham’s equation (9.9-3) are possible. For exam-
ple, compressibility may be introduced, or other yield criteria may be proposed
instead of Eq. (9.9-5).

*Bingham, E. C., Fluidity and Plasticity, New York, McGraw-Hill, 1922, p. 215,
tHohenemser, K., and Prager, W., “(Jher die Ansitze der Mechanik isotroper Kontinua.”
Zeitschrift f. angen Math u. Mech. 12: 216-226, 1932.
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9.10 SOL-GEL TRANSFORMATION AND THIXOTROPY

A colloidal solution may possess rigidity (subjected to shear stress without flow)
and be called a gel, or it may behave as a fluid without rigidity and be called a sol.
A gel contains a dispersed component and a dispersion medium, both of which
extend continuously throughout the system. The elastic property of the gel may
change with its age. The dispersed component of 2 gel is usually interpreted as
forming a network held together by bonds or junction points formed by primary
valence bonds, long-range attractive forces, or secondary valence bonds that cause
an association between segments of polymer chains or the formation of submi-
croscopic crystalline regions. Each of the junctions is a mechanism for relaxation
under stress. The statistics of the totality of all these relaxation mechanisms is
described by the viscoelasticity of the material.

Gels often can be converted into sols and vice versa by a change of temper-
ature, by agitation, or by chemical action in a process called peptization. If a
reversible gel-sol transformation can be induced isothermally by mechanical vibra-
tion, then the material s said to be thixofropic, according to Freundlich. The gel
is transformed into a sol by mechanical agitation, and the sol revertsto a gel when
the agitation is discontinued.

Examples of thixotropic substances are paints, printing inks, iron oxide sols,
agar, suspensions of kaolin, and carbon black. Thixotropic materials pervail in the
biological world. The protoplasm in an amoeba is perhaps the best known example.

Whether a colloidal system is thixotropic or not may depend on small changes
in ionic strength. See Scott-Blair, G. W., An Introduction to Biorheology, New
York, Elsevier, 1974, for many interesting examples.

PROBLEMS

9.1 Show that the velocity of sound in the material of construction of an aircraft is a
criterion for its safety against such dynamic problems as clear air turbulence, gust
encounter, and flutter. For this purpose, consider two airplanes identical in geometry
and construction, but different in material. Simplify the problem to consider only the
following four typical parameters: the density of the material o; Young’s modulus E;
the density of air p; and the velocity of flight of the airplane, U. Use dimensional
analysis to construct the similarity parameters. Let o, E, p, and U refer to one plane
and ¢’, E', p’, and U’ refer to the other. Show that for dynamic similarity, we must

have
v_ JE ﬁ
U ¢/ Vo

If U represents the limit of the safe flight speed (e.g., the critical flutter speed), then
the preceding formula relates U to the velocity of sound, V/Elo (speed of longitudinal
waves in a rod).

9.2 The velocity of sound in a solid is an important similarity parameter for comparing
the rigidities of flight structures. Suppose you are an airplane designer selecting mate-
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9.3

94

9.5

9.6

9.7

rials for construction. Using a handbook, Jist the velocity of sound for the following
structural materials: pure aluminum, magnesium, aluminum alloys, magnesium alloys,
carbon steels, stainless steels, titanium, titanium carbide, and the rather exotic materials
beryllium oxide and pure beryllium. Compare with the plastics lucite and phenolic
|aminates with the woods spruce, mahogany, balsa, and bamboo, along the grain. A{e
you not surprised at the rather small differences between the velocities of sound in

many of these materials? What is the best material from this point of view?

Show that the same conclusion as in Prob. 9.1 would be reached if you considered a
suspension bridge that may be induced to vibrate dangerously in wind. (The original
Tacoma Narrows Bridge on Puget Sound, Washington, spectacularly failed by flutter
on Nov. 7, 1940, four months after it was opened to traffic, ina wind speed of 42 mph.
On that morning, the frequency of oscillation of the bridge changed suddenly from 37
to 14 cycles/min, probably because of a failure of a small reinforcing tie rod. The
motion grew violently in the torsional mode, and failure occurred half an hour later.
If there had not been this aerodynamically induced oscillation (flutter), the bridge
should have been able to withstand a steady wind of at least 100 mi/hr.)

