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RIVATION
OF FIELD EQUATIONS

In the preceding chapters, we have analyzed deformatior.z (Strait?) and flow
(strain rate) and their relationship with the force of mter.actzon .(s.tress)
between parts of a material body ( continuum). We are now in a posmon. to
use this information to derive differential equations describing the' motion
of the continuum under specific boundary conditions. Our formulatzon must
obey Newion’s law of motion, the principle of conservqtzon of mass, and
the laws of thermodynamics. This chapter is concerned with expressing these
laws in a form suitable for the treatment of a continuum. .

One may wonder why there is a need for further elaboration on these
well-known laws. The answer may be illustrated in the following example.
If we have a single particle, the principle of conservatior? of mass merely
states that the mass of the particle is a constant. However, if we have.a la'rge
number of particles, such as the water droplets in a cloud', the situation
requires some thought. For the cloud, it is no longer pracfzcal to zdentzf.y
the individual particles. The most convenient way to describe the cloud is
1o consider the velocity field, the density distribution, the temperature dis-
tribution, etc. It is the description of the classical conservation laws in such
a circumstance that will occupy our attention in this chapter._

Our approach is based on the fact that these conservation laws must
be applicable to the matter enclosed in a vo{ume bounded by an t.zrbztrary
closed surface. In such an approach, we find t{wt some quantities enter
naturally in a surface integral, others ina volume flztegl‘al. A transforma.tzon
from a surface integral to a volume integral, and vice versa, is often required.
This transformation is embodied in Gauss’s theorem, which serves as our
mathematical starting point.

10.1 GAUSS'S THEOREM

We shall begin with the derivation of Gauss’s theorem. Consider a convex region
V bounded by a surface S that consists of a finite number qf parts whose outer
normals form a continuous vector field (e.g., the one shown in Fig. 10.1). Such a
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X2

Figure 10.1 Path of integration
illustrating the derivation of
Gauss’s theorem.

region is said to be regular. Let a function A(x,, X3, x;) be defined in the volume
V and on the surface S. Let A be continuously differentiable in V. Let us consider

the volume integral
I1], a0
4 Bxl

The integrand is the partial derivative of A with respect to x,. By integrating with
respect to x; along a line segment L, we obtain

(], 2t = -

10.1-1
vV ax; ( )

where A* and A** are, respectively, the values of A on the surface § at the right
and left ends of the line segment L parallel to the x;-axis. The surface integral on
the right-hand side of Eq. (10.1-1) may be written more elegantly. The factors
+dx, dxz and ~dx; dx; are the projections on the x;x;-plane of the areas dS* and
ds** at the ends of the line segment L. Let v = (v,, 12, v3) be the unit vector
along the outer normal to the surface S. For the element shown in Fig. 10.1, we
see that v{ = cos (x;, v*) is positive, whereas vi* = cos (x;, v**) is negative. It
is easy to see that in this case, dx, dx; = v} dS* at the right end and —~dx; dx, =
vi* dS** at the left end. Therefore, the surface integral in Eq. (10.1-1) can be
written as

(A" dxy dxs — A** dxy dx;) = (A*vf dS* + A™*v}* dS*). 10.1-2)
S §

The asterisks may be omitted because they merely indicate the appropriate values
of A and v, to be taken in a surface integral according to conventional notations.
Thus, the right-hand side of Eq. (10.1-1) reduces to [s Av, dS. Now, if we write
the volume integral on the left-hand side as fy (8A/0x;) dV, then we have

f 4 by - fsAvl ds,

Vo (10.1-3)
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where dV and dS denote the elements of V and S, respectively. A similar argument
applies to the volume integral of 0A/0x; or dA/dx;. Thus, we obtain Gauss’s theo-

rem,

J%chfsAv,-dS, (i=1,23).
12

A (10.1-4)
ox;

This formula holds for any convex regular region or for any region that can
be decomposed into a finite number of convex regular regions. .

Now let us consider a tensor field Ay ... . Let the region V with boundary
surface § be within the region of definition of Ay, ., . Let every component of Aj. .
be continuously differentiable in V. Then Eq. (10.1-4) is applicable to every component
of the tensor, and we obtain the general result

f 2 . AV = L vl .. . dS, k (10.1-5)

v ax;
which is one of the most useful theorems in applied mathematics.
This theorem was given in various forms by Lagrange (1.762), Gauss (18132,
Green (1828), and Ostrogradsky (1831). It is best known in this country as Green’s
theorem or Gauss's theorem.

Example 1

Let v; represent a vector. Then, according to Eq. (10.1-5), we have, on identifying
A; = v;, and n; as the normal vector to the surface S,

J 9& dv = L’vin,-dS.

(10.1-6)
v ox;

If we write the coordinates Xy, Xa, ¥s 2 ¥, ¥, z; the components v, v, V3 as u, v,
w; and the direction cosines ny, 1z, 3 of the outer normal to the surface S as [, m,

n, then

fjj (?—lf + 4 + ?ﬁ) dx dy dz = ff (lu + mv + nw) dS. (10.1-7)
vigx dy o0z s

In another popular notation, we denote the vector by v and the scalar product v;n
by v-n and define
du v aw

divy = —

(10.1-8)
ax dy oz

Then Eq. (10.1-7) becomes
L divvdV = j v ds. A (10.1-9)

Equations (10.1-6), (10.1-7), and (10.1-9) are the best known forms of Gauss’s
theorem.
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Example 2

If A is identified with a potential function ¢, then Eq. (10.1-3) is usually written
in the vector form

[ emdaav = noas

Example 3

Let ¢;;; be the permutation tensor. Then

feiikllk,jdv = eiikj llk‘idV = Gk J uknde = feiikuknjds;

ie.,

fcurludV=anudS.

10.2 MATERIAL DESCRIPTION OF THE MOTION
OF A CONTINUUM

Let a fixed frame of reference O-x,x,x; be chosen. Let the location of a material
particle be x; = @y, x, = @y, X3 = a; whentime t = t,. We shall use (a;, &, a;) as
the label for that particle. As time goes on, the particle moves. Its location has
the history

o =00, 0, 0,0, B =X, 6,6 1), X3 = Xa(@, @y, 3, 8)

referred to the same coordinate system or, in short,
%= xla, m, 05, 1),  (i=1,2,3). (10.2-1)

If such an equation is known for every particle in the body, then we know the
history of motion of the entire body. Mathematically, Eq. (10.2-1) defines the
transformation, or mapping, of a domain D(a;, a,, as) into a domain D'(xy, X, X5),
with t as a parameter. An example is shown in Fig: 10.2. If the mapping is continuous
and one to one—i.e., for every point (i, a5, as), there is one and only one point
{x1, X2, x3) and vice versa—and neighboring points in D{a,, a,, a5) are mapped into
neighboring points in D'(x,, x,, x), then the functions x{ay, a;, as, ) must be single
valued, continuous, and continuously differentiable, and the Jacobian must not
vanish in the domain D. :

The mapping given by Eq. (10.2-1) is said to be a material description of the
motion of the body. In a material description, the velocity and acceleration of the
particle at (a,, a4y, as) are, respectively, .

vi(aly az, G3, t) = %

3
o {a1.92.93)

(10.2-2)
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43, 03

Pl

xy=2(0y, 0 03, 1)
8 X2=¢\’}2(Ug, Oz, O3, 1)

X3=}3(01, Ty, 0z f)}

Configuration at f=7

Configuration ot f=0

Xz, 02

X, 04 Figure 10.2 Labeling of particles.

and

Vi

at

afm, @, 63, 1) = (10.2-3)

‘ {21,82,93) {a),a2.13)

Conservation of mass may be expressed as follows. Let p(x) be the density
of the material at location x, where the symbol x stands for (x;, ¥, x3). Let pg(a)
be the density at the point (a:, , as) when £ = 0. Then the‘ mass of the material
enclosed in a volume V is [5 po(a) da, da; das at t = 0 and is [pr p(x) dx; dxy dxs
at time ¢. Thus, conservation of mass is expressed by the formula

J p(X) dx, dx: d.x;x, = J po(ﬂ) da; daz dll3, (10.2’4)
D D

where the integrals extend over the same particles. But

O iy dos day, (10.25)
aai

J |, P00 du dy dxs = JD p(x) det

where lax;/aa,-] is the Jacobian of the transformation, i.e., the determinant of the
matrix (8x;/0a;):

3 axllaa, 6x1/6a2 axllaag
det 12 = laxfoa,  omomy  Oxaloms|- (10.2-6)
i 6x3/601 6x3/6a2 ax3/8a3

ifyi i i . d (10.2-5) and realizing that
Identifying the right-hand sides of Egs. (1Q 2-4) an !
the regxltgmust hold for any arbitrary domain D, we see that the integrands must

be equal:

po(a) = p(x) det

i) (10.2-7)
Ba,-
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Similarly,
6a,~
_p(x) = po(a) det —-l- (10.2-8)
ax,-

These equations relate the density in different configurations of the body to the
transformation that leads from one configuration to another.

Thus, the material description of a continuum follows the method used in
particle mechanics.

10.3 SPATIAL DESCRIPTION OF THE MOTION OF A CONTINUUM

In the material description, every particle is identified by its coordinates at a given
instant of time f,. This is not dlways convenient. When we describe the flow of
water in a river, we do not desire to identify the location from which every particle
of water comes. Instead, we are generally interested in the instantaneous velocity
field and its evolution with time. This leads to the spatial description traditionally
used in hydrodynamics. The location (¥, X2, x;) and the time ¢ are taken as inde-
pendent variables. It is natural for hydrodynamics because measurements are more
easily made and directly interpreted in terms of what happens at a certain place,
rather than following the particles.

In a spatial description, the instantaneous motion of the continuum is
described by the velocity vector field V{1, X2, X3, £), which, of course, is the velocity
of a particle instantaneously located at (xy, X,, x) at time ¢. We shall show that the
instantaneous acceleration of the particle is given by the formula

i a i
W, f) = %Vt- (5 + 5 () A (10.31)
7]

where x again stands for the variables x;, x;, %3, and every quantity in the formula
is evaluated at (x, £). The proof follows from the fact that a particle located at (x;,
X, X3)-at time ¢ is moved to a point with coordinates x; + v; dt at the time ¢ + dt
and that, according to Taylor’s theorem, and by omitting the higher-order infini-
tesimal terms as dt — 0,

ii,-(x, t) di = V,'(x,' + V; dt, t+ dt) - v,~(x,~, t)

+ avdx, 1) g+ avi(x, 1)
at Gx,-

=V V; dr — Viy

which reduces to Eq. (10.3-1). The first term in Eq. (10.3-1) may be interpreted
as arising from the dependence of the velocity field on time, the second term as
the contribution of the motion of the particle in the nonhomogeneous velocity field.
Accordingly, these terms are called the local and the convective parts of the accel-
eration, respectively.
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_ The reasoning that leads to Eq. (10.3-1) is applicable to any function Flxy,

" %, 1, f) that is attributablé to the moving particles, such as the temperature. A

convenient terminology is the material derivative, which is denoted by a dot.or the
symbol D/Dt. Thus, the material derivative of F is

’ aF aF
F= br, (ﬂ:—) + vl-‘?£+ h—+n— A (1032
Dt dt/x=const. ax ‘ ‘3}62 0% A

On the other hand, if F(x, Xz, %3, t) is transformed into F(al,' a3, 3, {) through the
transformation given by Eq. (10.2-1), then F(ay, 4, &, £)is u‘lde«?d the value of F
attached to the particle (a1, @, as). Hence, the material derivative F does mean
the rate of change of the property F of the particle (a1, 4z, a;)- Formally,

i o 0 0 f)

(10.3-3)
at

a

On regarding F(x;, %2, %3, f) as an implicit function of ay, a,, 4, t, we have
. gF | oF oF aF

F= d + —

at X 09X,

which reduces to Eq. (10.3-2) by virtue of Eq. (10.2-2).

X3

ot
'

ax;

ot

ax,
at
!

: (10.3-4)
a

a ax, R 3 0x3

10.4 THE MATERIAL DERIVATIVE OF A VOLUME INTEGRAL

Leti(f)bea volume integral of a continuously differentiable function A(x, ] deﬁned
over a spatial domain V(xi, Xz, %3, 1) occupied by a given set of material particles:

I0) = f f J A, 0) dx dz ds (10.4-1)

ilere again, we write X for Xy, Xz, Xs. The function I(¢) is a function of the time ¢

because both the integrand A(x, £) and the domain.V(x, f) depend on the parameter
t. As ¢ varies, I(f) varies also, and we ask: What is the rate of. change of I(9) with
respect to ¢? This rate, denoted by DI/Dt and called the material derivative of I, is
defined for a given set of material particles. . . ‘

The phrase “for a given set of particles” is of primary importance. The
question is how fast the material body itself “sees” the value ?f I changing. To
evaluate this rate, note that the boundary S of the body at the instant £ will 'have:
moved at time ¢ + dt to a neighboring surface §', which bounds the domain V'
(Fig. 10.3). The material derivative of I is defined as

DI _ i lU A, £ + dy dV - f Alx, ) dV]. (10.4-2)
Dt a0 diJ v v
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Figure 10.3 Continuous change of
the boundary of a region.

Attention is drawn to the difference in the domains V'’ and V. Let AV be the domain

V' — V. We note that AV is swept out by the motion of the surface S in the small

time interval dz. Since V' = V + AV, we can write Eq. (10.4-2) as

il [
T }:EE; dtUVA(x’ t4drydv + AVA(X, t+ di)dv

- Jv A(x, §) dV} 1043)

= lim {;11? JV [A(x, ¢ + dfy — A(x, )] av

de

1
+ i f AVA(x, i+ di) dV}‘

For a continuously differentiable function A(x, ¢), the first term on the right-hand
side contributes the valve [ dA/3t AV to DI/Dt. The last term may be evaluated
by noting that for an infinitesimal dt, the integrand may be taken to be A(x, ) on
the boundary surface S [because of the assumed continuity of A(x, £)] and that the
integral is equal to the sum of A(x, £) multiplied by the volume swept out by the
particles situated on the boundary S in the time interval d. If n; is the unit vector
along the outer normal of S, then, since the displacement of a particle on the
boundary is v; dt, the volume swept out by particles occupying an element of area
dS on the boundary § is dV = ndS-dt. On ignoring infinitesimal quantities of
the second or higher order, we see the contribution of this element to DI/Dt is
Av;n;dS. The total contribution is obtained by an integration over S. Therefore,

D

34
o f AV = f L5 AV f Avpyds. A (10.44)
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Transforming the last integral by Gauss’s theorem and using Eq. (10.3-2), we have

D —ff’ﬁdVJrf—a—Av.dv
-IiijdV— v oot vax,-( )

- J (3—4 L Aﬂﬁ) & A (1045)
v ax,-

at axi

DA av,.)
—_— —| dv
14 ( Dt t4 3x;
This important formula will be used repeatedly in the sections that f.ollow. It shou}d
be noted that according to Eq. (10.4-5), the operation of formmg the material
derivative and that of spatial integration are noncommutative in general.

105 THE EQUATION OF CONTINUITY

The law of conservation of mass was discussed in Sec. 10.2. With the results of

Sec. 10.4, we can now give some alternative forms. .
The mass contained in a domain V at a time £ 15

m = L pdv, (10.5-1)
i i i i t time ¢. Conservation
h = p(x, 1) is the density of the contmuum'at Iocatlon?( at
‘(I)vf z:sg regl(lires) that DmiDt = 0. The derivative Dm/Dt is given by Eq. (1Q.4—4)
or Eq. (10.4-5) if Ais replaced by p. Since the result must hold for an arbitrary
doma{n V, the integrand must vanish. Hence, we obtaip the following forms of the
Jaw of conservation of mass enclosed in 2 surface § with outer normal n:

f L J ov; 1y dS = 0. A (1052)
v ot s
o, 0m A (105-3)
ot ax,'
Do My A (1054)
Dt axi

These are called the equations of continuity. The integral form, Eq. (10.5-2), is

. o ‘ 4
ful when the differentiability of py; cannot be assumed.
e In problems of statics, these equations are satisfied identically. Then the

conservation of mass must be expressed by Eqg. (10.2-7) or Eq. (10.2-8).
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10.6 THE EQUATIONS OF MOTION

Newton's laws of motion state that in an inertial frame of reference, the material
rate of change of the linear momentum of a body is equal to the resultant of the
forces applied to the body.

At an instant of time ¢, the linear momentum of all the particles contained
in a domain V is

@,‘ = JV pV; dv. (106—1)
If the body is subjected to surface tractions T,and a body force per unit volume
X;, the resultant force is

%:Lia+ﬁmw. (10.6-2)
According to Cauchy’s formula, Eq. (3,3-2), the surface traction may be expressed
in terms of the stress field oy, so that Ty = oy, where v; is the unit vector along
the puter normal to the boundary surface § of the domain V. On substituting o,
for T:into Eq. (10.6-2) and transforming the surface integral into a volume integral
by Gauss’s theorem, we have

=
¥ P (10.6-3)
Newton’s law states that
D v Gfa
5 %= % (10.6-4)
Hence, according to Eq. (10.4-5), with A identified with pv;, we have
20 2 Gl av - | (9__ )
f v[ T ox; (pv,v,)} v v dx; &) av. (10.65)

Since this equation must hold for an arbitrary domain V, the integrands on the
two sides must be equal. Thus, :
9 pv; d 90, ij
——+ —(pvy) = — + X,
o T P =g

The left-hand side of Eq. (10.6-6) is equal to

d d pv; av; avi
v,.(—" N __P_&) . p(_v y, _V).
at ax,' at ax,'
The quantity in the first set of parentheses vanishes according to the equation of
continuity, Eq. (10.5-3), while that in the second set of parentheses is the accel-

(10.6-6)
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eration Dv/Dt. Hence, we obtain the celebrated Eulerian equation of motion of a

" continuum:”

Dy, _ 99y

° Dt ax; ‘ ‘ ’

The equation of equilibrium discussed in Sec. 3.4 is a special case that can be
obtained by setting all velocity components v; equal to zero.

A (106-7)

[

10.7 MOMENT OF MOMENTUNM

An application of the law of balance of angular momentum to the partiqular case.
of static equilibrium leads to the conclusion that stress tensors are symmetric tensors
(see Sec. 3.4.) We shall now show that no additional restriction to the motion of
a continuum is introduced in dynamics by the angular momentum postul.ate, which
states that the material rate of change of the moment of momentum with respect
to an origin is equal to the resultant moment of all the applied forces about the

same origifl. ; . ' .
At an instant of time ¢, a body occupying a regular region V' of space with
boundary § has the moment of momentum [See Eq. (3.2-2)]
?C,— = J‘ EiinXiPVi av (10.7—1)

14
with respect to the origin of coordinates. If the body is subjected to surface tr?c.tio.n
T,and a body force per unit volume X;, the resultant moment about the origin is
‘Eg,' = fV e,-,-kx,-Xk dv + JS e;,-kx,Tk ds. (107—2)
Introducing Cauchy’s formula, ﬁ = gy, into the last integral, .and trans-
forming the result into a volume integral by Gauss’s theorem, we obtain

§£i = JV eiier'Xk dV + jv (e;ikx,mk), ! dV. (].0.7—3)
Euler’s law states that, for any region V,
5% = & (10.7-4)
Dt

Evaluating the material derivative of 3; according to Eq. (10.4-5) and using Eq.
(10.7-3), we obtain

- ‘
el.l.kxi—a— (ka) +o— (e,-,-,;x,-pvkv,) = e,'jkijk + eiik(x,ﬂ'lk), 1 (107—5)
ot ax;




220 vati
Derivation of Field Equations ~ Chap. 10

The second term in Eq. (10.7-5) can be written as
EiirPViVi + CijxXi ‘a_(kaV) ={ + d
FALCE iy P (pviv))
be e . .
cause e, is antisymmetric and vy, is symmetric with respect to j, k. The last

term in Eq. (10.7-5) ¢ i
becomes ( ) can be written as €0 + ejxou, . Hence, Eq. (10.7-5)

19 ?
EijrXj at (pl’k) + 5;[ (p"kvl) - Xk = O] — epdy = 0. (10,7—6)

By the equation of motion Eq. (10.6-
. (10.6-6 i .
Hence, Eg. (10.7-6) is reduczd(to ), the sum in the square brackets vanishes.
e = 0; (10.7-7)

i.e., oy = oy;. Thus, if the stres i
' s tensor is symmetri
of momentum is satisfied identically. ’ Fie thea of alance of moment

10.8 THE BALANCE OF ENERGY

ninuum mUSt be OveIan fBI thel b t (+] W rvaton
fIIl - € I a pr blem, t
TMo!

the kinetic energy K, th itati
e ! gy K, the gravitational energy G, and the internal energy E. We

Energy = K + G + E. (10.8-1)

The kinetic energy contained in a regular domain V at a time ¢ is

ZP Vi av, (10.8—2)

where v; are the com) i

; ponents of the velocity vect i

nhers i p | y vector of a particle occupyin

oLvatum d'V ar.ld p is the density of the material. The gravitationa?y B oonds
istribution of mass and may be written as orergy depends

¢= J’ pb(x) 4V, (10.8-3)

-

Sec. 108 The Balance of E'ﬁ'ergy '

where ¢ is the gravitational potential pet unit mass. In the important special case

of a uniform gravitational field, we have
G= J pgz dV, (10.8-4)

1 acceleration and z is a distance measured from a certain

where g is the gravitationa
planeina direction opposite to the gravitational field. The internal energy is written

in the form

E= J oF dV, (10.8-5)

r unit mass. The first law of thermodynamics states

where E is the internal energy pe
be changed by absorption of heat 0 and by work

that the energy of a system can

W done on the system:

Aenergy = Q + W. (10.8-6)

Expressing this in terms of rates, we have

%(K s G+E=0+W, (10.8-7)

where ( and W are the rates of change of Q and W per unit time.
Now, the heat input into the body must be imparted through the boundary.

