Métodos Numéricos para Flujos en Cavidades Cerradas

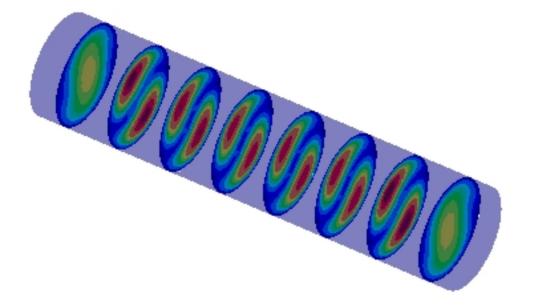
J. D'Elía, M.A. Storti, N.M. Nigro

Centro Internacional de Métodos Computacionales en Ingeniería CIMEC/INTEC

UNL/CONICET, Güemes 3450, 3000-Santa Fe, Argentina

e-mail: cimec@ceride.edu.ar, http://venus.ceride.gov.ar/cimec

MECOM 2002, October 28-31, 2002, Santa Fe-Paraná - Argentina



PERFIL DE LA PRESENTACION

- código PETSC-FEM (http://minerva.arcride.edu.ar/petscfem), bajo GPL: por elementos finitos, multifísica, para cálculo distribuido (C++/PETSC/MPI)
- Ejemplo 1: ondas inerciales (Kudlick/Greenspan)
 - riangle ondas inerciales axisimétricas dentro de una esfera con un fluido incompresible rotando con velocidad angular $\hat{\Omega}=\Omega+arepsilon\omega\cos(\omega t)$
 - ▷ Poincaré (invíscido): sol. semi-analít.; Navier-Stokes (viscoso): PETSC-FEM
- Ejemplo 2: cilindro en rotación excéntrica (Vaughn/Oberkampf/Wolfe)
 - ▷ cilindro lleno con un fluido incompresible y viscoso, que gira
 estacionariamente con un movimiento combinado de espín y de nutación

 - $\,\vartriangleright\,$ terna no inercial "aerobalística": acompaña al cilindro en su nutación ω_n pero no en su espín ω_s

Ondas inerciales en una esfera rotante perturbada

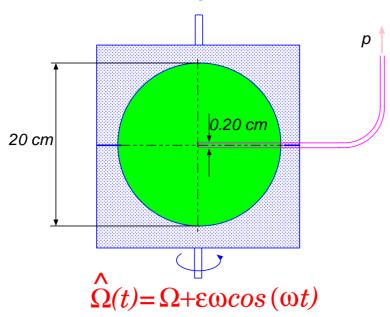


Figura 1: Una disposición experimental para excitar oscilaciones inerciales axisimétricas dentro de una esfera llena con un líquido viscoso, rotando alrededor del eje vertical con velocidad angular variable $\hat{\Omega}=\Omega+\varepsilon\omega\cos(\omega t)$, donde $\varepsilon=8^{0}$. Los picos de presión son medidos en el centro de la esfera. del contenedor esférico y de la probeta de presión. Ref.: "Axisymmetric inertial oscillations of a fluid in a rotating spherical container", Aldridge / Toomre, JFM, 1969, vol. 37, pp. 307-323

Caso invíscido: ecuación de Poincaré (Kudlick/Greenspan)

Las soluciones para la velocidad ${\bf u}({\bf r},t)$ y la presión $p({\bf r},t)$ se representan mediante superposición de sus respectivos modos naturales

$$\mathbf{u} = \sum_{m} \mathbf{U}_{m} e^{i\lambda_{m}t} \qquad ; \qquad p = \sum_{m} P_{m} e^{i\lambda_{m}t} \tag{1}$$

$$\nabla^2 P_m - \frac{4}{\lambda_m^2} \left(\mathbf{z} \cdot \nabla \right)^2 P_m = 0 \quad \text{en } \Gamma$$
 (2)

$$\mathbf{n} \cdot \left[\nabla P_m - \frac{2}{i\lambda_m} \left(\mathbf{z} \times \nabla P_m \right) - \frac{4}{\lambda_m^2} \left(\mathbf{z} \cdot \nabla P_m \right) \mathbf{z} \right] = 0 \quad \text{en } \partial \Gamma$$
 (3)