The experimental data on the viscosity of blood measured in a Couette flowmeter (Fig.
P3.22, p. 86), as shown in Fig. 9.16, can be expressed approximately by Casson’s
equation

Vi = Vi bV

in which 7 is the shear stress, 7, is a constant that may be identified as a yield stress,
and v is the shear strain rate (sec™). Generalize this result to a constitutive equation
for blood that is correct from the point of view of dimensional and tensor analyses.

Put blood between the cone and plate of 2 cone-plate viscometer (Fig. P9.5). The cone
rotates at an angular speed of 1 revolutions per second, while the plate remains sta-
tionary. Derive the relationship between the torque T acting on the cone, the aflgu}ar
speed n, the radius R, the cone angle 8, and the constants 7, and b in the constlfutw.c
equation derived in Prob. 0.4. In Fig. P9.5, the angle 0 is exaggerated. In practice, it
has to be small. Discuss what kind of complication will occur when 8 is large and why.

Figure P9.5 A cone-plate
viscometer.

Assume that no material will expand in volume when it is subjected to a hydrostat%c
pressure. Show that the maximum value of Poisson’s ratio v for any isotropic elastic
solid obeying Hooke’s law is 3.

Reinforced concrete is concrete poured over steel rods. A vertical, hollow reinforced
concrete column has an internal diameter of 3 ft and thickness of 3 in, with 36 steel
rods of 1-sq-in cross-sectional area, uniformly spaced in a circle. The column is sub-
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jected to a vertical load, the resultant of which is along the axis of the column. The
ratio of Young’s modulus of steel to that of concrete is 15. Poisson’s ratio for concrete
is 0.4, and that for steel is 0.25. Determine the share of the load that is carried by
steel at a cross section some distance from the ends of the column.

9.8 Consider a viscoelastic material characterized as Maxwell’s model and described by

Eq. (9.6-1). Let a sinusoidally varying force F = a sin «f be imposed on the body.
What would be the deflection u at steady state?

Answer:
A .
u = —[sin (0t — @) + sin a,
)
where
2 3 2 H
A= (ﬂ) + (2) ,tana=-&--
[ Tl nw.

9.9 A liquid flows down a long tube of diameter 1 cm from a reservoir at a rate of 10 em”/
sec. The streamlines are found to be as shown in Fig. P9.9, The principal feature is
that the liquid column expands in diameter as it leaves the tube. Can a Newtonian
liquid do this? What kind of stress-strain relationship is suggested? [See A. S. Lodge,
Elastic Liquids, New York: Academic Press (1964), p. 242.]

Figure P9.9 A non-Newtonian
fiuid coming out of a spout.

9.10 When a certain paint was stirred with an electric mixer, it was found that it climbed
up the shaft of the mixer. What kind of stress-strain relationship of the paint is revealed
by this experiment? (See A. S. Lodge, ibid., p. 232.)
9.11 Take a piece of chalk and twist it to failure. Describe the cleavage surface, and infer
the criterion about the strength of the chalk.
Again, break the chalk by bending, and discuss the fracture mechanism,

9.12 Take a piece of nylon thread, pull it to failure, and discuss the failure mechanism of
nylon vs. that of the chalk in Prob. 9.11.

9.13 Take a toy rubber balloon. Blow it up. Take a pin. Prick the inflated balloon. Chances
are it will explode. Now, without inflating the balloon, stretch the rubber with both
hands and ask a friend to prick it with the pin. Chances are that it will not explode.

Can you explain that? How would the constitutive equation of the rubber reflect this
fact?