To describe the heat flow, a heat flux vector h (with components hy, ho, hs) 18
defined as follows. Let 4S be a surface element in the body, with unit outer normal

n;. Then the rate at which heat is transmitted across the surface S in the direction
of v is assumed to be represen

table as hn; dS. If the medium is moving, we insist
that the surface element 4S be composed of the same particles. The rate of heat
input is, therefore,
: oh
Q = - Sh,'l’l,‘ as = — —dV. (108’8)

v ox;

ork is doge on the body by the body force per unit volume

The rate at which w
§ is the power

F;in V and the gurface tractions T;in

W= J Fy dV + J T dS

= J Fy;dV + J ann; 45 (10.8-9)

= J Fy; dV + J (s 4V

Since, in Eg. (10.8-7), the gravitational energy is included in the term G, the power
W must be evaluated with the gravitational force excluded from the body force F.
Substituting Eqs. (10.8—2), (10.8-3), (10.8-5), (10.8-8), and (10.8-9) into the first

e

=

T
‘.@éé‘zmw

o
PEYAY

—
SEt

e
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law of thermodynamics, Eq. (10.8-7), and using Eq. (10.4-5) to compute the
material derivatives, we obtain the following result after some calculation;

1 DV vDp ¥ DE g2
- - - _+ Dt .
2P A TPty EY e
— 4+ p=
+Epd1vv+PDt ¢Dt+¢pdlvv
oh;
= - ™ + Fyvi + oy + o

This equation can be simplified greatly if we make use of the equations of continuity
and motion:

Dy,
"

Here, X; is the total body force per unit mass. The difference between X; and F
is the gravitational force and is, by definition,

—D—E+pdivv=0,

Dt = Xi + oy

(10.8-11)

Bd)‘

L~ B = —p .
Since
;D-(?l = @ + v @,
Dt at ax‘.

and 8¢/3¢ = 0 for a gravitational field that is independent of time, we have, for
such a field, and with Egs. (10.8-11) and (10.8-12),

1 Dv DE_ ah Dy

P TP T T pv,-~D—ti + oy (10.8-13)
But
ov; ll))';' = %p %”72 (10.8-14)
and
o = oa(vy + Vi) + 10y — v)l = ¥y + 0, (10.8-15)
where
Vi = (v + ) (10.8-16)

is the strain-rate tensor. The last term in Eq. (10.8-15) vanishés because it is the
contraction of the product of a symmetric tensor o; with an antisymmetric one.

Hence, Eq. (10.8-13) can be simplified, and we obtain the final form of the energy
equation:
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DE__ ] + oV (10.8-17)
p' -Dt.. 0x;

Specialization ; ; B . ; ' ‘
(A) If all the nonmechanical transfer of energy consists of heat conduction, which
obeys Fourier’s law, _

hi=—J\ QI, (10.8-18)
' ox;

where J is the mechanical equivalent of heat, \ is the conductivity, and T is the

absolute temperature, then the energy equation becomes

DE_;2 (x oI ) + oV (10.8-19)
P Dt ax; ax; )

(B) The usual equation of heat conduction in a continuum at rest is obtained

by deleting the terms involving ¢, v, and V; and setting

E = JcT, (10.8-20)
:vs}here ¢is the specific heat for the vanishing rate of deformation. Then Eq. (10.8-19)
becomes
o_ 2 E"—-7-“) (10.8-21)
pe E B ax,’()\ 0x;

10.9 THE EQUATIONS OF VIOTION AND CONTINUITY IN POLAR

COORDINATES

In-Secs. 3.6 and 5.8, we considered the stress and strain componer(lits, re:gcﬁ;lig;
“oolar © fes i i tion and con
ki i . The corresponding equations of mo _
in polar coordinates. T T s, by
ived i - by the method of genera
ved in the same manner: by ' : anal m
A ?;:s;grmation from the Cartesian coordinates, or by direct ad hoc derivation fro

i inci i two approaches follow. .
ciples. Tllustrations of the last twe .
o p’ll:ll?e gasic equations for transformation between Cartesian coordinates x, ¥,

2 and polar coordinates 7, 8, z are given in Sec. 5.8. If we substitute Eq. (3.6-5)
into the equation of equilibrium,
60',-,-

=0, (10.9-1)
0x,-

ie.,
80s , 30y, 3n_ o
%z
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etc., and use Eq. (5.8-3) to transform the derivatives, we obtain

a,, 16 m é’r.'
(_ff_ ldog o Gea+_ﬂ.)cosa
or r 36 r

_(16_% 39s , 5% , 0

~ p» " + PP ) sinf =0. (10.9-2)

Since this equation must hold for all values of 6, we must have, at 6 = 0 and at
8 = /2, respectively,

E‘— r db r 0z ’ (10.9-3)

Loow , d0g 20w  90n _,
r a6 ar r 0z

d0, 1908 , On = Ow , 30w

But the choice of the x-direction is arbitrary, so Eq. (10.9-3) must be valid for all
values of 8. Similarly, from Eq. (10.9-1) with i = 3, we obtain the third equation
of equilibrium,
905 180w 30, On
dz 1 90 ar r

= 0. (10.94)

If the continuum is subjected to an acceleration and a body force, then the
equation of motion, Eq. (10.6-7), is

60',7

DV,'
— 4+ X =p—=pa 10.9-5
The body force per unit volume may be resolved into components F, F, F,
along the r-, 0-, and z-directions, respectively. The acceleration Dv/Dt = a; must
be considered carefully. The component of acceleration in the x-direction in rec-
tangular coordinates is

v, av, av, ave
a, = — + v,— + v,
0z

=Rty (10.9-6)

The components of acceleration a., a,, a. and of velocity v,, v,, v, are related to
the components a,, a,, a, and v,, v, v, in polar coordinates by the same Eqgs. (5.8-4)
that relate the displacements, provided that u is replaced by a and v, respectively.
Hence, by substitution of Egs. (5.8-3) and (5.8-4) into Eq. (10.9-6), we obtain

d
a,=—(v,c080 — vy 5in
M »sin 6)

) d sinb 3 -
+ (v, cos & + vy sin 6)(003 0 =" 7 3 e)(vr cos'd — v, sin 0)
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., 9 cosba .
+ (v, sin @ + v, o8 G)(sm i pw + - )(v, cos 8 — v, sin 6)

2

d .
+ v, —(v, cos 6 — vy sin 6)
0z

av, dv, Vedv, Wi av,)
= s vt th P
cos e( ot A or  rad r oz
aVu an Vo an V,Vo an) (10.9__7)
—snll— vy, — =t V. )
s e( U T 0z

Comparing Eq. (10.9-7) with the equation

a, = a,c08 § — aosin 6, (10.9-8)
we obtain the components of acceleration:
: W, v v,
a,=@)—'+v,a—v~+ﬁ-—v~——q+vz——,
ot or  rad r dz (10.9-9)
vy g Ve dVe | ViV vy
=ty —t =tV
G Ty Ty az
Similarly,
av. av Vg aV; av,
=4yt 10.9-10
EE T T M ( )
The full equations of motion are
g, loog 0O, — On , 00
S =L 4t t——+F,
P ="ar " r 00 r az
_Liow , 800 200, D0 p (10.9-11)
PO=T0 T o ez
g, = 2= Liow 392  Om  p

0z r 06 ar r

These derivations are again straightforward, but not very instructive from the
physical point of view. A second derivation based onan examination of.the bal'ance
of forces acting on an element may supply further insight into t.he equations. Figure
10.4 shows the free-body diagram for an isolated element with the stress pattern
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Figure 10.4 Stress field in cylindrical polar coordinates.

iqdica_ted. The equation of motion indicates that the acceleration in the radial
direction is equal to the sum of all the forces acting in the radial direction. Thus,

o, dr d{w}

- Fdrds [r a9+ (r + dr)de}
2
90,
+ (crr, + o dr)(r + dr)db dz — o1 dﬁ‘dz

. de
— oy dr dz sin 2 (mm 90 de) dr dz sm%e
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+ (Grﬂ + ?;I_e'o,de) dr,dz — O dr,dzk St et et e -

. ( 00 ){M} i (10.9-12)

v+ —dz = o,
7 9z 2

Expanding, dropping higher-order infinitesimal quantities, and dividing through
by r, we obtain the first equation of Eq. (10.9-11). The other equations can be
obtained in a similar manner. Note that in the equation for radial equilibrium, the
term —oyfr is a radial pressure in the nature of hoop stress; the term o,/r is the
contribution due to the larger area of the outer surface at r + dr than that at radius
r. The term o,./r in the equation for axial equilibrium is present for the same reason.
The term 20,4/r in the tangential equation has two origins: One is for the same
reason as before, viz., that the outer surface is larger; the other arises from the
fact that the radial surfaces at 6 and 6 + df are not parallel, but make an
angle df.

A similar graphical interpretation can be made of the individual terms in the
expressions for acceleration. The term —vir in a, is of the nature of centripetal
acceleration. The term vev,/r in 4, arises from the rotation of the radial velocity
vector v,, thus contributing a tangential component of acceleration.

A similar treatment can be used to transform the equation of continuity, Eq.
(10.5-3), into polar coordinates. But here it is perhaps most instructive to study
the balance of mass flow in an element, as shown in Fig. 10.5. With the arca
through which the mass flow takes place accounted for properly, we obtain

1 dpv, 9
18 apw+ pv: 9P

=0 10.9-
TSy Ty Y =0 (10.5-13)

ay
(i dr
Area vy
(r+dr) d8 dz ptor oz
dvy
v 7 56"‘ dg
Area rdf dz

Figure 10.5 Conservation of mass
. in cylindrical polar coordinates.
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10.2

10.3

10.4
10.5

10.6

10.7
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PROBLEMS

State the definitions of (a) a line integral, (b) a surface integral, and (c) a volume
integral. '

State the mathematical conditions under which Egs. (10.1-4), (10.1-5), (10.4-4), and
(10.4-5) are valid.

Evaluate the line integral

%C ydx + 2 dy,
where C s a triangle with vertices (1,0), (1,1), (0,0). (See Fig. P10.3.)
Answer: 113.

1,1

[0.0 (1,0 Figure P10.3 Path of integration.

Evaluate j£C (¢ — y*) ds, where Cis the circle x* + y* = 4.

Derive Green's theorem: Let D be a domain of the xy-plane, and let C be a piecewise
smooth simple closed curve in D whose interior is also in D. Let P(x, ) and O(x, y)
be functions that are defined and continuous in D and that have continuous first
partial derivatives in D. Then

§6de+Qdy=JL(%~%§)dxdy,

where R is the closed region bounded by C.
Interpret Green’s theorem vectorially to derive the following theorems:

(a) Sgc Urds = J J . curl, u dx dy,

() )gc v, ds = ”R div v dx dy,

where u, v are vector fields, 1 is the tangential component of u (tangent to the curve
C), ds is the arc length, and v, is the normal component of v on C. Equation (a)is
aspecial case of Stokes’s theorem. Equation (b) is the two-dimensional form of Gauss’s
theorem.

A rubber spherical balloon is quickly blown up in an angry sea by a ditched pilot.
Let a particle on the balloon be located at

x=x(), y=y0 z=2z0:

Let the surface of the balloon be described by the equation
F)=@-N+@-wf+z-vwW-a=0
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where A(t), 1(t), and v(r), which define the center of the sphere, and a(f), the radius,
are functions of time. (See Fig. P10.7.)

Show that DF/Dt = 0.

Derive the boundary conditions for the air and water moving about the balloon.

Solution: The equation F(i) = 0 representing the surface of the balloon is true at
all times. Therefore, its derivative with respect to ¢ must vanish. Since x, y, z are coordinates
of the particles, and F({) is associated with the balloon at all times, the time derivative is
the material derivative, i.e., DF/Dt, which is zero.

Conversely, from the equation DF/IDt = 0, we conclude that F = const. for a given
set of particles. In particular, if the set of particles is defined by the equation F = 0, it
remains the same set. If F = 0 defines the balloon at t = 0, it defines the balloon at
any L.

The equation becomes more significant if we consider the fluid (air and water) around
the balloon. Fluid particles once in contact with the balloon remain in contact with it (the
so-called no-slip condition of a viscous fluid in contact with a solid body). Hence, the
boundary conditions of the flow field are F = § and DFIDt = 0.

S

So
+
O\, vl

©,0,0
Figure P10.7 Expanding balloon.

10.8 The surface of a flag fluttering in the wind is described by the equation
Fix, 3,2, 6) = 0.

“Writé down analytically the constraints imposed by the flag on the airstream. In other
words, given the shape of the boundary surface F = 0, derive the boundary condition
for the flow. For this problem, consider the air a nonviscous fluid.

What difference would it make if the air were taken to be a viscous fluid?

Solution: As in Prob. 10.7, the boundary condition of the airstream on the flag
surface F = 0 is

al‘+u£:+u?£+u§£"0 1

a " e Yoy ez M

where u (1, u,, 1.) is the velocity vector. For the surface F (x, y, z, £) = 0, the vector n
with components

aF aF oF

ax’ 9y oz
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is normal to the surface. Hence, Eq. (1) may be written
‘ oF
P +wn =0 . @

This means that the normal velocity must be equal to — dF/ar on the flag surface.
For a viscous fluid, the no-slip condition requires, in addition, that F = 0. (See the
discussion in Sec. 11.2, p. 233.)

18.9 Two components of the velocity field of a fluid are known in the region -2 <
0Ly,zs2

u=(1-yYla+bhx+cd), w=0

The fluid is incompressible. What is the velocity component v in the direction of the
y-axis?
10.10 Let the temperature field of the fluid described in Prob. 10.9 be

T = Te ™ sin ax cos By.

Find the material rate of change of the temperature of a particle located at the
originx = y = z = (. Find the same fora patticle atx = y = z = 1.

10.11 For an isotropic Newtonian viscous fluid, derive an equation of motion expressed in
terms of the velocity components.

10.12 The entropy of a moving continuum is s{x,, X, X3, {) per unit mass of the medium.
The mass density of the medium is p(x;, %, %;, £). The velocity field is v{x,, x5 x5, ).
Consider the total amount of entropy in a certain volume of the medium at a certain
time. Express the rate of change of the total entropy of the material enclosed in this
volume in the form of a volume integral.

FIELD EQUATIONS AND
BOUNDARY CONDITIONS
IN FLUID MECHANICS

TN

We have acquired enough basic equations to deal with a broad range of

problems. Most objects on a scale that we can see are continua. Their motion

follows the laws of conservation of mass, momentum, and energy. With the

proper constitutive equations and boundary conditions, we can describe

many physical problems mathematically. In this chapter, we illustrate the
. formulation of some problems on the flow of fluids.

11.1 THE NAVIER-STOKES EQUATIONS

[N——

Let us derive the basic equations governing the flow of a Newtonian viscous fluid,
Let xi, x5, %3 or X, y, z be rectangular Cartesian coordinates. Let the velocity
components along the x-, y-, z-axis directions be denoted by v, vi, vs 0t 18, v, W,
respectively. Let p denote pressure; o; or o, 0y, etc., be the stress components;
and p be the coefficient of viscosity. Here, and hereinafter, all Latin indices range
over 1, 2, 3. Then, the stress—strain-rate relationship is given by Eq. (7.3-3):

05 = —pd; + A\Vud; + 2uV; = —p§; + A Z—;’:S,, +p(§£ + %), (11.1-1)
ie., o k
T = —p zp% + x(gif + % + %’:—)
Uyy% —p+2p%+)\(g—z+g—;+z—t),
. = ‘-1‘) + 2»% + h(% + g-; + %% - (L1
0,,=u.(%§+§§); O'y,=u(g§+%;v7),

o
== WM "
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Substituting these into the equation of motion, Eq. (10.6-7), we obtain the Navier-
Stokes equations,

Dv; ap ] (avk) d ( avk) ] ( av,-)A
Dvi_ o = S0 4 =+ — )
P = PX T o T Van o o) o o,

where X; stands for the body force per unit mass.
The velocity components must satisfy the equation of continuity, Eq. (10.5-3),
derived from the conservation of mass:

d a(pve
o Ay
ot Xy

(11.1-2)

(11.1-3)

These equations are to be supplemented by the equations of thermal state, balance
of energy, and heat flow. '
If the fluid is incompressible, then

(11.1-4)

and no thermodynamic considerations need be introduced explicitly. Limiting our-
selves to an incompressible homogeneous fluid, we see that the equation of con-
tinuity becomes

p = const.,

v u oy ow
— =0 — — = Iy
e C w Ty ez 0 (11.1-5)
and the Navier-Stokes equation is simplified to
Dy, ap v,
X -+ p— .
P Dt P ax; W ax.0x (11 1_6)
Written out in extenso, these are
Du 1ap )
i - 2 3 2
Di X 03 W,
Dy 1ap
—=Y-==+V* 1~
Di 03y W, (11.1-7)
Dw 1dp
= =Z -~ 4V
Dt p 0z Vv,
where v = p/p is the kinematic viscosity and
82 . 62 62
Vi=—+—+— .
ax2 ayZ azz (11 1—-8)

is the Laplacian operator. Equations (11.1-5) and (11.1—7) comprise four equations
for the four variables u, v, w, and p occurring in an incompressible viscous flow.
The solution of the Navier-Stokes equation is the central problem in fluid

mechanics. This equation embraces a tremendous range of physical phenomena
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and has many applications to science and engineering. The equation is nonlinear
and is, in general, very difficult to solve.

To complete the formulation of a problem, we must specify the boundary
conditions. In Sec. 11.2, we consider the no-slip condition on a solid-fluid interface.
In Sec. 11.3, the condition at a “free,” or fluid-fluid, interface is considered, where
surface tension plays an important role. Then a dimensional analysis is presented
to illustrate the significance of the Reynolds number. We shall then consider the
laminar flow in a channel or a tube as an example of a simplified solution when
the nonlinear terms can be ignored. As a warning that turbulences may intervene,
we discuss the classical experiments of Reynolds in Sec. 11.5.

Tn some instances, the viscosity of a fluid may be ignored completely, and
we deal with the idealized world of “perfect fluids.” In association with this ideal-
ization, the boundary conditions must be changed: The order of the differential
equation would be too low to permit the satisfaction of all the boundary conditions
of a viscous fluid. We relinquish the no-slip condition at the solid-fluid interface
and ignore any shear gradient requirement at a free surface. As a consequence,

~—.sometimes the resulting simpler mathematical problems lead to difficulties in phys-

ical interpretations.

11.2 BOUNDARY CONDITIONS AT A SOLID-FLUID INTERFACE

One of the boundary conditions that must be satisfied at a solid-fluid interface is
containers of fluids are of this nature. Mathematically, this requires that the relative
velocity component of the fluid normal to the solid surface must vanish.

The specification of the tangential component of velocity of the fluid relative
to the solid requires much greater care. It is customary to assume that the no-slip
condition prevails at an interface between a viscous fluid and a solid boundary. In
other words, on the solid-fluid boundary, the velocities of the fluid and the solid
are exactly equal. This conviction was realized only after a long historical devel-
opment by comparing theoretical and experimental results.

If the solid boundary is stationary, the no-slip condition requires that the
velocity change continuously from zero at the surface to the free-stream value some
distance away. This boundary condition is in drastic contrast to that which is
required of a nonviscous fluid, for which we can specify only that no fluid shall
penetrate the solid surface; but the fiuid must be permitted to slide over the solid
so that their tangential velocities can be different. This is a penalty for the ideal-
ization of complete absence of viscosity. Figure 11.1 illustrates the difference. In
Fig. 11.1(a), the flow of a nonviscous fluid over a stationary solid object is shown.
At the interface, the fluid slips over the solid with a tangential velocity. In Fig.
11.1(b), it is shown that for a viscous fluid, the velocity must vanish on the interface.

Since the no-slip condition must be imposed for all real fluid, no matter how
small the viscosity, the illustration in Fig. 11.1(b) must prevail for all real fluids.
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VeI?city :
vectors Flow
_veetors ™
Velocity L
vectors

solid

(b

Figure 11.1 The difference in boundary conditions for flows of ideal
and real fluids over a solid body. (a) Ideal fluid; (b) Real fluid.

It is known from wind-tunnel measurements that the flow field is well rep-
resented by Fig. 11.1(a) for the airfoil shown; i.e., except for the immediate neigh-
borhood of the solid boundary, the flow can be obtained as though air had no
viscosity. Yet we know that air has viscosity, even though very small. Therefore,
the no-slip condition must prevail. How can we resolve this conflict?

The answer to this question and the resolution of the conflict are a triumph
of modern fluid mechanics. The modern view is that the illustration shown in Fig.
11.1(b) is an indication of what happens in the immediate neighborhood of a solid
boundary. We should consider that figure as an enlargement of what happens in
a very small region of a flow next to an interface. This region is the boundary
layer. Beyond the boundary layer, the flow is practically nonviscous. The dramatic
importance of the boundary layer will be seen at the sharp trailing edge of the
airfoil. It dictates the condition that the flow must leave the sharp trailing edge
smoothly, with no discontinuity in the velocity field. If we insist on idealized
nonviscous flow, the tangential velocity could differ on the top and bottom sides
of the trailing edge. In the theory of nonviscous fluids, such a discontinuity can be
eliminated either by permitting the flow to round the sharp corner with an infinite
velocity gradient or by introducing an exact amount of circulation so that the trailing
edge becomes a stagnation point. The latter condition was proposed by the German
mathematician Kutta (1902) and the Russian mathematician Joukowski (1907) and
is known as Kutta-Joukowski hypothesis, which is the basis for our modern theory
of flight. Thus, we see that the fluid viscosity, no matter how small, has a profound
influence on flow.

But how can we believe the no-slip condition? On what basis is this condition
established? The molecular theory of gases does not provide a firm answer. From
the molecular hypotheses, Navier deduced (1823) the boundary condition Bu =
p du/an for flow over a solid wall, where u is the velocity, du/on is the derivative
along the normal away from the wall, B is a constant, and . is the coefficient of
viscosity. The ratio p/B is a length that is zero if there is no slip. Maxwell (1879)
calculated that p/B is a moderate muiltiple of the mean free path L of the gas
molecule—probably about 2L. This result is in agreement with modern experi-
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mental evidence. Since the mean free path of the molecules of the air on the surface
of the earth at room temperature is about 5 X 10~% m, we can say that the no-slip
condition may be questioned for micromachines with dimensions on the order of
107° m; and certainly will not apply to nanomachines, whose dimension is in the
nanometer range.