- ullet una dificultad distintiva es que el autovalor λ_m aparece tanto en la ecuación diferencial como en su condición de borde
- ullet ecuación elíptica cuando $|\lambda_m|>4$ e hiperbólica cuando $|\lambda_m|<4$, i.e. las oscilaciones inerciales sólo aparecen cuando la perturbación es $|\lambda_m/\Omega|<2$
- ullet los autovalores λ_m son reales y con módulo $|\lambda_m| < 2$

5

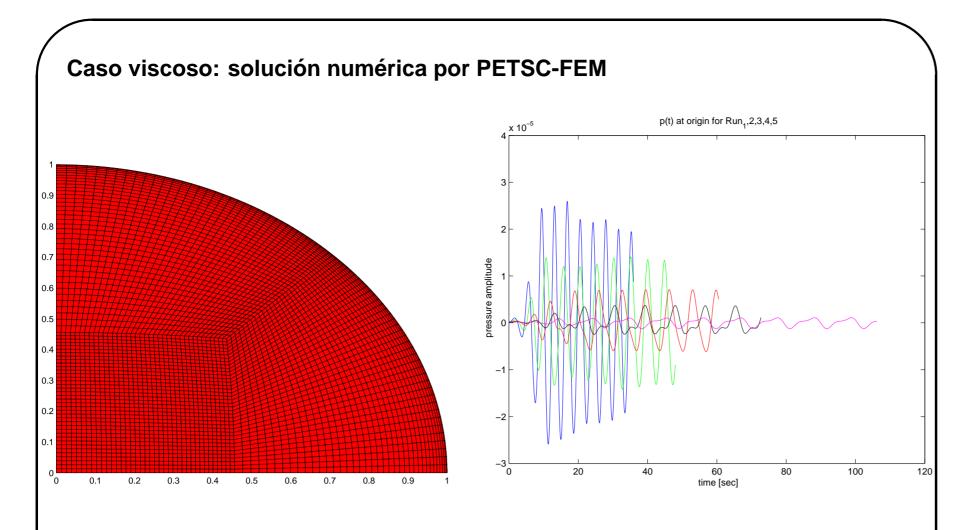


Figura 2: Izq.: vista xy de la malla de elementos finitos para la esfera. Der.: respuesta temporal de la presión en el nodo vecino al origen por el eje de revolución

Caso viscoso: solución numérica por PETSC-FEM

Parámetros corrida PETSC-FEM	notación	valor
rapidez angular base	Ω	1.00
amplitud de la perturbación	$arepsilon_{om}$	0.15
paso de tiempo	Δt	$2\pi/\omega/32$
número de pasos de tiempo	n_{step}	320
número de Reynolds	Re	5000

corrida	ω	Ω/ω	número de vórtices
1	1.75000	0.5714	> 1
2	1.30890	0.7640	1 vórtice dominante
3	0.93810	1.0660	2 vórtices dominantes
4	0.72622	1.3770	3 vórtices dominantes
5	0.59137	1.6910	4 vórtices dominantes