9.14 Many engineering and biological structures are made of composite materials consisting
of stiffer components embedded in a softer matrix. Consider the following two models:
(a) A circular cylindrical tube, in the wall of which are embedded high-strength fibers
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 of small diameter. Yotng’s moduli for the fiber and the matrix material are Fand
respectively, with E; >> E;. The fibers are parallel to the cylinder.axxs, the:y are
uniformly distributed, and the total cross-sectional area of the fibers is a f.ract_lon of
the total cross-sectional area of the tube. When the tube is stretched longitudinally,
is Young's modulus for it? :
X)];a:scgcula% cylindrical tube of inner radius a and outer 'radius b, _embedd?d with
spirally wound fibers. The helical fibers make an angle 6 with the cylinder axis. Half
of the fibers are wound in the manner of a right-handed screw, and half are left handed.
Young’s moduli for the fiber and matrix are, again, Eand £, rf:specnvely. Compute
the effective Young's modulus of the tube in longitudinal tension. Assume that the
fibers are perfectly embedded. ‘ _ .
(¢) When the cylindrical tubes of parts (a) and (b) are subjected to an internal pressure
., how is the load resisted by the fibers and matrix? . . . '
(d) When a transverse shear load perpendicular to the axis of th'e cylinder is applied
to the cylinder, how is the shear resisted? Analyze the stresses in the fibers and the
matrix. ) ] '
(e) Similarly, analyze the stress distribution when the cylinder has to resist a bending
t. i )
Z?)OH’I{Z?sion tesistance is also important. A torque T is applied to the tube. What are
the stresses in the fibers-and matrix then? o
9.15 To measure the tensile strength of water and other liquids, Lyman Briggs (J. Chgm.
Physics 19 (1951), p. 970) used a Z-shaped capillary tube, open at both ends, rotating
in the Z-plane about an axis passing through the center.,of the Z of the tube and
perpendicular to the plane. The liquid menisci are located in the I')en't-b.ack short arms
of the Z. The speed of rotation is increased gradually.until the hqu'ld in th(.e capﬂlary
“hreaks.” If one uses a straight tube that is open at both ends for this experiment, the
fluid will fly away and the experiment will not be possible. '1."1.16 bent-back short arms
of the Z provide the stability of the fluid. Examine this stability problem and present
a theoretical analysis of the experiment.
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RIVATION
OF FIELD EQUATIONS

In the preceding chapters, we have analyzed deformatior.z (Strait?) and flow
(strain rate) and their relationship with the force of mter.actzon .(s.tress)
between parts of a material body ( continuum). We are now in a posmon. to
use this information to derive differential equations describing the' motion
of the continuum under specific boundary conditions. Our formulatzon must
obey Newion’s law of motion, the principle of conservqtzon of mass, and
the laws of thermodynamics. This chapter is concerned with expressing these
laws in a form suitable for the treatment of a continuum. .

One may wonder why there is a need for further elaboration on these
well-known laws. The answer may be illustrated in the following example.
If we have a single particle, the principle of conservatior? of mass merely
states that the mass of the particle is a constant. However, if we have.a la'rge
number of particles, such as the water droplets in a cloud', the situation
requires some thought. For the cloud, it is no longer pracfzcal to zdentzf.y
the individual particles. The most convenient way to describe the cloud is
1o consider the velocity field, the density distribution, the temperature dis-
tribution, etc. It is the description of the classical conservation laws in such
a circumstance that will occupy our attention in this chapter._

Our approach is based on the fact that these conservation laws must
be applicable to the matter enclosed in a vo{ume bounded by an t.zrbztrary
closed surface. In such an approach, we find t{wt some quantities enter
naturally in a surface integral, others ina volume flztegl‘al. A transforma.tzon
from a surface integral to a volume integral, and vice versa, is often required.
This transformation is embodied in Gauss’s theorem, which serves as our
mathematical starting point.

10.1 GAUSS'S THEOREM

We shall begin with the derivation of Gauss’s theorem. Consider a convex region
V bounded by a surface S that consists of a finite number qf parts whose outer
normals form a continuous vector field (e.g., the one shown in Fig. 10.1). Such a
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