Experiments on the flow of liquids and gases at atmospheric pressure over
cm-sized bodies support the no-slip condition conclusively. Coulomb (1800) found
that the resistance of an oscillating metallic disk in water was scarcely altered when
the disk was smeared with grease or when the surface was covered with powdered
sandstone, so the nature of the surface had little influence on the resistance.
Poiseuille (1841) and Hagen (1839) obtained precise data on water flow in capillary
tubes with diameter on the order of 1020 pm. Stokes showed that the theoretical
result based on the no-slip condition agreed with Poiseuille’s experimental results.
Other experimenters, such as Whetham (1890) and Couette (1890), came to the
same conclusion. Fage and Townsend (1932) used an ultramicroscope to examine
the flow of water containing small particles and confirmed the no-slip condition.

',..In-additi»on, there is agreement between theory and experiment on Stokes’s and
" Oseen’s ‘theories .of motion at small Reynolds numbers, as well as on Taylor’s

calculations and observations on the stability of flow between rotating cylinders.
All these experiences, taken together, support the conclusion that for a liquid, the
slip, if it takes place on a solid boundary, is too small to be observed or to make
any sensible difference in the results of theoretical deductions.

11.3 SURFACE TENSION AND THE BOUNDARY CONDITIONS
AT AN INTERFACE BETWEEN TWO FLUIDS

An interface between two fluids may be regarded as a membrane which has a
specific chemical composition and mechanical properties. For example, the surface
of a soap bubble in air has a layer of surfactants. The surfaces of pulmonary alveoli
have a layer of fluid with surfactants that reduce the surface tension between the
lung tissue and the lung gas. A cholesterol vesicle may have a single layer of lipid
molecules on its surface or a lipid bilayer. Cell membranes are lipid bilayers. Even
at the free surface of water in air, the water molecules at the interface are not in
the same state as those in the bulk, and the interface can be regarded as a layer
of different material. Hence, if one studies the flow of two fluids separated by an
interface, the boundary conditions of the fluids at the interface must take the
properties of the interface into consideration.

A membrane is a very thin plate. The stresses in a plate have been discussed
in Example 4 of Sec. 1.11, see Fig. 1.6. If the membrane is very thin, we are
interested more on the resultant force per unit length in the membrane than in the .
distribution of stress in its thickness. In thin membrane, the product of the average
stress in the membrane and the thickness is called a stress resultant, or a surface
tension, which has the units of [force/length].
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Consider a soap bubble in the air, as shown in Fig. 11.2. It is a layer of liquid
bounded by two air-liquid interfaces which have surface tension. Assume that the

Figure 11.2 A soap bubble.

surface tension is isotropic. Denote the resultant of the surface tensions of the two
interfaces by v. To create the bubble one must blow and create an internal pressure
p; greater than the external pressure po, and the force due to the pressure difference
must be balanced by the tension in the soap film. Let Cbe asmall, closed rectangular
curve of sides dx and dy drawn on the surface of the bubble (Fig. 11.2). The
tensions acting on the sides of C are shown in the figure. To compute the pressure
required to balance the tensions, let us consider two cross-sectional views: one in
the xz-plane (z being normal to the soap film), and another in the yz-plane. The
former is shown in Fig. 11.3, where the tensile forces v dy act at each end. Since
these forces are tangent to the surface, they have a resultant vy dy d8 normal to

dx d
g 23

~\s

dy
R\ g8 ydyde
7 Tigure 11.3  Equilibrium of

membrane forces acting on an
element of the soap bubble.

the surface. But 48 = du/R,, where R, is the radius of curvature for the soap film.
Hence, the normal force is y dx dy/Ri. Similarly, the tensions acting on the other
sides of the rectangle contribute a resultant -y dx dylR,. Since the soap film has
two air-liquid interfaces (inside and outside), the total resultant force due to surface
tension acting on the curve C is normal to the soap film and is equal to 2y dx dylR,
+ 2y dx dylR,. This force is balanced by the pressure difference multiplied by the
area dx dy. On equating these forces, we obtain, for the soap film, the celebrated
equation named after Laplace (1805), although it was actually obtained a year
earlier by Thomas Young (1804):

(1 1
27(& + Rz) = pi = Do (11.3-1)
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If the soap bubble is spherical, then R; = R,. If the bubble is not spherical,
we note that the sum
1

1
— 4+ — = mean curvature

xR (11.3-2)

is invariant with respect to the rotation of coordinates on any surface. Hence, the
directions chosen for the x- and y-axes are immaterial.

As a particular case, let us consider soap films formed by boundary curves
under zero pressure difference. Then the surface is the so-called minimal surface,
governed by the equation

(113-3)

Equation (11.3-1) indicates that the pressure difference required to balance
the surface tension becomes very large if the radii R, and R, become very small.
For a constant v, if Ry, R, — 0, the pressure difference tends toward infinity.

It the fluids are moving and the interface is nonstationary, then the no-slip

“tondition must apply in each fluid relative to the interface if the fluid is real

(viscous). If one of the fluids is ideal (nonviscous), then there is no no-slip condition
for that fluid. Tf both fluids are ideal, then there is no restriction on slip.

In the most general case for an interface with a specific surface viscosity,
surface compressibility, elasticity, and bending rigidity, the equations of motion
(or equilibrium) and continuity of the interface are those of thin membranes or
thin shells in solid mechanics. The boundary conditions of the fluids in contact
with the interface are the nonpenetration and no-slip conditions.

Surface tension is very important in such chemical engineering problems as
foaming, in such mechanical engineering problems as the fracture of metals and
rocks, and in such biological problems as the opening and collapse of the lung.
Surface tension is variable in general. For example, the alveolar surface in our
lungs is moist, and the surface tension is modulated by the presence of “surfac-
tants,” lipids such as lecithin. The arrangement of these polar molecules on the
interface depends on the concentration of the molecules, the rate at which the
surface is strained, and the history of strain, so that the surface tension-area
relationship has a huge hysteresis loop when the surface is subjected to a periodic
strain. Figure 11.4 gives the experimental results obtained by J. A. Clements by
means of a surface balance of the Wilhelmy type. Shown are the surface ten-
sion-area relationships between air on the one hand and pure water, blood plasma,
1% Tween 20 detergent, and a saline extract of a normal lung on the other. The
loops of water and detergent are exaggerated schematically to show the cylic nature
of the strain history.

When there is an interface, there is a question of permeability of the fluid
moving through it. The permeability will govern the boundary condition with
respect to the normal component of velocity. A certain amount of mass transfer,
laminar or turbulent mixing, etc., may occur at the interface.
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Figure 11.4 The variation in
surface tension with strain for
several fluids. From J. A.
Clements, “Surface Phenomena in
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11.4 DYNAMIC SIMILARITY AND REYNOLDS NUMBER

Let us put the Navier-Stokes equation in dimensionless form. For simplicity, we
shall consider a homogeneous incompressible fluid. Choose a characteristic velocity
V-and a characteristic length L. For example, if we investigate the flow of air around
an airplane wing, we may take V to be the airplane speed and L to be the wing chord
length. If we investigate the flow in a tube, V may be taken as the mean flow speed
and L the tube diameter. For a falling sphere, we may take the speed of falling to
be V, the diameter of the sphere to be L, and so on. Having chosen these char-
acteristic quantities, we introduce the dimensionless variables

xl___x_ yl_z Z':E_ u’-—E_
L L L 4 (11.4-1)
V"'*v‘ W'_KV' I=L t'._Y_E
= V; = V’ r szx I ]
and the parameter
L L
Reynolds number = Ry = X;IB = VT (11.4-2)

Equation (11.1-7) for an incompressible fluid can then be put into the form

o’ ou' au' au’ R A T
R —( = -——) (11.4-3)
ot ax ay

e e
dz ax'  Rylex?  &y* 027
and two additional equations obtainable from Eq. (11.4-3) by changing «' into v',
y'intow', w' into u’ and x' into y', y" into z', z' into x’. The equation of continuity,
Eq. (11.1-5), can also be put in dimensionless form:
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o 4 wvooawl

; o oy T o , (11.4-4)
Since Egs. (11.4-3) and (11.4-4) constitute the complete set of field equations for
an incompressible fluid, it is clear that only one physical parameter, the Reynolds
number Ry, enters into the field equations of the flow.

Consider two geometrically similar bodies immersed in a moving fluid under
identical initial and boundary conditions. One body may be considered a prototype
and the other, a model. The bodies are similar (same shape but different size),
and the boundary conditions are identical (in the dimensionless variables). The
two flows will be identical if the Reynolds numbers for the two bodies are the
same, because two geometrically similar bodies having the same Reynolds number
will be governed by identical differential equations and boundary conditions (in
dimensionless form). Therefore, flows about geometrically similar bodies at the
same Reynolds numbers are completely similar in the sense that the functions u'(x',
vz, ), vy, 2, ), Wi,y 2 1), ', Y, 2, F) are the same for the
various flows. This kind of similarity of flows is called dynamic similarity. Reynolds
number governs dynamic similarity of steady flows. For unsteady flows the require-

“ ment for the simulation of the differential equation and the initial and boundary

conditions may require the simulation of other dimensionless parameters.

The Reynolds number expresses the ratio of the inertial force to the shear
stress. In a flow, the inertial force due to convective acceleration arises from terms
such as pu®, whereas the shear stress arises from terms such as p. du/dy. The orders
of magnitude of these terms are, respectively, ‘

inertial force:  pV?,

shear stress: E’-Y .
L

The ratio is

inertiai forcé B pV? B ﬂ R . -
shear stress  wVIL = Reynolds number. (11.4-5)

A large Reynolds number signals a preponderant inertial effect. A small Reynolds
number signals a predominant shear effect.

The wide range of Reynolds numbers that occurs in practical problems is
illustrated in the following examples.

PROBLEMS

11.1 Smokestacks are known to sway in the wind if they are not rigid enough. The wind
force depends on the Reynolds number of the flow. Let the wind speed be 30 mi/hr
(each mi/hr = 0.44704 m/sec) and the smokestack diameter be 20 ft (each ft = 0.3048
m). Compute the Reynolds number of the flow. .
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Answer: 5.46 x 10°
The coefficient of viscosity of air at 20°C is p = 1.808 x 10™* poise (g/em sec), and
the kinematic viscosity v is 0.150 Stoke (cm®sec).

11.2 Compute the Reynolds number for a submarine periscope of diameter 16 in at 15
knots.

Answer: 2.4 x 10°
For water at 10°C, p = 1.308 x 1072 g/em sec and v = 1.308 X 1072 em*fsec. 1 knot
= 1 nautical mile per hour, or 1.852 km/hr.

11.3 Suppose that in a cloud chamber experiment designed to determine the charge of an
electron (Robert Millikan’s experiment), the water droplet diameter is 5 micra (i.e.,
5 x 10~ cm). The droplet moves in air at 0°C at a speed of 2 mm/sec. What is the
Reynolds number?

Answer: 1.6 x 107
For air at 0°C, v = 0.132 cm®sec.

11.4 For blood plasma to flow in a capillary blood vessel of diameter 10 micra (i.e., 107
cm) at a speed of 2 mm/sec, what is the Reynolds number?

Answer: 1.4 x 1072
For blood plasma at body temperature, . is about 1.4 centipoises (1.4 x 107 glem
sec).

11.5 Compute the Reynolds number for a large airplane wing with a chord length of 10 ft
(3.048 m), flying at 600 mi/hr (268.224 m/s) at an altitude of 7,500 ft (2,286 m), (0°C).

Answer: 62 x 10",

115 LAMINAR FLOW IN A HORIZONTAL CHANNEL OR TUBE

Navier-Stokes equations are not easy to solve. If, however, one can find a special
problem in which the nonlinear terms disappear, then the solution can be obtained
easily sometimes. A particularly simple problem of this nature is the steady flow
of an incompressible fluid in a horizontal channel of width 2h between two parallel
planes, as shown in Fig. 11.5.

uly)
2h

X

Figure 11.5 Laminar flow in a
parallel channel.

We search for a flow
u=uly), v=0 w=0 (11.5-1)
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that satisfies the Navier-Stokes equations, the equation of continuity, and the no-
slip conditions on the boundaries y = zh

) =0, u(~h)=0. (11.5-2)

Obviously, Eq. (11.5-1) satisfies the equation of continuity, Eq. (11.1-3), exactly,
whereas Eq. (11.1-7) becomes

_ du

0= -2 +uy (11.5-3)
_o
=% (11.5-4)
_op '
== (11.5-5)

Equations (11.5-4) and (11.5-5) show that p is a function of x only. If we differ-
entiate Bq. (11.5-3) with respect to x and use Eq. (11.5-1), we obtain aplax* =
0. Hence, dp/ox must be a constant, say, —c. Equation {11.5-3) then becomes

du_ 2 1156
dyz p,’ ( . )
which has a solution
oy’
= + B — T
u=A " (11.5-7)

The two constants A and B can be determined by the boundary conditions (11.5-2)
to yield the final solution,

=Yg _p .
upr,(h y). (11.5-8)

Thus, the velocity pfoﬁle is a parabola.
A corresponding problem is the flow through a horizontal circular cylindrical
tube of radius a. (See Fig. 11.6.) We search for a solution

u=uly,z, v=0 w=0

g ) o]

I

-

z

HEH

Figure 11.6 Laminar flow in a circular cylindrical tube.
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In analogy with Eq. (11.5-6), the Navier-Stokes equation becomes

u du o

— == - 1.5
It is convenient to transform from the Cartesian coordinatesx, y, z to the cylindrical
polar coordinates x, r, 8, with * = y* + z%. (See Sec. 5.8.) Then Eq. (11.5-9)
becomes

dar

r? o6

u o 1lafou 10 o
St = r + =3
ay* 8z ror

= - 11.5-10
s s

Let us assume that the flow is symmetric, so that u is a function of r only; then
8%ula6* = 0, and the equation

1d{di) « D
?Ebﬂ" " (11.5-11)

can be integrated immediately to yield

w= -2 4 Alogr + B (11.5-12)
= ua g . .

The constants A and B are determined by the conditions of no slip at 7 = a and
symmetry on the centerline, r = 0:

u="0 at r=a (11.5-13)
du
— = 0. . g
T 0 at r (11.5-14)
The final solution is
o
U= Z;I (& - ). (11.5-15)

This is the famous parabolic velocity profile of the Hagen-Poiseuille flow; the
theoretical solution was worked out by Stokes.

The classical solution of the Hagen-Poiseuille flow has been subjected to
innumerable experimental observations. It is not valid near the entrance to a tube.
It is satisfactory at a sufficiently large distance from the entrance, but is again
invalid if the tube is too large or if the velocity is too high. The difficulty at the
entry region is due to the transitional nature of the flow in that region, so that our
assumption that v = 0 and w = 0 is not valid. The difficulty with too large a
Reynolds number, however, is of a different kind: The flow becomes turbulent!

Osborne Reynolds demonstrated the transition from laminar to turbulent flow
in a classical experiment in which he examined an outflow through a small tube
from a large water tank. At the end of the tube, he used a stopcock to vary the
speed of water through the tube. The junction of the tube with the tank was nicely
rounded, and a filament of colored ink was introduced at the mouth. When the
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speed of water was slow, the filament remained distinct through the entire length
of the tube. When the speed was increased, the filament broke up at a given point
and diffused throughout the cross section (see Fig. 11.7). Reynolds identified the
governing parameter u,, d/v—the Reynolds number—where u,, is the mean velocity,
dis the diameter, and v is the kinematic viscosity. Reynolds found that the transition
from laminar to turbulent flow occurred at Reynolds numbers btween 2,000 and
13,000, depending on the smoothness of the entry conditions. When extreme care
is taken, the transition can be delayed to Reynolds numbers as high as 40,000. On
the other hand, a value of 2,000 appears to be about the lowest value obtainable

on a rough entrance.

//////1/'

.
.

T PV
/ (c)

Figure 117 Reynolds’s turbulence experiment: (a) laminar flow; (b)
and (c), transition from laminar to turbulent flow. After Osborne
Reynolds, “An Experimental Investigation of the Circumstances which
Determine whether the Motion of Water Shall Be Direct or Sinuous,
and of the Law of Resistance in Parallel Channels, Phil. Trans., Roy.
Soc., 174 (1883}, 935-982. '

Turbulence is one of the most important and most difficult problems in fluid
mechanics. It is technically important not only because turbulence affects skin
friction, resistance to flow, heat generation and transfer, diffusion, etc., but also
because it is widespread. One might say that the normal mode of fluid flow is
turbulent. The water in the ocean, the air above the earth, and the state of motion
in the sun are turbulent. The theory of turbulence will greet you wherever you
turn when you study fluid mechanics in greater depth.

PROBLEM
11.6 From the basic solution given by Eq. (11.5-15), show that the rate of mass flow through
the tube is
wa'p
Q= 1.5-16
0="a, (1L.5-16)
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that the mean velocity is
U, = -g;a, ; (11.5-17)
and that the skin friction coefficient is
_ shear stress _ —pdufar),., 16
= ean dynamic pressure  spuh Ry (11.5-18)

where Ry = 2au,/v.

11,6 BOUNDARY LAYER

If we let Ry — ® in the dimensionless Navier-Stokes equation (11.4-3) for a
homogeneous incompressible fluid, namely,

Dy
Dr ox; Ry

the last term would drop out unless the second derivatives become very large. In
a general flow field in which the velocity and its derivatives are finite, the effect
of viscosity would disappear when the Reynolds number tends toward infinity.
Near a solid wall, however, a rapid transition takes place for the velocity to vary
from that of the free stream to that of the solid, because of the no-slip condition.
I this transition layer is very thin, the last term cannot be dropped, even though
the Reynolds number is very large.

We shall define the boundary layer as the region of a fluid in which the effect

of viscosity is felt, even though the Reynolds number is very large. In the boundary
layer, the flow is such that the shear-stress term—the last term in Eq. (11.6-1)—is
of the same order of magnitude as the convective force term. Based on the obser-
vation that in a high-speed flow the boundary layer is very thin, Prandtl (1904)

simplified the Navier-Stokes equation into a much more tractable boundary-layer

equation. . :

To see the nature of the boundary-layer equation, let us consider a two-
dimensional flow over a fixed flat plate. (See Fig. 11.8.) We take the x'-axis in the
direction of flow along the surface and the y'-axis normal to it. The velocity com-
ponent w along the z'-axis is assumed to vanish. Then Eq. (11.6-1) becomes

9 ! 9 ! ) Y 1 2,1 2,1

LA LA 5 i(a—” B, 1162
ot ox ay ox'  Raox?  3y"” ’

a 1 a ! t t 2.7 2.7

_VT.{.u'._V.7+ '?X.__Q'L_*_lﬂ ?L (116—3)
at ox ay' ay'  Ry\ox? @y~ ’

If we take the free-stream velocity as the characteristic velocity, then the dimen-
sionless velocity ' is equal to 1 in the free stream (outside the boundary layer).

p 1
=Ly —vu, (=129, (11.6-1)
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Figure 11.8 A boundary layer of
7% flow.

The velocity u' varies from 0 on the solid surface y' = O to 1aty’ = 3, where 8
denotes the boundary-layer thickness (which is dimensionless and numerically
small). We can now estimate the order of magnitude of the terms occurring in Eq.
(11.6-2) as follows. We write u' = O(1) to mean that u' is at most on the order
of unity. We notice that O(1) + o(1) = 0(1), 0(1)-0(1) = 0Q1), 0o(1) + 0(d)
= 0(1), and O(1)-0%) = 0(d). Then, since the variation of u' with respect to ¢
and x' is finite, we have

ou'
=001, —= o(1),
dx (11.6-4)
o' ou'
axyz - 0(1), 8t' 0(1)

By the equation of continuity, Eq. (11.4-4), we have

P _5}—' = 0(1). (11.6-5)
Hence, .
5 8V' U
v = J oéfdy’ ~ Jo o(1)dy = 0(d). (11.6-6)
Thus, the vertical velocity is at most on the order of 8, which is numerically small:
<1 (11.6-7)

Since v' = O(5) while av'/3y’ = O(1) according to Eq. (11.6-5), we see that a
differentiation of a quantity with respect to y' in the boundary layer increases the
order of magnitude of that quantity by 1/8. Then

aw 1) & (1)
o o) 2= ol

' ko

5;; = 0(5), P 0(5), (11.6—-8)
v & (1)

o' - 0(8)’ ayIZ - 3 :
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Now, by definition, the shear stress term is of the same order of magnitude as the
inertial force term in the boundary layer. But the terms on the left-hand side of
Eq. (11.6-2) are all O(1); hence, those on the right-hand side must be also O(1);
in particular,

o) = £

o =425+ 2 o + 3]

Since the first term in the bracket is much smaller than the second term, we have

(11.6-9)

o) = = 0(12)

)
Hence,
. :
Ry = O(gi) (11.6-10)
Thus, we obtain an estimate of the boundary-layer thickness:
1
3= 0(—-——) 11.6-11
: VE ( )

Substituting Eqs. (11.6-4), (11.6-8), and (11.6-10) into Eq. (11.6-3), we see that
all terms involving v' are O(3); hence, the remaining term dp'/dy’ must also be
O(3). Thus,

a 1
L~ o) ~0. (11.6-12)
In other words, the pressure is approximately constant through the boundary layer.

By retaining only terms of order 1, the Navier-Stokes equations are reduced to

w ap 1 ¢

¥ + u o Vay’ = - 4 — Re3y” (11.6-13)
and Eq. (11.6-12). Equation (11.6-13) is Prandtl’s boundary-layer equation; it is
subjected to the boundary conditions

u=v=0 fdory =0, (11.6-14)
u=1 fory =
PROBLEM

11.7 Estimate the boundary-layer thickness of air flowing over a plate 10 ft (3.048 m) long
at 100 ft/sec (30.48 m/s).
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Answer: At 2°C, 3 = 0(4.018 x 10~%). With a chord length of 3.048 m, the
boundary-layer thickness = 0.12 cm.

11.7 LAMINAR BOUNDARY LAYER OVER A FLAT PLATE

To apply Prandtl’s boundary-layer theory, let us consider an incompressible fluid
flowing over a flat plate, as in Fig. 11.9, in which the vertical scale is magnified to
make the picture clearer. The velocity outside the boundary layer is assumed
constant, 7. We shall seek a steady-state solution for which u/at = 0. An additional
assumption will be made, to be justified a posteriori, that the pressure gradient ap/
dx is negligible, compared with the other terms in the boundary-layer equation.
Then Eq. (11.6-13) becomes

— 4y = P 11.741
x  ay ( )
L7 ;__Hu | by
1 '——P-: . _?L:T_""‘"‘
I ! l ’’’’’ r—.» . [}
DG t =~ Figure 11.9 Laminar boundary
| | P R 3 NS "1 layer over a flat plate, showing the
— 0 | / growth in thickness of the boundary
i by sl }"7
H 1/ L 1 4 layer.

Here we return to the physwal quantities and drop the primes. The equation of
continuity is

o >
il (11.7-2)

Equation (11 7-2) is satisfied identically if u, v are derived from a stream function

blx, y)

= ag-‘-k‘ :ﬂ. R .
u= pe v ‘ax ; | (11.7-3)

Then Eq. (11.7-1) becomes

WM Y

xap  oyoxdy oy (11.7-4)

The boundary conditions are (a) no slip on the plate and (b) continuity at the free
stream outside the boundary layer; i.e.,

0 oM - 2
Hu-v 0 or = P =( fory=0, (11.7-5)
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u=1u or-—=1U fory = 8. (11.7-6)

Following Blasius,” we seek 2 “similarity” solution. Consider the transformation
r=ax, y=8y U= (11.7-7)

in which o, B, and y are constants. A substitution of Eg. (11.7-7) into Eq. (11.7-4)
shows that the equation for the function (%, ¥) has the same form as Eq. (11.7-4)
if we choose y = o/B. A similar substitution into Eq. (11.7-6) shows that —dy/dy =
7 if we choose y = B. Hence, p = e/B, or B = V. With this choice, we have
yo_y, L_4 | ’
Vi Vi Vi (11.7-8)

These relations suggest that there are solutions of the form
= - Vo7 = i—i -—y—-—. A
g = —fE)Vvm, & \[v i (11.7-9)

Substitution of Eq. (11.7-9) into Eq. (11.7-4) yields the ordinary differential equa-
tion

ou + =0, (11.7-10)

where the primes indicate differentiation with respect to £. This equation has been
solved numerically to a high degree of accuracy under the boundary conditions

=0, fO=0 [®=1 (11.7-11)

which say that u = Oand v = 0 at the plate and 1 — %, the free-stream velocity,
outside the boundary layer. From Eq. (11.7-9), it is seen that for fixed »/L, £E—
w means that y/L is large, compared with the boundary-layer thickness VvIL, or
3. The velocity distribution, yielded by the solution of Egs. (11.7-10) and (11.7-11),
agrees closely with experimental evidence,' as seen in Fig. 11.10, except very near
the leading edge of the plate, where the boundary-layer approximation breaks
down, and far downstream, where the flow becomes turbulent.

The flow corresponding to the solution given by Eq. (11.7-9), (11 .7-10), and
(11.7-11) is a laminar flow. At a sufficient distance downstream from the leading
edge, the flow becomes turbulent and the Blasius solution fails. The transition
occurs when a Reynolds number based on the boundary layer thickness,

ud

=y

v

*H. Blasius, “Grenzschichten in Fliissigkeiten mit Kleiner Reibung,” Zeitschriftf. Math. u. Phys.,
56 (1908), 1.

1. Nikuradse, Laminare Reibungsschichien an der lingsangestromten platte. Monograph, Zexn-
trale £. Wiss. Berichtswesen, Berlin, 1942. See H. Schlichting, Boundary Layer Theory, translated by
7. Kestin, New York: McGraw-Hill Book Company (1960), p- 124.

Sec. 11.8  Nonviscous Fluid

¢ Biasius's theory
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: Figure 11.10 Blasius’s solution of velocity distribution in a laminar
boundary layer on a flat plate at zero incidence and comparison with
Nikuradse’s measurements.

reaches a critical value. Generally, the value of the criti(:al transitional Reynolds
number is on the order of 3,000, but the exact value'depends on the surface
roughness, curvature, Mach number, etc.

There is a tremendous difference between a laminar boundary layer and a
turbulent one with respect 0 heat transfer, skin friction, heat generati.on, etc. In
our space age, the question of Jaminar-turbulent transition s of supreme importance
for reentry vehicles. As a satellite reenters the atmosphere, the heat generated by
okin friction in the boundary layer is tremendous—but a turbulent boundary la‘yer
generates much more heat than a laminar one. For gxost reentry vehicles, survival

is possible if the boundary layer over the nose cone is laminar; if the flow became
turbulent, the nose coné could be burned out.

11.8 NONVISCOUS FLUID

A great simplification is obtained if the coefficient of viscosity vanishes exactly.
Then the stress tensor is jsotropic, i.e.,
o = Pl (11.8-1)

y
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and the equation of motion can be simplified to

DV; _ _w
b, = oK = (11.82)

Here, p is the density of the fluid; p is the pressure; vy, v,, v5 are the velocity
components; and X, X, X; are the body force components per unit mass.
If, in addition, the fluid is homogeneous and incompressible, then its density
is a constant, and the equation of continuity, Eq. (11.1-3), is reduced to the form
du dv ow ou;

ax+5+:3—z~=0 or a—J‘:i:O. (11.83)

A vector field satisfying Eq. (11.8-3) is said to be solenoidal. According to the
general theory of potentials, a solenoidal field can be derived from another vector
field. This can be illustrated in the simple case of a two-dimensional flow field for

which w = 0 and u, v are independent of z and for which the equation of continuity
is

w dy

oty =0 (11.8-4)

Then it is obvious that if we take an arbitrary function Y(x, y) and derive u, v
according to the rules

W W
U= ay} ‘ v axx (118—5)
Eq. (11.8-4) will be satisfied identically. Such a function  is called a stream
function.
Substituting Eq. (11.8-5) into the equation of motion, Eq. (11.8-2), we obtain
the governing equations (for the two-dimensional flow),

A MW, 1

oty | dy axdy  ax oy’ pox (11.8-6)
Ay oy oy 1dp

—— e bl 2 Y - 2R
dtox  ay ox*  ax dxdy pay

If the body force is zero, an elimination of p yields

]
vgvz‘!’ + 4V = VA, =0, (11.87)
in which
& &
14 L2
v ax? * 3y

and the subscripts indicate partial differentiation.
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- PROBLEM..

11.8 Show that for a two-dimensional flow of an incompressible viscous fluid, the governing
equation for the stream function defined by Eq. (11.8-5) is
‘ oY

3 _ - X
Ftw + VA — VA, = VP + 5 (11.8-8)

11.9 VORTICITY AND CIRCULATION

The concepts of circulation and vorticity are of great importance in fluid mechanics.
The circulation I(6) in any closed circuit 6 is defined by the line integral -

1@) = f = f v, (11.9-1)

where € is any.closed curve in the fluid and the integrand is the scalar product of
the velocity vector. v and the vector dl, which is tangent to the curve € and of
length dl (Fig. 11.11). Clearly, the circulation is a function of both the velocity
field and the chosen curve %. ‘ o

dl

TFigure 11.11  Circulation:
Notations.
By means of Stokes’s theorem, if € encloses a simply connected region, the
line integral can be transformed into a surface integral

(%) = f S (VX v)dS = [ s (cutl v)p,dS, (11.9-2)

where § is any surface in the fluid bounded by the curve @, v; is the unit normal
to the surface, and curl v = eyv;,. The curl v is called the vorricity of the velocity
field.

The law of change of circulation with time, when the circuit € is a fluid line,
i.e., a curve G formed by the same set of fluid particles as time changes, is given
by the theorem of Lord Kelvin: If the fluid is nonviscous and the body force is

conservative, then

Dr_ _ f P, (11.9-3)
Dt €ep ;
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If, in addition to the preceding conditions, the density p is a unique function
of the pressure, then the fluid is called barotropic, and the last integral vanishes
because the integral would be single valued and @ is a closed curve. We then have
the Helmholtz theorem that

DI
T (11.9-4)

To prove the foregoing theorems, we note that since % is a fluid line composed
always of the same particles, the order of differentiation and integration may be
interchanged in the following:

P_J ..jP.. .,_j(.ll‘ﬁ., P_i”&)
Dt rcl-’,‘d.l.fg— < Dt (V,'dl,)— <\t d).,'*"V,‘ Dt . (119“5)

But D dx/Dt is the rate at which dx; is increasing as a consequence of the motion
of the fluid; hence, it is equal to the difference of the velocities parallel to x; at
the ends of the element, i.e., Vi Substituting Dvy/ Dt from the equation of motion,
Eq. (11.8-2), and replacing D dx/Dt by dv;, we obtain

_’! = J [(”15’2 + X:) dx; + vi dv,l
Dt < p ax'.

= - J dp + J X dx; + J . (11.9-6)
e p ¢ €

Of the terms on the right-hand side, the last vanishes because v? is single valued

in the flow field; the second vanishes if the body force X; is conservative. Hence,

Kelvin’s theorem is proved. Helmholtz's theorem follows immediately as a special

case because the integral on the right-hand side vanishes if the fluid is barotropic.

In the clear-cut conclusion of Helmholtz’s theorem lies its importance. For
if we limit our attention to a barotropic fluid, then we have I = const. Hence, if
the circulation vanishes at one instant of time, it must vanish for all times. If this
is so for any arbitrary fluid lines in field, then, according to Eq. (11.9-2), the
vorticity vanishes in the whole field. This leads to a great simplification, which will
be discussed in Sec. 11.10, namely, the irrotational flow. To appreciate the impor-
tance of this simplification, one need observe only that a vast majority of the
classical literature on fluid mechanics deals with irrotational flows.

Note that the circulation around a fluid line does not have to remain constant
if the density p depends on other variables in addition to pressure. Into this category
fall most geophysical problems in which the temperature enters as a parameter
affecting both p and p. Also, in stratified flows, p is a function of location, not
necessarily a function of p alone.

The significance of the term fluid line in the theorems of Kelvin and Helmholtz
may be seen by considering the problem of a thin airfoil moving in the air. The
conditions of the Helmholtz theorem are satisfied. Hence, the circulation I about

11.10 IRROTATIONAL FLOW

Sec. 11.10 \rrotational Flow

ith ti i i id is caused b
any fluid line never changes with time. Since the motion of the fluid 1 y

irfoi i <onine the fluid is at rest andI =0,

tion of the airfoil, and since at the beginning t [
2?;;11113% that | vanishes at all times. Note, however, that ‘the yolume occupied by
the airfoil is exclusive of the fluid. A fluid line 4 enclosing the boupdgry of the
airfoil becomes elongated when the airfoil moves forward, as shown in Fig. 11.12.

According to the Helmholtz theorem, the circulation about @ is zero, so that the

total vorticity inside 6 vanishes, but one cannot conclude that the vorticity actually

vanishes everywhere inside 4. In the region occupied by the airfoil and in the wz;il:
behind the airfoil, vorticity does exist. However, the Hf:ln}holtz t.heolrex.n appb fes
to the region outside the airfoil and its wake, and th.e Yamshfng of cxrcgdatégn a.ﬁo‘11
every possible fluid line shows clearly that the flow is irrotational outside e ai

and its wake.

A curve enclosing
the airfoll, &

Directionof ___
airfoil motion

Curve formed by fluid parficles that

constitute the origingl curve % Figure 112 Flid Jin enclosing
@ an airfoil and its wake.

\
!
y

A flow is said to be irrotational if the vorticity vaﬁishes everywhere, 1.8., if

yxy=culv= 0, (11.10~1)
or
eiirVik = 0.
Fora two-dimensional irrotational flow, we must have
w_¥_y, (11.10-2)

gy ox

ble and a stream function defined by Eq. (11.8-5) is

T the fluid is incompresst 0 e o e

introduced, then 2 substitution of Eq. (11.8-5) into
tion
al + A 0. (11.10-3)
a2 oy

This is the famous Laplace equation, whose solution is the concern of many books

7 on applied mathematics.
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We can show that an irrotational flow of an incompressible fluid is governed
by a Laplace equation even in the three-dimensional case, because by the definition
of irrotationality, the following three equations must hold:

u oy dv  aw ow  du

oy oy 0 & oz

These equations can be satisfied identically if the velocities u, v, w are derived
from a potential function ®(x, y, z) according to the rule

=0, (11104

= Ty YT w (11.10-5)

I, in addition, the fluid is incompressible, then a substitution of Eq. (11.10-5)
into Eq. (11.1-5) yields the Laplace equation '

se o 50
W a T ar

Since @ is a potential function, this equation is also called a potential equation.

The incompressible potential flow is governed by the Laplace equation. If a
solution can be found that satisfies all the boundary conditions, then the Eulerian
equation of motion yields the pressure gradient, and the problem is solved. The
nonlinear convective acceleration, which causes the central difficulty of fluid
mechanics, does not hinder the solution of potential flows of an incompressible
fluid. This is why the potential theory is so simple and so important.

To realize the usefulness of the potential theory, we quote the Helmholtz
theorem (see Sec. 11.9): If the motion of any portion of a fluid mass is irrotational
at any one instant of time, it will continue to be irrotational at all times, provided
that the body forces are conservative and that the fluid is barotropic (i.e., its density
is a function of pressure alone). These conditions are met in many problems. If a
solid body is immersed in a fluid and suddenly set in motion, the motion generated
in a nonviscous fluid is irrotational.” Hence, a whole class of technologically impor-
tant problems is irrotational.

=0. (11.10-6)

11.11 COMPRESSIBLE NONVISCOUS FLUIDS

Basic Equations

If a fluid is compressible, the equation of continuity, Eq. (10.5-3), is

dov;
2y,

11.11-1
ot Bx,- ( )

"See H. Lamb, Hydrodynamics, New York: Dover Publications, 6th ed. (1945), pp. 10, 11.
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If the fluid is nonviscous, the Eulerian equation of motion is

:@+W@=JQ+& (1L.11-2)
ot o pox

The density is uniquely related to the pressure only if the temperature Tis explicitly
accounted for. Thus, if the temperature is known to be constant (isothermal), we

have, for an ideal gas,

= const., T = comst., - (11.11-9)

o

whereas if the flow is isentropic (adiabatic and reversible), we have

L. const., -—I_-; = const., (11.11-4)
p“l‘ p'Y
where v is the ratio of the specific heats of the gas at constan‘t pressure, C,, and
constant volume, C,; i.e., v = GJ/C,. Both cases are barotropic. -
Tn other cases, it is necessary to introduce the temperature explicitly as a
variable. Then we must introduce also the equation of state relating p, p, and T
and the caloric equation of state relating Cy, C,andT.

Small Disturbances

Let us consider, as an example, the propagation of é’r\nall disturbances in a barotropic
fluid in the absence of body force. Let us write

&
-5

\ (11.11-5)

i

[4

The velocity of flow will be assumed to be so small that the second—orfier terms
may be neglected in comparison with the first-order term..CoFrespondmgly, the
disturbances in the density p and the pressure p and the fienvatwes of p and p are
also first-order infinitesimal quantities. Then, on neglecting the body force X; and
all small quantities of the second or higher order, Eqs. (11.11-1) and (11.11-2)

are linearized to

B, Yo, (11.11-6)
ot ox;
w_ 1o 1dpde S C (L)

ot p ox; p dp ox; p- 0x;

biﬁetenﬁaﬁng Eq. (11.11-6) with respect to ¢ and Eq. (‘11.11—7) with r::spect to
x,, again neglecting the second-order terms, and eliminating the sum p a*v;lat ax;,

we gbtain
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18 &
¢t ot oxdx (11.11-8)
ie.,
14 & # &
SE=cE+ L+
ct ot axt gyt oz

This is the wave equation for the propagation of small disturbances. It is the basic

equation of acoustics.

By the same linearization procedure, and because the change in pressure is
proportional to the change in density, dp = ¢* dp, we see that the same wave

equation governs the pressure disturbance:

1op_ op

ot oxgdn, (11.11-9)

Further, from Eqgs. (11.11-7) and (11.11-8) or (11.11-9), we deduce that
1 Bzv, azv,'

T T

Hence, in the linearized theory, p, p, v, v2, and v; are governed by the same

wave equation.

Propagation of Sound

Let us apply these equations to the problem of a source of disturbance (sound)

located at the origin and radiating symmetrically in all directions. We may visualize
a spherical siren. Because of the radial symmetry, we have

gLoF L E_ P 20

PR i A (11.11-1)
Hence, Eq. (11.11-8) becomes
10 o 24
ol PSSl S st —
¢ttt rar (11.11-12)

It can be verified by direct substitution that a general solution of this equation
is the sum of two arbitrary functions f and g:

1 1
p=1ppt ;f(r —cf) + ;g(r + o), (11.11-13)
Here, p, is a constant (the undisturbed density of the field), the f term represents
a wave radiating out from the origin, and the g term represents a wave converging
toward the origin. Perhaps the clearest way to see this is to consider a special case
in which the function f(r — ct) is a step function: f(r — cf) = €l(r — ct), where €

(11.11-10)

sori o
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i i ich i henr — ct < 0and
i _ A is the unit-step function, which is zero W ‘
i slma:xl in? 1(rct >Cg 1’?‘he disturbagce is, therefore, & small Jumop ?}?OS'SS ta:l igl:ngi
ity . i _ ¢t = 0. Attime f = 0, the di
i inui ‘bed by the equation 7 ot = 0. Attime [ = a
'ChSCOntmclll lt}ty ?ﬁ:chizm. );\t time ¢, the line of discontinuity is moved t0 rf no\c;.s
1S’[’t:ocmceis E:he speed of propagation of the disturbance.(;fl;f ge:;ergtlyca;zo ::nd
py iti i is called the velocity O .
inci . In acoustics, ¢ 18 €2 ) )
brs pnnc?c:it(;f (S);lpszf‘f;gltclo: (dpldp)*® depends on the relationship \;(?tt'wieg
essxﬁea\;?i density. If we are concerned with an ideal gas and the conditio
pr .

isentropic, we have, from Eg. (11.11-4),

Ry (11.11-14)
p

i d
he history of mechanics, there was a long story about the propagatxog Z;Easdc;ur‘;y
gx Ther¥irst theoretical investigation of the ;/)eloc:ity 1())tf isy?:élc via LN
: 11.11.3) and obtained ¢ = V.
2-1727), who assumed Eg. ( \ 2
Nel\;;'tontigff;l 1687.)It was found that the value calculated from I\;em;tonoi f:rn;t;x~
gull lcl::ort of the experimental value of the speed gf sound.by a 1ac or( s 98I1)827)
i g S1 one-sixth. This discrepancy was not explamt:d gntﬂ Lap 3ce Tt
lm?t? Scli out that t'he rate of compression and expansion In a soun véa\; e
POIH& re is no time for any appreciable interchange of heat by con 1uusib1é ! wé
ttllllztpr:cess must be considered adiabatic. Thls argument b;c%r(r)lrez ;S)tzp e e
i discussed in the preceding paragraph- ,
thm}i( o tE:nSt:é) i?\lag an p that take place as the wave {front sweepsd bgmxzuitl ::t
e lcishes at the wave front in an infinitesimal region of space ant mm. oty
Zti::r?sl?g in such a small time intervalis negligi;ﬂe. He{lce, th; 5;1; (fls?t\ivos r:sgf e c;;l o
sscontinuity. As 2 g’eneral sound wave 18 2 S : .
s t?ﬁedggg?el%ovz is isentropic. Therefore, Eq. (11.11—4) 'a%;t)hes and Eq
\(Vlalvisl,—lfif) results. Experimerfts have veriﬁegltlﬁt ;aplilcsi c\;rasa :;gas.socmed i
. the wave equations (11.11-5), €1 55U .
i trgsge;lilgs’ t'tll‘?)n;spply these equations, conditions that guaraniee isentropy,
isen .

e ot ¢ bo
h as the absence of strong shock waves and small thermal diffusivity, mus

suc]

observed.

11.12 SUBSONIC AND SUPERSONIC FLOW

Basic Equations in Labovatory Frame of Reference

i i to a frame of reference that is at
B baSi(': by gq‘;latfilgri\t(ﬁf.ilnli;ﬁ) ’Sléeszgzi?on imposes no restriction on whc_are
T e it ebances. are generated. The sOurces of disturbances may be movxulng
o ?ha (\lr:isttt‘lntime' the same equation holds. The na‘u’ne of the sources WO
23522: %)11?1%1 in the bm’mdary conditions and initial conditions.



258 Field Equations and Boundary Conditions in Fluid Mechanics ~ Chap. 11~

A flying aircraft is a source of disturbances in still air. The disturbances come
to us as sound waves governed by the wave equation. As we all know, the nature
of the disturbances changes drastically as the aircraft’s flight speed changes from
subsonic to supersonic. In the latter case, we hear the sonic boom.

1t is convenient to study the nature of flow about an aircraft in a wind tunnel, -

We shall therefore write down the wave-propagation equation for disturbances in
the air flowing in a tunnel as they appear to us standing on the ground.

Consider a body of fluid coming from, say, the left, with a uniform velocity
U at infinity. If the disturbances are indicated by a prime, we assume the velocity
components to be '

u=U+d, wv=v, w=w, Us=const. (11.12-1)
and the pressure and density ‘
p=pt+p, p=pt+p. (11.12-2)

The whole investigation would be simplified if we could assume that the disturb-
ances are infinitesimal quantities of the first order; i.e.,

w,v,w<Ul, p'<p, p<p (11.12-3)

Under these assumptions, the basic equations (11.11~1) and (11.11-4) may be -

linearized as béfore. In fact, repeating the relevant steps in Sec. 11.11 with our
new assumptions, we obtain the equation of continuity

ap’ au  ou' v ow' ap’ dp' ap’
£ po( ——+-v—+—~——)+(U+u')f—+v'—9—+w'~p—=0,
ot ax  dax dy oz ax dy iz

which is linearized to

ap' ' aw' ap’
L+pa( )+ L)

ot ax  dy | az)  ox

w (11.12-4)

Similarly, the equations of motion are linearized to

W 1w

at ox po 0x po Ox '

' av' ¢t ap'

- U—= -——— dZ—
ot dx po 9y (11.12-5)
a ! 2 !

LA LU i

at ox po 0z

Differentiating the three equations (11.12-5) with respect to x, y, and z, respec-
tively, adding, and again neglecting the second-order terms, we obtain
6(au’ ' aw’) ] (au’ ' cz(azp’ ' 62p')

Po

—+
anox  dy iz dx\dx  dy 0z

+
) G
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| Hence, on eliminating du'/ax + 3v'/3y + dw'/az with Egs. (11.12-4), we have
3 N o o

'“"I' i ’ 2.1 2./
YAy LI z(ﬁz_f’_ L i.fl_) (11.12-6)
P W Uz = \ag oy

is is the basic equation for compressible flow in aero_dynamics. '
b I;f t?) Egq. (lql.l?,—-é) we apply the method used in Sec. 11 to derive ,Eqs.
(11 11—’9) (11.11-10) from Eq. (11.11-8), we can show that the pressure p and
velc;city c:Jmponents v} satisfy the same equation. If th? ﬂow is 1rrot.at10nal, then
the velocity potential @, for which v; = ®, ; also satisfies this equation.

Steady Flow

i i i 6) i impler cases. Consider a
mine the basic equation (11.12-6) in some simple ;
;:1;; fCI)éz\iJv around a model at rest. Then all derivatives w1_th respect to time ¢
vanish, and the velocity potential ® is governed by the equation
v = o ¥o + Q@ (11.12-7)
¢ ot @ o
~This equation now depends on only one dimensionless parameter, Ulc, which is
called the Mach number and is denoted by

_U (11.12-8)
c

Thé nature of the solution to qu\\(11.12—7) depends on Whether Mis gre:clterfor
less than 1. We call a flow subsonic if M < 1, supersonic it M > 1. We write, for
a subsonic flow, \\
70  Ib PP y
- M)— + =+ =0 (M<1), (11.12-9)
(t =) ax* * ay* + 3z ( )

whereas, for a supersonic flow, we have

yo_o_ ro =0 (M>1). (11.12-10)
F R
i i ial di i ion of the elliptic type. Equa-
Equation (11.12-9) is a partial differential equation o ‘
tion (11q.12—10) (is one of the Ayperbolic type. Let us consider an example showing
the difference between these equations.

(M = 1)

- Example: Steady Flow over a Wavy Plate

i i inusoi ' file be placed in a steady
t a very thin plate with a small sinusoidal wavy pro : din ¢
Iﬂgwa vjiélythe m};an chord of the plate parallel to the vglocxty Uat mfmlt.y. (See
Figs.’ 11.13 and 11.14.) The waves of the plate are described by the equation

2 = asin=. (11.12-11)

/ L
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Supersonic flow 3 Subsonic flow on the plate. From Eg. (11.12-11), this is
——— e ire
i e N,
e _ w o= U%ET- cos EE (when z = qsin EE) (11.12-16)

Again, counting on the continuity and differentiability of the function w'(x, y, 2),

Figure 11.14 A wavy plate in a we can write
steady subsonic flow. '

Figure 11.13 A wavy plate in a
steady supersonic flow.

The amplitude a is assumed to be small compared with the wave length L:

a << L. (11.12-12)

The fluid, since it is assumed to be perfect, can glide over the plate, but
cannot penetrate it. Therefore, the velocity vector of the flow must be tangent to
the plate. Now the velocity vector has the components

U+u, v, w (11.12-13)

in the x-, y-, and z-directions, respectively. On the other hand, the normal vector
to the surface described by Eq. (11.12-11) has the following components (see Fig.
11.15):

az Qg

% Ty b (11.12-14)

z=z w Figure 11.15 Surface normal and
x  the velocity boundary condition.

If the velocity vector, with components given by Eq. (11.12-13), is to be tangent
to the surface of the plate, it must be normal to the normal vector given by Eq.
(11.12-14). Hence, the condition of nonpenetration can be stated as the orthog-
onality of the vectors of Eqgs. (11.12-13) and (11.12-14), i.e., by the condition that
their scalar product vanishes:

0z 0z
— + )= - L ' =
u u)ax v o +w'l=0.

Onmitting higher-order terms, we obtain the boundary condition

Do 2
W= U (11.12-1;)

. 3 !
w'(x, y,2) = W, ()) + Z(—;‘;“) O (11.12-17)
H z=0

For small z, all the terms following the first are higher—otder,terms. Consistently
neglecting these terms, we can simplify the boundary condition to

X

I il
w—UﬂLcosL

(when z = 0). (11.12-18)

Condition at Infinity

The boundary condition given in Eq. (11.12-18) is not sufficient to determine the
solution to our problem, which is governed by either Eq. (11.12-9) or Eq.
(11.12-10), depending on whether the flow is subsonic or supersonic. In addition,
the conditions at infinity must be specified. There is a great difference between
the elliptic and hyperbolic equations with respect to the appropriate types of bound-
ary conditions that may be specified, and we must consider them in some detail.

Subsonic case. For the elliptic equation (11.12-9), the influence of the disturb-
ances is spread out in all directions, and it is reasonable to assume that, for any
finite body, the disturbances tend toward zero at distances infinitely far away from
the body. A rigorous argument may be based on the total energy that may be
imparted to the fluid. If the fluid velocity is distributed in a certain fashion, and
if it does not tend toward zero at a certain rate as the distance from the body
increases toward infinity, an infinitely large energy would have to be imparted to
the fluid in order to create the motion, which is impossible. (For further details,
see texts on partial differential equations or aerodynamics.) Accordingly, we impose
the following conditions on our problem:

(a) The flow is two-dimensional and parallel to the xz-plane, and there is no
dependence on the y-coordinate.

(b) All disturbances tend toward zero as z = £. In particular, -

W', v, w—0; ie, ®—> const asz—> xw. (11.12-19)

Super/sonic case. Turning now to the hyperbolic equation (11.12-10), we find
that tpc disturbances can be carried away along waves of limited dimension. The
argument of decreasing amplitude does not apply. Instead, the boundary condition
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must be replaced by the radiating condition: that the plate is the only source of
disturbances and that the disturbances radiate from the source, not toward it.

This description of the radiation condition is easy to apply when we are
concerned with a single source. For example, of the two solutions on the right-
hand side of Eq. (11.11-13), the term f(r — cf)/r represents a wave radiating from
the origin; hence, for a source at the origin, it is the only term admissible under
the radiation condition. The condition becomes somewhat confounded, however,
when applied to two-dimensional steady flow. Perhaps the matter can be clarified
by examining some photographs of supersonic flow about stationary models in a
wind tunnel, such as those shown in Fig. 11.16. Here, the flows are from left to
right. We see that the lines of disturbances, which are contours of density of the
fluid as revealed by the Schlieren photographs, incline to the right. This direction
of inclination of the strong (shock) and weak (Mach) waves is determined by the
radiation condition.

Solution of the Wavy Wall Problem

Now we can return to our problem. It is easily verified by direct substitution that,
in the subsonic case, Eq. (11.12-9) can be satisfied by a function of the form

@ = Ae* cos %x (11.12-20)
On substituting Eq. (11.12-20) into Eq. (11.12-9), we obtain
-1~ MZ)(%)2 Ae* cos %x + ApZe” cos % =0,
or
b= i‘(%) V- i (11.12-21)
If the plus sign is used in Eq. (11.12-21), the function @ in Eq. (11.12-20) will

grow exponentially without limit as z — «. On the other hand, if the minus sign
is used, Eq. (11.12-19) can be satisfied. Hence, we may try

@ = Ae~LVIIs cog fo (11.12-22)
The vertical velocity w' computed from @ is
W= Z—‘f = ~7 VI = I Ae ™V o5 T (1112)

On setting z = 0 in Eq. (11.12-23) and applying the boundary condition,
Eq. (11.12-18), we obtain
Ua

A= ———— 11.12-24
T ( )

Figure 1116 (a) Flow past a flat plate with a beveled, sharp leading
edge, the top surface being aligned with the free stream of Mach
number 8. On the top side of the plate, a laminar boundary layer is
revealed by the lighter line. A shock wave is induced by the
displacement effect of the boundary layer. Similar features are seen on
the lower side. Schlieren system. Flow left to right. Courtesy of Toshi
Kubgta, California Institute of Technology; (b} Scale mode of the
Nimbus spacecraft in a 50-in hypersonic tunnel, at Mach number 8 and
Re[anolds number of 0.42 X 10%t. Schlieren system. Flow left to right.
Courtesy of Von Karman Gas Dynamics Facility, ARO, Inc.
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Now all the boundary conditions for the subsonic case are satisfied. Hence,
the solution for the subsonic case is

Ua T
e p ~(WLIVIZ A2 ey .
D me cos (11.12-25)

We see that the disturbances decrease exponentially with increasing z. From this
solution, we can deduce the velocity field, the pressure field, and the density field.
In particular, since

au' lap"
U o ) porL (11.12-26)
we have
0®
p'=—plu' = —pU— (11.12-27)

The streamlines for such a flow are plotted in Fig. 11.14.
Turning now to the supersonic case, Eq. (11.12-10), we see that it can be
satisfied by the function

D=fx—- VM -12) +glx + VM ~ 12), (11.12-28)

where f and g are arbitrary functions, because if we set

E=x-VM -1z (11.12-29)
then
I_d o _ i
ox dE dz M"ldg’
hence,

2. 2. d2 2
or - - = or-pgi-or-ygl-o

and Eq. (11.12-10) is satisfied. The lines
£ = const., ie., x— VM? -1z = const,, (11.12-30)

H

are the Mach waves, along which the disturbances are propagated with undimin-
ished intensity. These lines are inclined in the correct direction, as revealed by the
wind-tunnel photographs. On the other hand, the Mach lines for the function
glx + V/M? — 1 2) are inclined in the wrong direction. Hence, the function g must
be rejected on the basis of the radiation condition. Therefore, we may try

Q= flx - VM* - 12). (11.12-31)
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From Eg. (11.12-31), we obtain

w=2_ a4

i 1 _‘E (11.12-32)

Comparing Eq. (11.12-32) with the boundary condition, Eq. (11.12-18), we
obtain, when z = 0, .

4 Uaw m Uar =t
— 2 _ 'l = ™ m§ g
M -1 (dan 7 oS L1 cos I z=0. (11.12-33)

Hence, on integrating and returning to Eq. (11.12-29), we have

Ua .o
R A — — — 2 -
O=f= e 1Slﬂ L (x-VM 12), (11.12 34)

. which solves the problem. A plot of the streamlines is shown in Fig. 11.13.

The contrast between the two cases is dramatic. Whereas in the subsonic case
the pressure disturbance is diminished as the distance from the plate increases, in
the supersonic case it is not. This is, of course, the reason why a sonic boom hits
us with all its fury from a supersonic aircraft, but not from a subsonic one.

11.13 APPLICATIONS TO BIOLOGY /

Fluid mechanics is as relevant to living credtures as to machines and physical objects.
The gas in the airway and lung, the urine, and the sap in the xylem of trees are
Newtonian fluids to which the Naviet-Stokes equation and the no-slip boundary
conditions apply. Blood is a non-Newtonian fluid. If the shear strain rate is suf-
ficiently high (e.g., > 100 s™'), the viscosity of biood is almost constant, i.e., its
behavior is almost Newtonian. If the shear strain rate is low, however, the viscosity
of blood increases. Saliva, mucus, synovial fluid in the knee joint, and other body
fluids are also non-Newtonian. Analysis of the flow of these must take their non-
Newtonian behavior into consideration.

Blood can be treated as a homogeneous fluid only when one is considering
flow in a blood vessel whose diameter is much larger than the diameter of the red
blood cells. Flow in a small blood vessel, such as in the capillaries, whose diameter
is about the same as that of the red cells, must treat the cells as individual bodies.
The blood is, then, a biphasic fluid. Other body fluids that contain proteins and
other suspensions may have to be treated as biphasic or multiphasic if the dimen-
sions of the vessels in which they flow are sufficiently small.

Animals and plants live in gas, water, and earth. Understanding their move-
ments requires fluid mechanics. Body fluids circulate inside of animals and plants.
Understaqéing their movement also requires fluid mechanics. In either case, the
boundary conditions are, in general, nonstationary.




266 Field Equations and Boundary Conditions in Fluid Mechanics ~ Chap. 11

The examples considered in this chapter have applications to biology. The
analysis of the flow in a channel or tube is relevant to the blood flow problem.
The blood vessels, however, are elastic. The diameter of a blood vessel varies with
the pressure. The interaction between the flow and the elastic deformation of the
wall can produce some very interesting phenomena. In biology, solid mechanics
and fluid mechanics are often closely knit fogether. |

The reader may gain some insight into the broad subject of fluid mechanics
and biomechanics from the references listed at the end of the chapter.

PROBLEMS

11.9 Derive the Navier-Stokes equation for an incompressible fluid in cylindrical polar
coordinates.

Solution: The left-hand side of the Navier-Stokes equation represents acceleration.
In polar coordinates, the components are 4,, d,, 4,, which are given in Eq. (10.9-9) on p.
225. The right-hand side is the vector divergence of the stress tensor. In polar coordinates,
these components are given by Eq. (10.9-11). It remains to write down the stresses in terms
of the velocities , v, w along the radial, circumferential, and axial directions, respectively.
On p. 128, we have e,, ey, etc., expressed in terms of u,, u,, .. The relationship between
the strain rates &,, &y, etc., to the velocities u, v, w are the same. Hence,

au . u  lav

br == & ==+ = efc.
TR T

Therefore, from Eq. (7.3-6), and for an incompressible fluid, we have

. ou
= - ue, = —p + 2p—
G p + due P e P
. u lav
Ow = —p + 2peq = —p + 2 (; + ;3—):
aw

6.= —p+ 2ué. = —p + ZHE,

. iy 1 au)
= = e e ==,
On = Zuen = (r ar  rae
=2 e - (lﬂ‘ﬂ + G_V)
Oo = Ml = B30 T )
= 7 e - (?.L.‘. + aﬂ)
O = e = I dz  or
A substitution into Eq. (10.9-11) yields the Navier-Stokes equations,
d 2 .
=4 uﬂf Lo w'—’g _ro 1w + v(V’u . %a_v) + F
at ar  rad 9z r par rt r'al

v v vy v uwv - 11ap ( ., 2du v
-t U=t - Vv +
ot ar  raob * w& r prab v

ﬁ%‘ﬁ*ﬂ
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dw o dw vdweo dwe o ldpe

U— 4 —— + W = —== + V% + F,
ot iar o rad 8z pdz Y
where’
Fola 18 @
Vis—tort o=+ =
or* " rar raf? * a7
The equation of continuity is
d lav  aw
=) +=—+— =
d () rad oz 0

11.10 Blood is a non-Newtonian fluid whose viscosity varies with the strain rate. (See Fig.

9.15 and Prob. 9.4.) Derive the equation of motion of blood in a form analogous to
" the Navier-Stokes equations. Formulate mathematically the problem of blood flow

in a living heart.

1111 If air is truly nonviscous, would an airplane be able to fly? What about birds and
insects? Why?

11.12 If water is nonviscous, would fish be able to swim? What are the differences in the
arguments for fish in water and birds in the air?

11.13 Formulate the mathematical problem of tides induced on the earth under the influence
of the moon. (See Lamb, Hydrodynamics, pp. 358-362.)

11.14 Waves are generated in water in a long channel of"rectangular cross section. What
are the equations with which the wavelength and frequency can be determined?

11.15 Ripples are generated on the surface of water in 2 deep pond. Does the wave speed
depend on the wavelength? Even though the full solution is rather complicated,
whether or not the waves are dispersive (i.e., whether the speed depends on wave-
length) can be detected when all the basic equations are written down. Take the free
surface of the pond to be the xy-plane, let the z-axis point downward, and try a two-
dimensional solution with velocity components

v=0 u=ae sinkesinwt, and w = —ae™™ cos kx sin wt.
b) ¥

11.16 Consider a ground-effect machine, which uses one or more reaction jets and hovers
above the ground. Sketch the streamlines of the flow and write the equations and
boundary conditions that govern the machine when it is hovering.

11.17 Analyze the motion in a cumulus cloud in a summer thunderstorm. What are the
variables relevant to this problem? If temperature is an important consideration, how
would it be incorporated into the basic equations? Gravity must not be neglected.
Present the basic equations. Make a dimensional analysis to determine fundamental
dimensionless parameters.

11.18 ‘Water waves run up a sloping beach and create all the panorama on the seashore:
surf, riptides, waves, ripples, and foam. Analyze the phenomenon mathematically.
Give an appropriate choice of variables. Write down the differential equations and
boundary conditions. Make simplifying assumptions if you think they are appropriate,
but state yourjassumptions clearly.

11.19 . On the beach{ there are riptides, which are fast-moving narrow streams of water that
move toward the ocean in a direction perpendicular to the shoreline and are dangerous
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to swimmers. Now this is an anomaly: For a two-dimensional sloping beach and a
two-dimensional water wave, we obtain a three-dimensional solution. Is there any
basic objection to this situation (from the mathematician’s point of view, not the
swimmer’s)? Can you name another example of such a phenomenon in nature?

11.26 When wind blows over (perpendicular to) long cylindrical pipes, vortices are shed in
the wake. These vortices induce vibrations in the pipe. A trans-Arabic oil line (the
aboveground part) was reported to have suffered severe vibrations due to wind.
Smokestacks, large rockets, and the like are subjected to these disturbances. Vortex
shedding over a long cylinder is three dimensional; in other words, the shedding is
nonuniform along the length of the cylinder, even if the wind and the cylinder are
both uniform. Formulate the acrodynamic problem for a fixed, rigid cylinder. Furnish
all the differential equations and boundary conditions. Make a dimensional analysis
to determine all the dimensionless parameters involved.

11.21 Generalize Prob. 11.20 to take account of the vortex shedding over a flexible, vibrating
cylinder.

11.22 Using the equations derived in Prob. 11.9, find the velocity field in a Couette flow-
meter (Fig. P3.22, p. 86).

Answer: Letv = waatr = aandv = wbatr = b, Then
v = (@ — B [(od ~ ob’)r — db (e, — w)1].

11.23 Using the Navier-Stokes equation, find the velocity distribution of a flow in a long
cylindrical pipe of rectangular cross section.

11.24 Discuss whether the concept of a boundary layer is important in each of the following
problems. Explain briefly how and why boundary-layer theory is used in those prob-
lems to which it is applicable.

(a) Blood flow in the aorta. Assume a viscosity coefficient w = 0.04 poise,
radius r = 3 mm, density p =1, and velocity v = 50 cm/sec.

(b) Blood flow in small blood vessels. Assume a coefficient of viscosity p =
0.04 poise, radius a = 107* cm, density p = 1, and mean velocity v = 0.07 em/sec.

Note: Compute the Reynolds number Ry = 2 VL/p. In (a), Ry = 750. In (b), Ry
= 3,5 x 10"°. The boundary layer thickness 8 is on the order of (R,)™".

11.25 I have a garden hose curved on the ground. One end is connected to a water faucet.
When the valve is opened, the pressure is high, a water jet comes out with good
force, and the hose whips like a snake. Why?

Now consider an analagous problem for a pipeline suspended in air above
ground. One span L is supported between two pillars. The pipe is a thin-walled circular
cylindrical shell, in which flows a fluid, The pipe is straight if there is no load. 1t is
loaded by its own weight, the weight of the fluid, and the pressure of the flowing
fluid. To design the pipe and the pillars, what fluid mechanical problems should be
considered? Formulate a mathematical theory for an important problem that you
identified. Write down the differential equations and the boundary conditions. Outline
a method of solution.
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SOME SIMPLE PROBLEMS
IN ELASTICITY

Basic equations, elastic waves, torsion of shafts, bending of beams, and
some remarks about. biomechanics.

12.1 BASIC EQUATIONS OF ELASTICITY FOR HOMOGENEOUS,

ISOTROPIC BODIES

In the preceding chapter, we discussed the equations governing the flow of fluids.
In this chapter, we shall consider the motion of solids that obey the Hooke’s law.
A Hookean body has a unique zero-stress state. All strains and particle displace-
ments are measured from. this state, in which their values are counted as zero.

The basic equations can be gleaned from the preceding chapters. Let ufx1,
X, %3, 1), = 1,2, 3, describe the displacement of a particle located at xi, X, X3
at time ¢ from its position in the zero-stress state. Various strain measures can be
defined for the displacement field. The Green strain tensor is expressed in terms
of u(x1, Xy, X3, £) according to Eq. (5.3-3):

€; = T
! dx;  0x; - ox ax

3 (12.1-1)

Here, and hereinafter, all Latin indices range over 1, 2, 3. The particle velocity v;
is given by the material derivative of the displacement,

au, au,

by (12.1-2)
(]

Vi =

The particle acceleration o is given by the material denvatwe of the velocity, Eq.
(10.3-7),

Bv, av;

R (12.1-3)

a; =
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The conservation of mass i$ expressed by the equation of continuity, Eq. (10.5-3),

o v
_p+(m')

ot 0 - @

The conservation of momentum is expressed by the Eulerian equation of motion,
“q. (10.6-7),
60',,

oy =+ X (12.1-5)

Hooke’s law for a homogeneous, isotropic material is
i = )\ekkﬁ,-,- + 2Ge,~,-, (12.1—‘6)

where A and G are Lamé constants.

Equations (12.1-1) through (12.1-6) together describe a theory of elasticity.
If we compare these equations with the corresponding equations for a viscous fluid,
as given in Sec. 11.1, we see that their theoretical structures are similar, except
that here we have a nonlinear strain-and-displacement-gradient relation [Eq.
(12.1-1)], in contrast to the linear rate-of-deformation-and-velocity-gradient rela-
tion [Eq. (6.1-3)], for the fluid. Hence, the theory of elasticity is more deeply
nonlinear than the theory of viscous fluids. /

The nonlinear problem is so wrought with mathematlcal complexities that
only a few exact solutions are known. For this reason, it is common to simplify
the theory by introducing a severe restriction, namely,- that the displacements and
velocities are infinitesimal. In this way, Egs. (12.1-1) through (12.1-3) can be
linearized. One tries to learn as much as possible about the linearized theory and
then proceed to discover what features are introduced by the nonlinearities.

We linearize the equations by restricting ourselves to values of u;, v; so small
that the nonlinear terms in Egs. (12.1-1) through (12.1-3) may be neglected. Thus,

.o 1(6_ s a_)
= s (12.1-7)
=gy W= (12.1-8)

" Equations (12.1-4) through (12.1-8) together are 22 equations for the 22
unknowns p, u;, vi, o, &j, 0y i, f = 1, 2, 3. We may eliminate o;; by substituting
Eq. (12.1-6) into Eq. (12.1-5) and using Eq. (12.1-7) to obtain the well-known
Navier’s equation,

o

?
GV2;+()\+G)£+X;=p——-:

— (12.1-9)
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where e is the divergence of the displacement vector u; i.e.,

diy 0w dup | dus

g = —= = —

2.1~
6x,~ axy 0x, 0X3 (1 ! 10)

V?is the Laplace operator. If we write x, y, z instead of x,, x,, x;, we have
L S
Vi=S+5+3 -
w oy At (12.1-11)

If we introduce Poisson’s ratio v, as in Eq. (7.4-8), we can write Navier’s equation
(12.1-9) as

g L g =
G(V u; + o +Xi=p Py (12.1-12)
This is the basic field equation of the linearized theory of elasticity.

Navier’s equation (12.1-9) must be solved for appropriate boundary condi-
tions, which are usually one of two kinds:

(1) Specified displacements. The components of displacement ; are prescribed
on the boundary. .

(2) Specified surface tractions. The components of surface traction T; are
assigned on the boundary.
In most problems of elasticity, the boundary conditions are such that over one part
of the boundary the displacements are specified, whereas over another part the
surface tractions are specified. In the latter case, Hooke’s law may be used to
convert the boundary condition into prescribed values of a certain combination of
the first derivatives of u;.

2.2 PLANE'ELASTIC WAVES

To illustrate the use of the linearized equations, let us consider a simple harmonic
wave train in an elastic medium. Let us assume that the displacement components
Wy, Uy, U3 (or, in unabridged notation, u, v, w) are infinitesimal and that the body
force X; vanishes. Then it is easy to verify that a solution of Navier’s equation
(12.1-9) is

2
u=Asn -;I (xxct)y, v=w=0, (12.2-1)
where A, [, and ¢, are constants, provided that the constant c, is chosen to be
O +32G EQ1 - v)
“'fp R (222

The pattern of motion expressed by Eq. (12.2-1) is unchanged whenx * ¢.f remains
constant. Hence, if the negative sign were taken, the pattern would move to the
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right with a velocity ¢, as the time ¢ increased. The constant ¢, is called the phase
velocity of the wave motion. The constant ! is the wavelength, as can be seen from
the sinusoidal pattern of « as a function of x, at any instant of time. The particle
velocity computed from Eq. (12.2-1) is in the same direction as that of the wave
propagation (namely, in the direction of the x-axis). Such a motion is said to
constitute a train of longitudinal waves. Since at any instant of time the wave crests
lie in parallel planes, the motion represented by this equation is called a train of
plane waves.
Next, let us consider the motion

u=0 v=A4 sin—zl—ﬂ(x ), w=0, (12.2-3)

which represents a train of plane waves of wavelength [ propagating in the direction
of the x-axis with a phase velocity c. When Egs. (12.2-3) are substituted into Eq.
(12.1-9), it is seen that ¢ must assume the value

G
cr = \E (12.2-4)

The particle velocity (in the y-direction) computed from Eq. (12.2-3) is perpen-
dicular to the direction of wave propagation (the x-direction). Hence, the wave
generated is said to be a transverse wave. The speeds ¢, and ¢y are called the
characteristic longitudinal wave speed and transverse wave speed, respectively. They
depend on the elastic constants and the density of the material. The ratio cr/c,
depends on Poisson’s ratio only and is given by

o =0 /:2}(—1:_—2% (12.2-5)

Ifv = 0.25,thenc, = V3cr
Similar to Eq. (12.2-3), the following equations represent a transverse wave
in which the particles move in the direction of the z-axis:

2
u=0, v=0, w=Asin -—;—T (x = crf). (12.2-6)

The plane parallel to which the particles move [such as the xy-plane in Eq. (12.2-3)
or the xz-plane in Eq. (12.2-6)] is called the plane of polarization.

Plane waves may exist only in an unbounded elastic continuum. In a finite
body, a plane wave will be reflected when it hits a boundary. If there is another
elastic medium beyond the boundary, refracted waves occur in the second medium.
The features of reflection and refraction are similar to those in acoustics and optics;
the main difference is that, in elasticity, an incident longitudinal wave will be
reflected and refracted in a combination of longitudinal and transverse waves, and
an incident transveyse wave will also be reflected in a combination of both types
of waves. The details can be worked out by the proper combination of these waves
so that the boundary conditions are satisfied.
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12.3 SIMPLIFICATIONS

Important simplifications to the equation of the linearized theory of elasticity may
come from

(1) Homogeneity and isotropy.

(2) The absence of inertial forces.

(3) A high degree of symmetry in geometry.
(4) Plane stress and plane strain.

(5) Thin-walled structures—plates and shells.

Clearly, a simplification is obtained if the number of independent or depend-
ent variables is reduced. Thus, if nothing changes with time, the variable ¢ will be
suppressed. Homogeneity of materials makes the coefficients of the differential
equations constant. Isotropy reduces the number of independent material constants.
High degree of symmetry reduces the number of geometric parameters in a prob-
lem. Reduction of the general field equations to two dimensions or one dimension
reduces the number of independent and dependent variables.

Example 1. A Plane State of Stress

A plane-stress state depending on x, y only may be visualized as a state that exists
in a thin membrane stressed in its own plane. Figure 4.1 on p. 89 shows an example
of such a case. Analytically, a plane-stress state is defined by the condition that
the stress components o, 0.., 0, vanish everywhere, i.e.,

Ty = Op = Oy = 0, (12.3-1)

whereas the stress components oy, 0., 0y, are independent of the coordinate z.

Example 2. A Plane State of Strain

If the z-component of the displacement w vanishes everywhere, and if the dis-
placements u, v are functions of x, y only, and not of z, the body is said to be in
a plane-strain state, depending on x, y-only. Such a state may be visualized as one
that exists in a long cylindrical body loaded uniformly along the axis. With a plane-
strain state, we must have

Z=Zoy=0. (12.3-2)

12.4 TORSION OF A CIRCULAR CYLINDRICAL SHAFT

We shall now illustrate an application of the linearized elasticity theory by consid-
ering the problem of torsion. To transmit a torque from one place to another, a
shaft is employed. The problem is to solve the Navier’s equations to obtain the

Sec. 124  Torsion of a Circular Cylindrical Shaft 275

stress distribution in the shaft. The degree of difficulty to solve this problem depends
on the geometry of the shaft. If the shaft is a circular cylinder, the solution is
simple. If it is a cylinder of a noncircular cross section, or if the shaft has variable
cross sections, then it is difficult. :

Let us consider the simple problem of the torsion of a cylindrical shaft of
circular cross section. (See Fig. 12.1, which shows the notations and the coordinate
axes to be used.) Before tackling the problem analytically, let us look at the physical
conditions. Under the torque, the shaft twists. Let the cross section at z = 0 be
fixed. Since the shaft, as well as the loading, is homogeneous along the z-axis, the
twist must be uniform along the z-axis. Hence, the deformation must be expressible
in terms of twist per unit length a, which is a constant independent of z. The
quantity o represents the rotation of a section at z = 1 relative to that at z = 0.

Figure 12,1 Torsion of a circular

(-!) shaft.

By reason of symmetry, it is obvious that a circular cross section of the shaft
remains circular when a torque is applied. But what about the axial displacements
of such a section? Consider a plane cross section such as that at z = 0 before the
torque is applied. When the torque T is applied, the boundary conditions are
axisymmetric, hence any axial displacement must be axisymmetric. But the bound-
ary conditions are also preserved by reversal of the z-axis, hence the axial dis-
placement must be zero, and the plane section remains plane.

Summarizing this discussion, we see that the distortion of a circular shaft
under a torque must be a relative rotation of the cross sections at a uniform rate
of twist. Therefore, the displacement of a particle located at (x, y, z) would appear
to be, in polar coordinates, :

u, =0, w=ozr, u==0 (12.4-1)
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or, in reciangular Cartesian coordinates,

u, = —azy, Uy =ozx, U, =0, (12.42)
as is shown in Fig. 12.2.

Figure 12.2 Notations.

We shall now show that this is indeed correct. Since the displacements are
given, there is no need to check the compatibility conditions. We must, however,
check the equation of equilibrium and the boundary conditions.

From Eq. (12.4-2), we have the strain components

ee=0, ¢,=0, e,=0,

(g'ff + -%) = 1(mz - az) =0,
ay x/ 2 (12.4-3)

ool
"2
: =1(%+%)=_1@
= ez ox 27
1(auy au,) 1
+._

ey = AT = -
® o0z eyl 2
The stress-strain relation yields the corresponding stress components. We have

O'n’:U'yy:O'”:U'Xy:O’

on = —Goy, (12.4-4)
0y, = Gax,

where G is the shear modulus of the shaft material.

The equations of equilibrium are obtained by omitting «; and X; in Eq.
(12.1-5). We obtain

80, 0y , 30w _

ox  dy  az

H

00y, 00y, | 00y, -

a Ty T (@49)
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ax  ay dz ’

which are obviously satisfied by the stress components given in Eq. (12.4-4).

The boundary conditions of our problem consists of the facts that the lateral
surfaces are stress free and that the ends are acted on by a torque. Since there is
1o tension or compression on the ends, we have

0,=0 (onz=-Landz=1L). (12.4-6)

This is satisfied by Bq. (12.4-4). )
The stress vector acting on the lateral surface is given by T;, where v denotes
the vector normal to the lateral surface. By Cauchy’s formula,

v

T = vi04. (12.4-7)
Setting i = 1,2, 3, we have the three equations,
Ouly + Oy + Gov: = 0,
0,0, + Oy + 0 = 0, (124-8)
OuV; + Oy¥y + OV = 0,

where v, v,, v, are the direction cosines of the normal vector to the lateral surface.
Now, on the lateral surface, it is evident from Fig. 12.2 that the normal vector v
coincides with the radius vector. Hence, the components of v are

V== V= %, v, = 0. (124-9)

LR R

Consequently, the boundary conditions on the circumference C are
X0 + YOy = 0,
X0y, + Yo, = 0, (12.4-10)
X0, + Yo, =0,

which are again satisfied by Eq. (12.4-4). ‘
Tt remains to check the condition that the stresses acting on the enfis z=
—L and z = L are equipollent to a torque. Referring to Fig. 12.3 and using Eq.

-4—‘<-—>4'

Figure 12.3 Stressesina twisted
shaft.
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(12.4-4), we see that the resultant of the stresses acting on the end cross sections
are

“ V2
”o'ndxdyz ~Ga”-ydxdy = ~Go¢f_adxj_mydy=0
ffcy,dxdy = Go ”xdx dy = 0, (12.4-11)

J-Jcrudxdy=0.

Hence, the resultant force vanishes as desired. The resultant moment about the
z-axis is, however,

f f {(xoy. — yo)dx dy. (12.4-12)
On substituting from Eq. (12.4-4), we have

moment = Ga j f (2 + y)dxdy

=‘Gonj7 dOJ ridr
L] 0

_ 2nGog'
T4
Thus, we see that the resultant moment is indeed a torque of magnitude T:
‘G
= “"2 * (12.4-13)

The checking is now complete. All the equations of equilibrium and the
boundary conditions are satisfied. The solution contained in Egs. (12.4-1) through
(12.4-4) is exact.

PROBLEM

12.1 Consider the torsion of a shaft of square cross section. Write down all the boundary
conditions. Show that the solution contained in Egs. (12. 4——1) through (12.4-4) no
longer satisfy all the boundary conditions.

125 BEAMS

When a structural member is used to transmit bending moment and transverse
shear, it is called a beam. Beams are used constantly in engineering and, therefore,
are important objects for study. The floor we stand on is resting on beams. An
airplane wing is a beam. Bridges are made of beams, and so on. An engineer
should know the stress and deformation in a beam, how to choose the materials
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for a beam, howto use the material efficiently by a proper geometric design, how
to minimize the beam’s weight, how to maximize the stiffness and stability of the
beam, how to utilize supports to minimize vibrations, how to calculate the loads
that act on the beam (static and moving loads, wind loads on a building, aero-
dynamic load on an airplane, etc.), how to analyze aeroelastic or hydroelastic
interactions in case a beam is used in a fluid flow (such as with an airplane wing,
or the structure of a ship), and more.

Beams are classified according to the condition of support at their ends. An
end is called simply supported when it is free to rotate, but is restrained from lateral
translation. An end is said to be free when it is free to rotate and deflect. An end
is said to be clamped when translation and rotation are both prevented.

In Sec. 1.11, we considered the pure bending of a prismatic beam of a ho-
MOgeneous, isotfopic Hookean material. We deduced certain results, but we did
not check all the field and boundary conditions.. We shall now show that all these
conditions are satisfied.

Consider the pure bending of a prismatic beam, as shown in Fig. 1.14 on p.
26. Let the beam be subjected to two equal and opposite couples M acting in a
plane of symmetry of the cross sections of the beam. Let the x, y, z-axes of reference
be chosen as in Sec. 7.7, with the origin located at the centroid of a cross section.
In Sec. 7.7, we were led to the conclusion that the stress distribution in the beam
is

Tzr = .}é—’ GY)’ T Oy = gy & G}" = 0x = O’ (12'5_1)
M_L ol g M (12.5-2)
El R ¢ I

where c is the distance from the neutral surface to the “outer fiber” of the cross
section, M is the bending moment, £ is Young’s modulus, [ is the areal moment
of inertia of the cross section, and o, is the outer fiber stress. The strains are,
therefore,

by = I);;, = —vl% =€y Oy =, =6, =0 (125-3)
From these, we see that the equations of equilibrium, Eqs.(12.4-5), are satisfied.
The equations of compatibility, Egs. (6.3-4), are also satisfied. The boundary
conditions on the lateral surface of the beam are T; = §. Since any normal to the
lateral surface is perpendicular to the longitudinal axis x, the direction cosine v,
vanishes; i.e., v, = 0 on the lateral surface. Thus; the followmg boundary conditions
are satisfied:
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The boundary conditions at the ends of the beam are that the stress system
must correspond to a pure bending moment, and without a resultant force. The
stress system given by Eq. (12.5-1) does that, as discussed in Sec. 1.11. Hence,
the solution is exact if the boundary stresses on the ends of the beam are distributed
precisely in the manner specified by Eq. (12.5-1), because then all the differential
equations and boundary conditions are satisfied.

One of the restrictions imposed in the derivation given in Sec. 1.11, namely,
that the cross section of the beam has a plane of symmetry, can be removed. Let
us consider, then, a prismatic beam with an arbitrary cross section, such as the one
shown in Fig. 12.4. Assume the same stress and strain distribution as in Egs.
(12.5-1), (12.5-2), and (12.5-3). Suppose the boundary conditions, Egs. (12.5-4),
are also satisfied. The resultant axial force is zero again when the origin is taken
at the centroid of the cross section. The resultant moment about the z-axis by the
traction acting on the end section is given by the surface integral over the cross-
section A:

Figure 12.4 An unsymmetric cross
section,

E

— — 2 .
M’_LU‘“ydA_RLy dA =

EL
R

1t is the same as before, except that we have added the subscript z to show that
the bending moment and the areal moment of inertia of the cross section are both
taken about the z-axis. The resultant moment about the y-axis, however, is a new
element to consider. It is given by an integration of the traction o..dA acting on
an element of area dA situated at a distance z from the y-axis. Hence,

M, = f , Oat dA. (12.5-5)
On substituting Eq. (12.5-1) into this equation, we obtain

M, = % J JVE dA. (12.5-6)
The integral is the negative of the product of inertia of the cross-sectional area:

P, = —L yzdA = —'”A yz dy dz. (12.5-7)
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Hence,

-EP,,
M, = _ITL (12.5-8)
In case the beam cross section has a plane of symmetry in which the bending
moment acts, we choose the xy-plane as that plane of symmetry; then P, = 0. It
follows that M, = 0, which shows that our solution in Sec. 1.1 is satisfactory. In
the general case, we now choose the coordinate axes in such a way that the product

of inertia vanishes. Then
P.=0, M =0, (12.5-9)
and the moment vector is parallel to the z-axis with a magnitude equal to M,.

The product of inertia vanishes if the y- and z-axes are the principal axes of
inertin. Hence, in.order that a moment acting in a plane produce bending in the
same plane, it is necessary that the plane be a principal plane, i.e., one containing
a principal axis of inertia of every cross section. Combining the requirements given
by Egs. (1.11-27) and (12.5-9), we see that the coordinate axes y, z must be chosen
as centroidal axes in the direction of the principal axes of the areal moments of
inertia.

Our verification is now complete. We have found that the stress system given
by Eq. (12.5-1) is exact if y is measured from the neutral axis in the direction of
a principal axis. The stress system satisfies the equations of equilibrium, the equa-
tions of compatibility, and the boundary conditions. Our intuitive assumption that
plane sections remain plane is verified in this case.

More refined theories of bending can be found in many books, e.g., Sokol-
nikoff’s Mathematical Theory of Elasticity.

12.6 BIOMECHANICS

Continuum mechanics can be applied to biology. Most biological materials can be
considered as continua at suitable scales of observation. We have discussed the
constitutive equations of a few biological tissues in Chap. 9. Most biological fluids
and solids have nonlinear constitutive equations. The bone seems to be an excep-
tion, which functions in the small strain range and obeys Hooke’s law. But the
shape and internal structure of bones are very complex.

In important biological problems, fluid mechanics and solid mechanics are
usually coupled together. For example, blood flows in blood vessels which have
elastic walls. The heart pumps blood with a muscle. Hence the equations used in
Chaps. 11 and 12 are usually coupled together in biomechanics.

Living tissues have a unique feature which is unmatched by nonliving materials.
This is the feature of tissue remodeling under stress. By remodeling, the zero-stress
state of the material changes, the constitutive equation changes, the mechanics
changes. The following chapter is devoted to consider this new aspect of continuum
mechanics.
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PROBLEMS

An elementary theory of a circular cylindrical shaft subjected to torsion is given in 1
Sec. 12.4. Let z be the axis of the shaft. Let theends be z = Qand 7z = | A
rectangular Cartesian frame of reference x, y, z is used. The displacement compom;ms s
in the x-, y-, and z-directions are u, v, and w, respectively. The elementary theory‘ :
gives R

u=-oazy, V=azx

where o is the rate of twist angle per unit length of the shaft. The elementary the
does not say anything about the third component of displacement in the axial directiop -
w, which in general will not vanish if the shaft is non-circular. Let this unknonI =
displacement be , ; ;

w = ad(x, y).

Using the equation of equilibriun (Navier's equation), find the equation satisfied by
the function $(x, y). This function is known as the warping function, - =+ " #1 *
The following situation reminds a composite-material designer to pay attention to the -
question of the stability of a structure in operational condition. Consider a cantilever
beam with a rectangular cross section. The beam is made of two strong rods embedde
in a matrix. It is loaded by a force P parallel to the line joining the two rods in th
crogs section, as shown in Fig. P12.3. In practical application under a load, there'is:
a probability that the beam will be twisted to failure.- Twist will occur when the load
P exceeds a critical vatue, Formulate a theory that will determine the critical valis
of the load P that will cause a torsional instability. According to your theory, how
should such a composite beam be designed? L

Il

L

narrow width may twist under load
The twist could be a critical.. -
! problem for 2 beam reinforced witf

high-strength rods. Lo

l ) Figure P12.3 A beam of very”© -

Consider a string of uniform density and material, stretched tightly between two.posts .
(e.g., a violin string or a piano wire). The string is struck at a point. Vibration ensues
Formulate the problem mathematically. Give both the differential equations apd}}h
boundary conditions. ' .
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12.5 “Consider 2 gong used in an orchestra: Formulate the mathematical problem of gong
yibration o G e

12.6 Formulate 2 mathematical description of the clouds floating in the sky. How do they
move about? Include enough parameters so that the great variety of things you see
daily can be described.and deduced. ‘ , ;

12.7 ' An airplane flies in‘the air at a forward speed -V relative to.the ground. How does
‘the wing maintain this flight? To.answer this question, write down the field equations
‘for the air and the wing, and the boundary conditions at the interface between. the
air and the wing: Present a full set of equations that would be sufficient to furnish a
‘mathematical theory in principle. ,

12.8 The elastic waves in the rails as a train approaches are typical of waves in many
dynamics problems. We can easily hear the impact of the wheels of the train (if we
-put our ears to-the rail) long before the train can be seen. Then, as the train comes .
by, we can see the-deflection of the rails under the wheels. Formulate the problem
mathematically so that both of these features can be exhibited.

12.9 - Feel the pulse on your wrist. It is a composite elastic wave in your artery. The most
important component is undoubtedly the elastic response of the artery fo the pressure
“wave in the blood. To a lesser extent, there must be other waves that are propagated
along the arterial wall and caused by disturbances further upstream or downstream.
Our arteries are elastic. Formulate a mathematical theory of pulse propagation. Leon-
hard Euler (1707-1783) formulated the problem and presented an analysis as early
(as 1775,
12.10 Galileo (1564-1642) proposed the following method for measuring the frequency of
 vibration of a gong. Attach a small, sharp, pointed knife to a slender rod. Pull the
rod over the gong at a constant speed. The vibration of the gong will cause the rod
to chatter. Examine the metal surface of the gong, and measure the spacing of the
marks, from which the frequency may be calculated.
Explain whether this method will work. How would you compute the frequency?
Formulate the problem mathematically from the point of view of the theory of elas-
| ticity. Assume a good musical gong to assure that the material is a linear elastic solid
 that obeys Hooke’s law. ;
12.11 The -phenomenon of chatter in machine tools is not -unlike that in Galileo’s gong
. experiment. Consider the problem of a high-speed lathe. Formulate the problem of
chatter, which ruins a good machine’s operation. Propose ways to alleviate the prob-
lem.
12.12 A beam vibrates. Write down the differential equation and boundary conditions for
a vibrating beam and a method of determining the frequency of vibration of the beam.

12.13 A circular cylindrical shaft spins about its longitudinal axis at an angular speed
. radians/sec. The shaft is simply supported at both ends. Lateral vibrations are always
“possible.when the shaft spins. However, if the rate of spin reaches a critical value,
the lateral deformation becomes excessive, and so-called whirling sets in. Describe

the phenomenon mathematically. Formulate the equations with which the critical
whirling speed can be determined.

12.14 The shaft of an airplane propeller is subjected to both a tension and a torque. How

would you propose to measure the stresses in the shaft in flight? How would you
measure the power delivered to the propeller in flight?
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We use biological examples to bring out some fundamental issues of con-
tinuum mechanics: the zero-stress state, the changes in the zero-siress state
and the constitutive equation due to remodeling of a material, the effect of
stress and strain on remodeling, and the feedback dynamics of growth and
resorption. Nonliving physical systems have these features also.

13.1 INTRODUCTION

In this last chapter, we discuss the mechanics of changes in materials. From the
point of view of mechanics, there are three aspects of a solid body in which change
plays a fundamental role: the zero-stress state, the constitutive equation, and the
overall geometry of the body. Our discussion will focus on these aspects.

The mechanics of flow and deformation is called rheology. The literature on
rheology is usually concerned only with flow and change in a given material or a
given set of materials. The science in which growth and change in materials is a
central concern is biology. In continuum mechanics theology and biology are united.
To illustraté the material-change aspects of continuum mechanics, examples can
be picked from biology, because they are ubiquitous. In the discussion that follows,
we often use the blood vessel as an example.

13.2 How to Discover the Zero-Stress State of Materials in a Solid
Body

In the preceding chapters, it is assumed that when there is no external load acting
on a body; the stress in the body is zero everywhere. We know, however, that this
does not have to be the case; for example, we can sit, but tense up our muscles
and create a lot of forces in our muscles and bones. Generally, the stress in a body
when there is no external force is called residual stress. The effect of residual stress
and strain can be dramatic, e.g., the relaxation of residual stress in the earth can
cause an earthquake, and an unwanted thermal strain in a nuclear reactor might
cause a meltdown. ‘

285
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The simplest way to discover residual stress in a solid body is to cut the body
up. Cutting is introducing new surfaces on which the traction is zero. Cutting an
unloaded body without residual stress will cause no strain. If strain changes by
cutting, then there is residual stress.

Take a blood vessel as an example. If we cut an aorta twice by cross sections
perpendicular to the longitudinal axis of the vessel, we obtain a ring. If we cut the
ring radially, it will open up into a sector (see Fig. 13.1). By using equations of
static equilibrium, we know that the stress resultants and stress moments are zero
in the open sector. Whatever stress remains in the vessel wall must be locally in
equilibrium. If we cut the open sector further and can show that no additional
strain results, then we say that the sector is in the zero-stress state. For the rat
artery Fung and Liu (1989) reported that this is the case.
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Figure 13.1 Photographs of the cross sections of a rat aorta at zero-
stress state. The first column shows the zero-stress state of the aorta of
normal rat. The rest shows the change of zero-stress state due to vessel
remodeling after a sudden onset of hypertension. The photos are
arranged from left to right according to days after surgery, and from
top to bottom according to location on the aorta, expressed as distance
from the heart in percentage of the total length of the aorta from the
aortic valve to iliac bifurcation. The location of the metal clip used to
induce hypertension is shown in the sketch at left. The arcs of the
blood vessel wall do not appear smooth because of some tissue
attached to the wall. In reading these photographs, one should mentally
delete these tethered tissues. From Fung and Liu (1989).
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"~ Thus assured that the open sectors represent the zero-stress state of a blood
vessel, we characterize each-sector with an opening angle, which is defined as the
angle subtended by two radii drawn from the mid-point of the inner wall to the
tips of the inner wall of the open sector (see Fig. 13.2). A more complete picture
of the zero-stress state of a normal young rat aorta is shown in the first column of
Fig. 13.1 (Fung and Liu, 1989). The entire aorta was cut successively into many

~ segments approximately one diameter long. Each segment was then cut radially.

It was found that the opening angle varied along the rat aorta: It was about 160°
in the ascending aorta, 90°in the arch, 60° in the thoracic region, 5° at the diaphragm
level, and 80° toward the iliac bifurcation point.

Figure 13.2 Definition of the opening angle. Sector represents a
circumferential cross section of a blood vessel at zero-stress state.
Angle subtended between two lines originating from the midpoint to -
the tips of the inner wall is the opening angle.

Following the common iliac artery down a leg of the rat, we found that the
opening angle was around 100° in the iliac artery, dropped down in the popliteal
artery region to 50°, and then rose again to about 100° in the tibial artery. In the
medial plantar artery of the rat, the microarterial vessel of 50 mm diameter had
an opening angle on the order of 100° (Liu and Fung, 1989).

There are similar, although not identical, spatial variations of opening angles
in the aortas of the pig and dog (Han and Fung, 1991a). Also, there are significant
opening angles in the pulmonary arteries (Fung and Liu, 1991), systemic and
pulmonary veins (Xie et al., 1991), and trachea (Han and Fung, 1991b) of rats.
Thus, we conclude that the zero-stress state of blood vessels and the trachea is
shaped as sectors whose opening angles vary with their location on the vessel or
trachea and with animal species. In other words, the zero-stress state in a body
may vary from place to place. It then follows that the residual stress also varies
spatiaily.

In industrial engineering, residual stresses are usually introduced into a solid
body in the manufacturing process. Welding or riveting of metal parts under strain
is a common cause of residual stress in airplanes, bridges, and machinery. Plastic
deformation or creep in the metal-forming and machining process causes residual
stress. Forced fitting is also a common cause. Straining steel rods is the way pre-
stressed reinforced concrete beams are made. Heating an outer cylindrical shell to
a higher temperature, fitting it to an inner shell, and then cooling the combination
down to room temperature is the way gun barrels are made. The purpose is to
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induce a compressive residual stress in the inner wall and a tensile stregg in th R
outer wall, so that when the gun is fired, the stress concentration at the inper waﬁ o
of the barrel can be reduced. Shot peening to introduce a compressive Tesidual - P
stress on the outer surface of a metallic body is a way to increase the fatigue life‘k‘ A
of the body. Techniques using an ion or molecular beam to impregnate matter jntg
the surface of a metallic or ceramic body can similarly introduce a compresgiye - .
residual stress into a thin layer of the surface of the body to promote a longért Sl
service life. Most articles of industrial engineering have residual stress in them o
In living tissues, growth and change are natural. Every cellular or extracelluiar,;~
growth or resorption changes the zero-stress state of the tissue and introduces
residual stress. In biological studies, it is easier to measure changes in the zero.’
stress state than to measure cellular activities in the tissue; hence, observed changes‘.
in residual strain are often used as a quantitative tool to study such activities,
Out of the great variety of examples in nature and industry, we shall use a l
few biological cases to illustrate the long-term effect of the stress in a body on the
materials of the body. What in the short term is described by the stress-strain
relationship becomes, in the long term, features associated with aging, remodeling, -
wear, tear, growth, and resorption. Biologists use the term homeostasis to describé‘ i
the condition of normal life. They describe the state of a living organism at normal. -~
living conditions by a set of homeostatic set poinfs. In a homeostatic com:li‘ti(‘ari;Tj
there is a certain range of stress in the body of the living organism. When the .
environment changes, the range of stress changes, the cells in the body respond :
by modifying themselves, and the tissue is remodeled. In effect, the zero-stress
state of the body changes. In time, the mechanical properties of the tissue are also
remodeled. We are familiar with these features in our own bodies. We know that
homeostasis is not static, but a certain normal mode exists in a dynamic environ-.
ment. The quantitative aspects will become clearer as we proceed in the sections.
that follow. i
In machines and in nonliving physical objects, analogous features of homeo=
stasis and remodeling may exist. These features are worthy of scientific study.
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A BIOLOGICAL EXAMPLE OF ACTIVE REMODELING .
DUE TO CHANGE IN STRESS

In one study, hypertension was created in rats by constricting the abdominal aorta -
with a metal clip placed right above the celiac trunk. (See Fig. 13.3.) The clip - :
severely constricted the aorta locally and reduced the normal cross-sectional area
of the lumen by 97% (Fung and Liu, 1989; Liu and Fung, 1989). This caused a
20% step increase in blood pressure in the upper body and a 55% step decrease

f I
1t !

, f&’

()

in blood pressure in the lower body immediately following surgery. Later, the - o Carotid
blood pressure increased gradually, following the course shown in Fig. 13.4. In the ° illec
upper body, the blood pressure rose rapidly at first and then more gradually, tending. P e —
: ] 10 20 30 40 50

Normalized Blood Pressure (P/Pp)
&

to an asymptote at about 75% above normal. In the lower body, the blood pressure :

rose to normal in about four days and then gradually increased further to an Number of Day Postsurgery
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Figure 13.3 A sketch of the heart, aorta, and pulmonary arteries, the stresses
in them, the zero-stress state, and the nomenclature of vessels mentioned in the
text with regard to control of blood pressure by aortic constriction.

Figure 13.4 The course of change
of blood pressure (normalized with
respect to that before surgery)
when a constriction is suddenly
imposed on the aorta at a site
below the diaphragm and above the
celiac trunk shown in Fig. 13.3.
From Fung and Liu (1989).
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asymptotic value of 25% above normal. Parallel with these changes in bloog pres-
sure, the zero-stress state of the aorta changed as well. The changes are illustrated
in Fig. 13.1, in which the location of any section on the aorta is indicated by the
_ percentage distance of that section to the aortic valve measured along the aorta

divided by the total length of the aorta. Successive columns show the zero-stres;
configurations of the rat aorta at 0, 2, 4, . . . , 40 days after surgery. Successive
rows refer to successive locations on the aorta. CaEg

The figure shows that following a sudden increase in blood pressure, the
opening angles increased gradually, peaked in two to four days, and then decreased”
gradually to an asymptotic value. Variation with the location of the section on the
aorta was great. The maximum change in the opening angle occurred in the ascend:
ing aorta, where the total swing of the opening angle was as large as 88°, :

Thus, the blood vessel changed its opening angle in a few days following the -
change in blood pressure. Similar changes were found in the pulmonary arteries
of rats after the onset of pulmonary hypertension by exposure to hypoxic gas
containing 10% oxygen and 90% nitrogen at atmospheric pressure (Fung and Lig
1991). -

Thus, the zero-stress state of the blood vessel may be remodeled by an active -
biological process under the influence of changes in homeostatic stress. :

3

MATERIALS THAT “REMEMBER" THEIR SHAPES

The mechanical properties of a material may depend on many physical, chemical, -~
and biological factors. We have illustrated a change in a material’s zero-stress state
due to a biological reaction to stress in the preceding section. Let us now consider
a physical factor: temperature. It is well known that at any given state of stress, a
change in temperature changes the strain, so that thermal stress may be regarded
as caused by changing the zero-stress state through temperature variation.

There is, however, a more dramatic phenomenon in some materials. A hat
made of a certain polymer can be folded for carrying and returned to good shape
by heating. A medical device made of the same material has been used in Japan - -
to close a patent ductus arteriosus in a young child. Ductus arteriosus is a vessel
connecting a fetal heart to fetal lung, allowing blood to flow from the aorta to the
pulmonary artery before birth. Normally it is closed immediately after birth. But
sometimes it remains open and needs surgery. The device named above is shaped - -
like a tiny umbrella, folded up, threaded to the duct by an endoarterial catheter, -
then opened up with a little squirt of fairly hot water from the catheter. The opened
umbrella closes the ductus arteriosus. L

Materials such as these, which appear to “remember” their shape, are mate- - : -
rials whose zero-stress state changes with temperature. Alloys of copper-aluminum-
nickel, copper-zinc-aluminum, iron-manganese-silicon, nickel-titanium, and poly- -
mers like polynorbornene have this property. For example, one nickel-titanium _~
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(Ni-Ti) alloy, composed of equal number of atoms of nickel and titanium, and
made into something at a higher temperature, can be deformed into some other
shape at a lower temperature. If the deformed body is heated beyond a critical
/temperature, the Ni-Ti alloy will return to its original shape as manufactured and,
if resisted, can generate a stress as high as 700 MPa (10° psi). This change is produced
in the alloy by a change of crystalline phase known as a martensitic transformation.
Martensite has a low yield stress, and can be deformed easily and reversibly by a
crystalline process called twining of the atomic lattice. (See Fig. 13.5.) The mar-
tensitic transformation occurs over a range of temperature, above which the mate-
rial is in the austenitic phase. When an austenite is cooled down, random twining
occurs in the metal by random internal residual shear stress. Under an external

Figure 13.5 The mechanism of shape memory of a nickel-titanium
alloy in the austenitic state at a higher temperature. The alloy is
deformed at a lower temperature when the crystal structure is
martensitic. The deformation in the martensite crystal is by twining
which occurs under suitable shear stress and is reversible when the
shear stress is reversed. If the temperature of the deformed martensite
is raised to a level above a critical value, the crystalline structure of the
alloy reverts to austenite and to the original shape of the body. From
Tom Borden, “Shape-memory alloys: Forming a tight fit,” Mechanical
Engineering, Oct. 1991, p. 68. Reproduced by permission of the author
and publisher. ‘
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shear load, a martensitic body can deform substantially and reversibly by twipjpe
On heating the deformed martensite to a temperature at which the martensi%é S
crystal is transformed into austenite, the crystal reverts to its original shape, becauge i
austenite cannot accommodate the twining type of deformation. i
The stress-strain curves for martensite and austenite are illustrated ip Fig." ;
13.6. Deformations of martensite at strains greater than about 7% and austenité SR
at strains greater than about 1% are plastic and irreversible. So for practical appl- T
c_ations, one has to know the stress-strain curves, the ranges of elasticity and plas-
ticity, the temperature at which austenite is first formed in martensite when heated, " - ‘
and the temperature at which martensite is first formed in austenite when cooled" e
With this knowledge, people have used Ni-Ti alloy for fastening machine part‘s" B
wiring teeth for orthodontic purposes, simulating the erection of an organ, anci“
other phenomena. e

Austenite

Martensite

Figure 13.6 The stress-strain relationship of martensite and austenite
crystals (tested at different temperature). From Tom Borden. loc. cit.
By permission.

13.5 MORPHOLOGICAL AND STRUCTURAL REMODELING
OF BLOOD VESSELS DUE TO A CHANGE IN BLOOD
PRESSURE -

The pressure of circulating blood varies from time to time and from place to plabé. '
What is normally referred to as the systemic blood pressure is the difference
between the pressure of the blood in the aorta at the aortic valve and that in the
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right atrium. This is the pressure difference that drives the entire “systemic” cir-
culation throughout the body (the peripheral circulation system). The correspond-
ing driving pressure for the pulmonary circulation is the difference between the
pressure in the pulmonary artery at the pulmonic valve and the pressure in the left
atrium./ Both the systemic and the pulmonary circulation are characterized by
systolic (in period of contraction of the heart) and diastolic (in period of dilatation
of the heart) pressures. When these pressures change; the blood pressure in every
vessel of the body changes. When the blood ‘pressure changes, the stress in the
blood vessel wall changes.

As is sketched in Fig. 13.3, in the in vivo condition at normal blood pressure,
the circumferential stress is usually tensile and is the largest stress component in
the vessel wall. The longitudinal stress components exist because the vessel is
normally stretched in the axial direction. The radial stress component is compressive
at the inner wall, where it is equal to the blood pressure, and gradually decreases
to the pressure acting on the outer wall.

The systemic blood pressure can be changed in a number of ways: by drugs,
by a high-salt diet, by constricting the flow of blood to the kidneys, etc. If the aorta
is constricted severely by a stenosis above the renal arteries (Fig. 13.4), the aorta
above the stenosis will become hypertensive. The aorta below the stenosis will
become hypotensive at first, but the reduced blood flow to the kidneys will cause
the kidneys to secrete more of the enzyme renin into the bloodstream and will
raise the blood pressure. If the stenosis is below the kidney arteries and is sufficiently
severe, then the lower body will become hypotensive. The pulmonary blood pres-
sure can also be changed in a number of ways. A most convenient way is to change
the oxygen concentration of the gas breathed by the animal. If the oxygen con-
centration is reduced from normal (i.e., if it becomes hypoxic), the smooth muscle
cells in the pulmonary blood vessels contract, the vessel diameters are reduced,
and the pulmonary blood pressure goes up. This is the reaction human beings who
live at sea level encounter when they go to a high altitude.

The hypoxic hypertensive reaction occurs quite fast. If a rat is put into a low-
oxygen chamber containing 10% oxygen and 90% nitrogen at atmospheric pressure
at sea level, the systolic blood pressure in its lung will shoot up from the normal
2.0 kPa (15 mm Hg) to 2.9 kPa (22 mm Hg) within minutes, become further elevated
t0 3.6 kPa in a week, and then gradually rise to 4.0 kPa in a month. (The rat’s systemic
blood pressure remains essentially unchanged in the meantime.) Under such a rise in
blood pressure in the lung, the pulmonary blood vessel remodels itself.

Figure 13.7 shows how fast this remodeling proceeds. In the figure, the pho-
tographs in each row refer to that segment of the pulmonary artery indicated by
the leader line. The first photograph in the top row shows a cross section of the
arterial wall of the normal three-month-old rat. The specimen was fixed at the no-
load condition. In the figure, the endothelium is facing upward, with the vessel
lumen on top. The endothelium is very thin—on the order of a few micrometers.
The scale of 100 pm is shown at the bottom of the figure. The dark lines are elastin
layers. The upper, darker half of the vessel wall is the media, the lower, lighter
half of the vessel wall the adventitia. The second photograph in the first row shows
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RAT PULWONARY ARTERIES INHYPOXIA

2Hours 12Hours 96Hours - 240Hours 720 Hours

e

Normal

Figure 13.7 Photographs of histological slides from four regions of the main - -
pulmonary artery of a normal rat and several hyperiensive rats with different
periods of hypoxia. Specimens were fixed at no-load condition. From Fung and
‘Lin (1991).

a cross section of the main pulmonary artery two hours after exposure to lower

oxygen pressure. There is evidence of small fluid vesicles and some accumulation:

of fluid in the endothelium and media. There is also a biochemical change of elastin . :
staining on the vessel wall at this time. The third photograph shows the wall
structure 10 hours later. Now the media is greatly thickened, while the adventitia ' =

has not changed very much. The fourth photograph shows that at 96 hours of
exposure to hypoxia, the adventitia has thickened to about the same thickness as
the media. The next two photos show the pulmonary arterial wall structure when
the rat’s lung is subjected to 10 and 30 days of lowered oxygen concentration. The

‘major change in these later periods is the continued thickening of the adventitia.
The photographs in the second row show the progressive changes in the wall
of a smaller pulmonary artery. The third and fourth rows are photographs of arteries -

of even smaller diameter. The inner diameter of the arteries in the fourth row is-

on the order of 100 wm, approaching the range of sizes of the arterioles. The
remodeling of the vessel wall is evident in pulmonary arteries of all sizes. The

maximum rate of change occurs in a day or two.

13.6 REMODELING OF MECHANICAL PROPERTIES

When the material in a blood vessel is changed during remodeling, its mechanical
properties change. The mechanical properties of soft biological tisstes can be-
described by the constitutive equations discussed in Secs. 9.5 and 9.7. Hence, We ..
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expect that the constitutive equation, or at least its coefficients, will change with
tissue remodeling. This is indeed the case, as we shall illustrate with an example.

* For the blood ‘vessel, the pseudoelasticity formulation of the constitutive
equation, described in Secs. 9.4 and 9.5, applies. We assume that a pseudoelastic
strain energy furiction exists, denoted by the symbol p,W and expressed as a function
of the nine components of strain E; (i = 1, 2,3, ] = 1, 2, 3), that is symmetric
with respect to Ej; and E7, so that the stress components can be derived by a
differentiation, namely,

d ~
Sij = M N e (13.6—1)

; . d El'i . .
Here, po is the density of the material at the zero-stress state, W is the strain energy
per unit mass, poW is the strain energy per unit volume, and E;; are strains measured
with respect to the material configuration in the zero-stress state.

With regard to the determination of p,W, two approaches may be taken. One
is to regard the blood vessel wall as an incompressible material and derive p,W as
a function of E;; in three dimensions (Chuong and Fung, 1983). The other is to
assume that the blood vessel is a cylindrical body with axisymmetry in mechanical
properties and limit oneself to axisymmetric loading and deformation. Then one
would be concerned only with two strain components: the circumferential strain
E;; and the longitudinal strain Ey. The radial strain is easily computed from the
condition of incompressibility. This technique may be called a two-dimensional
approach. ) ‘

For the analytical representation of poW for arteries in the two-dimensional
approach, a polynomial form has been used by Patel and Vaishnav (1972), a
logarithmic form by Hayashi et al. (1971), and an exponential form by Fung et al.
(1973, 1979, 1981), see references at the end of Chap. 9. According to Fung et al.
(1979),
' poW = exp(a; E%l +a E?z'z +. 2(14‘Eu Eg) (136—2)

where C, a,, a,, and a, are material constants, Ey, is the circumferential strain, and
E, is the longitudinal strain, the last two referred to the zero-stress state.
Experiments have been done on rat arteries during the course of development
of diabetes after a single injection of streptozocin. The results with the vessel wall
treated as one homogeneous material are presented in Table 13.1, from Liu and

TABLE 13.1 COEFFICIENTS C, a,, a,, AND a, OF THE STRESS-STRAIN RELATIONSHIP
OF THE THORACIC AORTA OF 20-DAY DIABETIC AND NORMAL RATS. a, WAS FIXED
~AS THE MEAN VALUE FROM THE NORMAL RATS.*

‘Group C (n/cm?) a a, a,
:Normal Rats

Mean + SD 1221 £ 332 1.04 £0.35 2.69 =095 0.0036
20-day Diabetic Rats ‘

Mean = SD S 1532 £ 922 1.53.+0.92 344 £ 1.07 0.0036

*From Liu, 8. Q., and Fung, Y. C. (1992).
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Fung (1992). Clearly, the material constants change with the development of dja. .

betes.

13.7 STRESS ANALYSIS WITH THE ZERO-STRESS STATE TAKEN

INTO ACCOUNT

If the zero-stress state of a solid body is known, if the strain is infinitesimal avndk

if the constitutive equation is linear, then the principle of superposition applies
H

and the mathematical problem of the stress analysis of a body with residual stress -

is simply a sum of two linear problems: finding the residual stress without an external
load and finding the stress under an external load but without residual strain. In

this category fall the important classical theories of dislocation and thermal stress, - o
Nonlinearity introduced by a finite strain or constitutive equation makes the - e

analysis of bodies with residual stress a distinctive subject. The nonlinear analysis
is often very difficult. But if we know the zero-stress state and how it is related to
the present state, then the analysis of stress in the body could be quite simple.
For example, consider an ileal artery whose cross section in vivo at a blood
pressure of 16 kPa (120 mm Hg) is shown in Fig. 13.8. The cross sections under

the no-load and zero-stress conditions are also shown in Fig. 13.8. From these =
figures, we can measure the length of the circumference of the inner wall of the. o
vessel. Let the lengths at the zero-stress state, the no-load state, and the homeostatic -

(normal, in vivo) state be Lies, Lo, and Liom, respectively, with the super-

scripts { indicating “inner”” and 8 indicating ““circumferential,” and the subscripts -
“0-stress,” “no-load,” and “hom” indicating the states of zero stress, no load, and .
homeostasis, respectively. Similarly, we can measure the circumferential lengthat -

lleal Artery

BP: 120 mm Hg

No-Load State

Zero-Stress State ~ section of an ileal artery of the rat

100um %ﬁm‘ load (middle), and zero stress
= (bottom). :

Figure 13.8 ‘The shape of the cross

’é‘? at normal blood pressure (top), 10 |
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the outer wall and obtain Les, LS, and Lion, with the superscript o indicating
“outer.” From these, we obtain the stretch ratios

. L{m?l d . Lg")
O = D = o 13.7-1
= I (13.7-1)
on the inner wall and
Lo L
Ny = =, N = e 13.7-2
T 6. (13.72)

on the outer wall.

Typical raw data of the L’s of an ileal artery, a medial plantar artery, and a
pulmonary artery (branch 1) are given in Table 13.2. The computed stretch ratios
are also listed in the table. These results may be compared with those obtained by
a theoretical calculation of a hypothetical case in which the no-load and homeostatic
configurations are identical with the real ones, but the residual strains are zero, so
that the opening angle is zero and the zero-stress configuration is the same as the
no-load configuration. In that case, the stretch ratios of the no-load case are unity,
but those of the homeostatic vessel are

7 L2
A = = N = = -
= Tmy M e (13.7-3)

These are listed in the last two columns of Table 13.2.

The distribution of the circumferential residual stretch ratio in the vessel wall
under the no-load condition is illustrated in the case of an ileal vessel (branch 1)
in Fig. 13.9(a). It is seen that the residual stretch ratio is compressive in the inner
wall and tensile in the outer wall. Under the conventional assumption that plane
sections remain plane in bending, the stretch ratio distribution in the vessel wall
is a straight line. In Fig. 13.9(b), the thick, nearly horizontal line shows the actual
circumferential stretch ratio distribution in the blood vessel wall when the blood

TABLE 132 MEASURED CIRCUMFERENTIAL LENGTHS OF THE INNER AND OUTER
WALLS OF RAT ILEAL ARTERY IN THE ZERO-STRESS STATE, IN THE NO-LOAD
STATE, AND AT 80 AND 120 um Hg; AND COMPARISON OF CIRCUMFERENTIAL
STRETCH RATIOS COMPUTED ON TWO BASES: (A) RELATIVE TO THE ZERO-STRESS
STATE, AND (B) RELATIVE TO THE NO-LOAD STATE.*

Length, pm Circumferential Stretch Ratio

Re zero-stress state Re no-load state

States tnner Wall Outer Wall Inner Wall Outer Wall inner Wall Outer Wall

Zero Stress 743 963

No load 590 1,091 0.79 1.13 1.0 1.0
80 mm Hg 1,017 1,281 1.37 1.33 1.72 1.17
120 mm Hg 1,023 1,286 1.38 1.34 1.73 1.18

*Data from Fung and Liu (1992). -
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(a) (b} (c)

Figure 13.9 Circumferential stretch ratio distribution in an ileal artery {(branch
1) whose dimensions are listed in Table 13.2. () Measured residual stretch ratio
at no-load state. Residual strain can be read from nonlinear scale shown on right,
R; and R, inner and outer radius of vessel wall, respectively. Strain is compressive
in inner wall region and tensile in outer wall region. (b) Thick, nearly horizontal
line joining the solid dots shows measured circumferential stretch ratio (relative to
the zero-stress state) at a blood pressure of 80 mm Hg; thinner inclined line joining
open circles shows computed hypothetical circumferential stretch ratio when o
opening angle was ignored. (c) Corresponding strains at blood pressure 120-mm
Hg. These curves show that huge errors result if residual strain is ignored, From
Fung and Lin (1992). By permission.

tissues. It is a technology based on molecular biology, cell biology, and organ
physiology. To master tissue engineering, one must know how the health of tissues
is maintained, improved, or failed in relation to stress’and strain.
Machines, in general, do not have the ability to remodel themselves, but such
-an ability.is clearly desirable in some circumstances. It is not beyond the engineer’s
imagination to conceive of machines with the ability to remodel themselves, but
the direction is a totally new one for engineers to think about.
Readers interested in this subject may find the references listed at the end
" of this chapter helpful. A fairly comprehensive introduction to the mechanics of
tissue remodeling is given in Fung (1990), which contains an extensive list of
references. In the medical field, bone remodeling has been studied for a long time.
Meyer’s paper was dated 1867, Wolff’s law was proposed in 1869. Papers by Carter
and Wong (1988), Cowin (1986), and Fukada (1977) may serve as entry to the

: 1.8 O Ho ©80mm Hg _120mm Hg RPRE 13.8 STRESS-GROWTH RELATIONSHIP
; Strain ignoring D Strain ignoring '
: ) residuat residudl . . . i .

5 e / . Biological tissue growth can be affected by many things: nutrition, growth factors
'17 § .l L L -8 (enzymes), the physical and chemical environment, and diseases, as well as stress
k % ’ 048 ; and strain. If other things were equal, then a stress-growth law will emerge.

%?, | Tensile £ A stress-growth relationship has clinical applications in the understanding of
gh g resifal k] diseases, healing, and rehabilftation. If a stress-growth law is known for certain
M £ 10p- . i -1 00 5 organs, then surgeons can use it to plan surgery on those organs, engineers can
Ei g 5 use it for tissue engineering, manufacturers of prostheses will have guidance, and
'H ° Compressive ' physical therapists, athletes, and educators will know the relation between exercise
ig,‘é, 06 residual o3 i and body development.

;S?; R Ro R Ry Ri Re Tissue engineering is a field dedicated to making artificial substitutes for living
.

|
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pressure is 80 mm Hg, whereas the thinner, inclined line shows the hypothetical. i
circumferential stretch ratio distribution at 80 mm Hg under the assumption that

the opening angle is zero. The corresponding strains are all positive (tensile), but
the great error caused by ignoring the residual strain {opening angle) is seen. The
corresponding stretch ratio distributions in the vessel wall at a blood pressure of
120 mm Hg are ilustrated in Fig. 13.9(c). It is clear from Fig. 13.9 that the errors

caused by ignoring the residual strains are enormous. It is important to know the

zero-stress state of a blood vessel. :

The longitudinal stretch ratios from the no-load to the homeostatic condition
measured on the specimens of Fig. 13.9 is about 1.35. No change in the ratio was
detected experimentally upon cutting open a vessel segment under the no-load
condition to the zero-stress state. Hence, the longitudinal stretch from the zero-

stress state to the homeostatic state of the ileal vessel is also about 1.35. Finally, -

the radial stretch ratio can be computed from the condition of incompressibility of
the vessel wall:

Mhak = 1. (13.74)

Thus, the strain state of the vessel is completely determined experimentaly.

For arteries, the stresses increase as exponential functions of strains. Hence,
if stresses were plotted in graphs corresponding to the strain distributions plotted
in Fig. 13.9, a much greater error in stress would be seen as a consequence of
ignoring the opening angle.

current literature. In the preceding sections we used blood vessels to illustrate the
features of tissue remodeling: changes in the zero-stress state, structure and arterial
composition, constitutive equations, and stress and strain distributions. We could
have used bone for this purpose; but changes in soft tissues are more visible and
take place faster than those in bone. The getting together of the time constants
for tissue remodeling, stress relaxation, strain creep, fluid movement, and mass
transport serves to bring biology and mechanics closer together. The papers by
Chuong and Fung (1986), Fung (1991), Hayashi and Takamizawa (1989), Taka-
mizawa and Hayashi (1987), Vaishnav and Vossoughi (1987), and Omens and Fung
(1990) are relevant to soft tissue mechanics. The book edited by Skalak and Fox
(1988) is a collection of papers presented at a tissue engineering conference. There
is a large amount of literature on the biology and medicine of tissue remodeling.
The papers by Cowan and Crystal (1975), and Meyrick and Reid (1980) are excellent
.examples.

PROBLEM

13.1 Membranes within Living Cells. Within a cell, membranes are ubiquitous, but their
mechanical properties are virtually unknown. As a theoretical concept, intracellular
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membranes may be assumed to have surface tension, stretching elasticity, shear elas‘
) X

ticity, and bending rigidity. The tension and shear are associated with membrane area

and deformation, the bending rigidity is associated with the change in curvature of the :

membrane.
A surface in three-dimensional Euclidean space has two principal curvatures at

every point. The sum of the two principal curvatures is called the mean curvature of f
the surface; the product of the two principal curvatures is called the Gaussian curvaty o
One may assume that the energy state of the membrane depends on the mean a;e(i e
Gaussian curvatures. Now, propose a strain energy function for an intracellular mem- Lk
brane. Then solve a mathematical problem: find a minimal surface of finite area bu; o i

ZEro mean curvature everywhere.

An answer given by Reinhard Lipowsky, in Nature, vol. 349, p. 478, Feb. 1991 :
is shown in Fig. P13.1. Do you think Lipowsky’s surface is minimal? What kind of - .
energy state would the surface have? If one wants to claim that a minimal surface has = -
2 minimum energy Jevel, how should energy of the membrane be related to the surface

area, and and Gaussian curvatures?

'

Figure P13.1 Lipowsky's surface.

What kind of surface has zero Gaussian curvature everywhere? Is a developable i
surface one of zero Gaussian curvature? Are all surfaces with zero Gaussian curvature - S

developable?
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components in polar coordinates, 225
material, 212

Achilles tendon, 32

Acoustics:
basic equation of, 256
velocity of sound, 257

Almansi strain tensor, 117

Austenite, 291, 292

Avogadro number, 181

B

Barotropic fluid, 252
Beams:
bending moment, 18
classification, simply-supported,
clamped, free, 28
curvature of, 28-30
deflection, 28
the largest stress in, 27
moment diagram, 18
neutral surface of, 26
outer fiber stress, 27
simply-supported, 17
statically indeterminate, 31, 35
Bending of beams, 25-30, 278-81
Bingham plastic, 202-3
Blood pressure, 289
Blood vessel, 289
Blood viscosity, 201
Body force, 67
Boltzmann constant, 182
Boltzmann equation, 196-97
Boundary conditions:
fluid, free surface, 234
solid-fluid interface, 233
solids, 272
subsonic flow, 26062
supersonic flow, 260-62
two fluids, 235
velocity, 260
Boundary layer, 244-49
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Prandtl’s equation, 246
thickness, 246, 249
Buckling, 86
Bulk modulus, 160

c

Cartesian tensors, analytical definition, 55
Cauchy’s formula, 69
Cauchy’s strain tensors, 132
Circulation, 251-53
Compatibility condition, 145-50
equation of, 148
plane strain, 148
in three-dimensions, 149
Compressibility:
of gas, 181
of liquid, 182
Compressible flow, 254-65
basic equations, 255, 256, 259
Conservation laws:
of angular momentum, 219
of energy, 22
of mass, 217
of momentum, 218
in polar coordinates, 223
Constants:
Avogadro’s number, 181
Boltzmann, L., 182
Lamé, G., 158
Constitutive equations, 154-62
Bingham material, 202
Hookean elastic solid, 157-61
Incompressible fluid, 155
living tissue, 189~91
Newtonian fluid, 156
non-Newtonian fluids, 162
nonviscous fluids, 155
plasticity of metals, 13688
van der Waals’ equation, 182
viscoelastic material, 193-97
viscoplastic materials, 202-3
Continuity, equation of, 217
in polar coordinates, 227

Subject Index

Continuum:

abstract copy, 5, 6
- axioms, 7

lung, 7

material, 3

mechanics, 6, 7

real material, 3, 4
Continuum, concept of, 1, 3-6
Contraction (tensor), 60
Convention:

strain notation, 119

stress notation, 64-66

summation of indices, 44
Convective acceleration, 214
Coordinates, transformation, 49, 53

curvilinear, 76

cylindrical polar, 77-78, 125, 128
Couple-stress, 5
Creep-functions of solid, 194-95
Crystalline solid, 174

" Cuil, 61

D

D’Alembert’s principle, 12
Deformation, analysis, 112-32
Deformation gradients, 131
Detrusions, 121
Dirac-delta function, 195
Displacement field, infinitesimal, 117, 119
Displacement vector, 117

in polar coordinates, 126

relation to velocity, 145, 146
Divergence, 61
Duhamel-Neumann thermoelasticity

law, 161

Dynamic similarity, 238

E

€- identity, 47

Elasticity, of solids, 157-61
basic equations, 270-72
effect of temperature, 161
nonlinear, 188-93
theory of, 270-82

Elastic stability, 86

Elliptic equation, 259

307

Energy, conservation of, 220-21.
equation, 220~23
Equilibrium, 13
necessary conditions, 13, 14
Equilibrium, equations of, 72~75, 223
Euclidean metric space, 149, 165
Fulerian eqﬁtiom of motion, 219, 255
Eulerian strain tensor, 117, 124

F

Finger’s strain tensor, 132
Finite strain components, 112, 122-23
geometric interpretation, 123-24
Fluid line, 251, 253
Fluids, 181
critical points, 183
gases, 182
isotropic viscous, 156, 157, 172
~non-Newtonian, 201
rate-of-deformation-and-velocity-gradient
' relation, 146
Force, body and surface, 5, 67, 68
Free-body diagram, 14

G

Gauss theorem, 209-11
Gel, 204

Gradient, 61

Green’s strain tensor, 117
Green’s theorem, 211
Growth, 288

Growth-stress law, 285, 299

H

Hagen-Poiseuille flow, 235

Heat flux vector, 254

Helmbholtz’s theorem, 252

High blood pressure, 293
Homeostasis, 288

Hooke’s law, 113, 115, 271
Hyperbolic equation, 259
Hypoxic hypertension in lung, 293
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Ideal gas, 155
Incompressible fluid, 155
equation of continuity, 232, 238
Index, dummy and free, 44
Indicial notation, 44
Inertia force, 12 .
Inertial frame of reference, 12
Infinitesimal strain components, 119, 120
geometric interpretation, 119, 120
polar coordinates, 125-30
Integrability condition, 145
Interface condition, 78-79
Internal energy, 221
International systems of units, 20, 21
Invariants, 95
isotropy, 173
strain, 125
stress, 95, 69
stress deviations, 99
Irrotational flow, 253 .
Isentropic flow, 255
Tsotropic materials, 165, 166, 172, 173
Isotropic tensor, 165
rank 1, nonexistence, 167
rank 2, 167 -
rank 3, 169
rank 4,170
Isotropy, 165-77

J

Jacobian determinant, 54

K

Kelvin's model of viscoelasticity, 193-95
Kelvin's theorem, 251, 252

fluid line, 251, 253
Kinematic viscosity, 232

_ Kronecker delta, 45

L

Lagrange strain tensor, 117

Lagrangian stress, 190

Lamé constants, 158, 160
ellipsoid, 103

Subject index

Laminar boundary layer, 247
Laplace operator, 232
Laplacian, 61

Longitudinal waves, 273

Lung as continua, 7-11, 176, 198

M

Mach number, 259
Mach waves, lines, 262
Martensite, 291, 292
Mass, conservation of, 213, 217,211
Material derivative, 215-17
Material description, 212
Material isotropy, 165
Material with memory, 290-92
Matrix, 46

orthogonal, 46
Maxwell creep and relaxation function, 194
Maxwell solid, 193-95
Mean curvature, 237
Mean free path, 31, 185
Membrane, thin, 89, 235
Memory of shape, 290-92
Mesentery, 190 )
Minimal surface, 237
Modulus, bulk, 160

elasticity, 160

relaxed, 196

rigidity, 160

shear, 114
Mohr’s circle, 92-94

special sign convention, 93

three-dimensional states, 94
Momentum, conservation of, 218, 271

finear, 66

moment of, 67, 219
Motion, equations of, 75, 218

polar coordinates, 223-26

N
Navier's equation, 271, 272

- Navier-Stokes equation, 231-32

dimensionless, 238
Neutral plane, 26
Newtonian fluid, 156

Subject Index

Newton’s:

law of gravitation, 43

law of viscosity, 156, 183

laws of motion, 12, 67

velocity of sound, 257
Nimbus spacecraft, 263
Ni-Ti alloy, 291, 292
Nonlinear solids:

biological tissues, 189

rubber, 188
Non-Newtonian fluids, 157, 201
Nonviscous fluid, 155, 249-51

equation of motion, 250
Normal strain (see Strain)
Normal stress (see Stress)
No-slip condition, 233
Numbers:

Avogadro, 181

Mach, 259

Reynolds, 233, 238

0]

Octahedral planes, 85
Opening angle, arteries, 286-87
Orthogonal matrix, 46

~ Orthogonal transformation, 50

P

Perfect gas law, 181, 182
Permutation, tensor, 47
connection with Kronecker delta, 47
symbol, 47
Phase velocity, 273
Plane elastic waves, 273
Plane strain, 274
Plane stress, 89, 274
Plane waves, 273
Plasma, blood, 201
Plasticity of metals, 186-88
Poise, 184
Poiseuille flow, 240-43
Poisson’s ratio, 138, 159
Polarization, the plane of, 273
Potential equation, 254
Potential flow, 254
Principal axes, 88, 95
of strain, 124, 172

of stress, 95-97, 172 \
Principal coordinates, 88
Principal directions, 91
Principal planes, 88, 95, 124
Principal strains, 124, 125
Principal stress, 88, 91

main theorem, 95

proof of existence, 96

proof of real-valuedness, 96

stress invariants, 95
Principal stress deviation, 100
Proportional limit, 188
Pseudoelasticity, 189
Pseudoelastic strain energy function, 189,

191-92

Pure shear, 132

Q

Quasilinear viscoelasticity, 189

R

Radiating condition, 262
Radius vector, 42
Rayleigh wave, 137
Relaxation function, 194-97
Relaxation time, 197
Relaxation wave, 137
Remodeling, tissues, 288-99
due to diabetes, 291, 295
of mechanical properties, 294-97
of morphology, 292-94
with temperature, 290
of zero-stress state, 288-90
Residual stress, 285
Reynolds number, 233, 238
Rheology, 285
Rotation, infinitesimal, 121
Rubber elasticity, 188-89

)

Scalar triple product, 41

Schlieren photographs, 262, 263

Shape memory material, 290-92

Shear modulus, 158-60

Shear strain, notation, warning, 119, 120
pure, 132
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| g{ 310 ' Subject Index ' Subject Index 31
}L“ simple, 132 matrix, 65, 97 vector, 56 - Viscosity:
i Shear stress, 97 normal, 19, 65 i Transverse wave speed, 273 .o -atomic interpretation, 185-86
i maximum, 98 notations, 64 " Truss, 14-17 : - blood, 201
}.} Shell: plane state, 89, 274 statically indeterminate, 31 : ‘gas, 183, 185
i cylindrical, 24 polar coordinates, 77, 78, 223-27 - Turbulence, 243 -+ liquid; 186
ii spherical, 22 principal (see Principal stress) | Twinning of atomic lattice, 201 ; -~ Newtonian concept, 183
i Similarity, dynamic, 238 shear, 20, 65 , \ Voigt solid, 193-95
k[ Simple shear, 132 sign convention, 65 ~ Vorticity, 146, 25153
| ST units, 20-21 tensor, 4 u
b Skin friction coefficient, 244 tensor transformation, 75 : - . . ‘ ‘
. Soft tssues, 191-93 Stress concentration, 105, 106, 107 , B "‘;f"[‘l‘ﬁfofl‘;“clt;‘g“ (Dirac delta W |
o Sol, 204 _ Stress-deviation tensor, 99-102 " Unitste functi(,m 194 © " Wave equation, 256
"? sol-gel transformation, 204 Stress-growth law, 285, 299 ‘ P ’ Waves: -
I Solenoidal vector field, 250 Stress resultant, 235 : ; -+ Acoustic, 256
. Sound, speed, 256 Stress-strain-rate relationship (see v Longitudinal, 273
r! Spatial description, 214 Constitutive equations) : Polarization, 273
i Spectrum of relaxation, 197 Subsonic flow, 261 ' © Vectors, 39 - : - Rayleigh, 137, 138
i,i’i Standard linear solid, 193-95 Summation convention, 44 ’ v { analytical definition, 55, 56 - . Shear, 273
il Stokes’ fluid, 156 Supersonic flow, 261 ' notation, 39 © Surface, 137, 138
i Stokes’ sphere in viscous fluid, 104 Surface, minimal, 237, 300 transformation, 56 “transverse; 273
Strain, 112-32 Surface force, 5, 68 ' vector product, 39, 46
finite, 117-18, 122-24 Surface tension, 235-37 Velocity field, 145 V4
infinitesimal, 119, 120 Symmetry of stress tensor, 74, 75, 89 Velocity of sound, 256 '
invariants, 125 ] Viscoelasticity, 193-97 Yield function, 202 e
plane state, 274 T * biological tissues, 197-201 Yield stress, 187, 188
polar coordinates, 125-30 quasilinear, 189, 197-201 z ~
principal, 124 : Tensile strength of liquid, 183 Viscometer: Z
shear, 121 Tensor, 4, 56 v cone-plate, 205
Strain deviation tensor,.125, 160 Cartesian, 55 Couette, 86 Zero-stress state, 285-87, 296-98
Strain-energy function, 173, 192, 193 contraction, 60 Visco-plastic material, 202-3 change due to hypertension, 286
Strain-rate tensor, 146 definition, 56
Strain tensor, 4 dual, 121
Almansi’s, 117 isotropic, 165-71
Cauchy’s 117, 118 notations, 58
Eulerian, 117 partial derivatives, 60
Finger’s, 132 quotient rule, 59
Green's, 117 rank, 56
Lagrangian, 117 rotation, 121
Stream function, 250, 251 Spin, 146
Stress, 4, 64 Thermodynamics, 221
boundary conditions, 78~81 Thixotropy, 204
Cauchy’s formula, 69 Torsion, 274-78
components, notation, 65 Traction (Stress vector), 5
couple-stress, 5 Transformation of coordinates, 49
definition, 4 admissible, 54
ellipsoid, 102-3 Jacobian, 54
equation of motion and equilibrium, 6668, orthogonal, 50
72-15, 219, 258 proper and improper, 54

invariants, 96, 99, 100, 101 rotation, 49-51
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