Tabla 1: Número de vórtices observados en las simulaciones numéricas

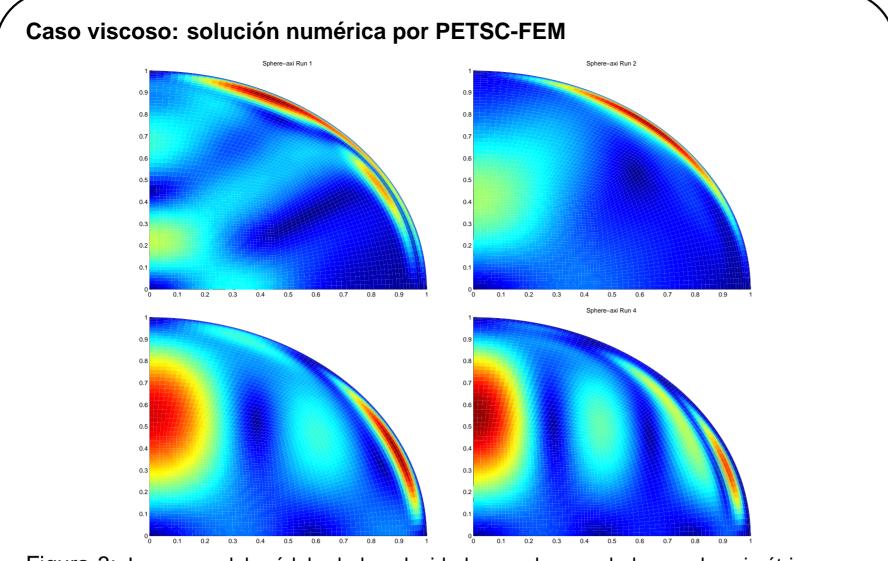


Figura 3: Isocurvas del módulo de la velocidad para algunos de los modos simétricos con respecto al ecuador (descontada la rotación rígida)

8

Flujo en un cilindro bajo espín y nutación

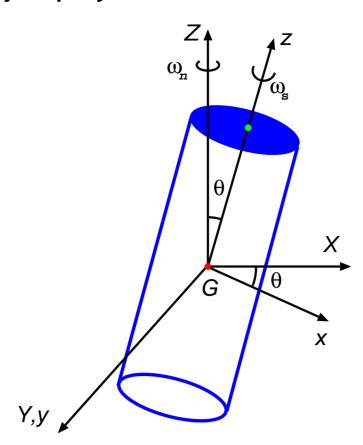


Figura 4: Ternas inercial (X,Y,Z) y aerobalística (x,y,z), donde (x,y,z) acompaña al cilindro sólo en su movimiento de nutación ω_n a ángulo θ pero no en su espín ω_s

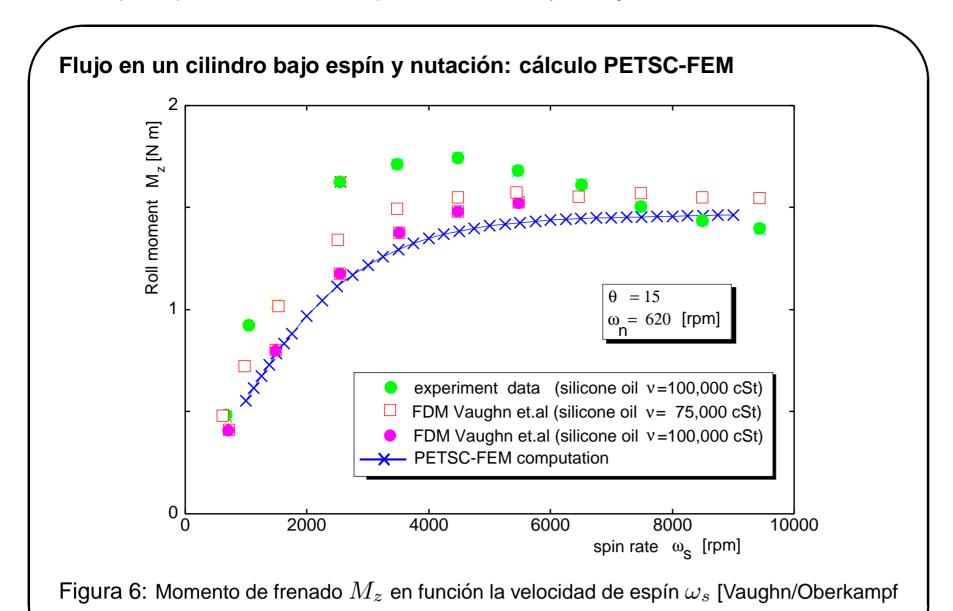
Flujo en un cilindro bajo espín y nutación

- Por experimentos y fotografías con cilindros parcialmente llenos rotantes:
 - ho Re bajos: momento de frenado $M_z \propto$ Re y la burbuja es paralela al eje z, i.e. el movimiento del fluido es independiente de la coordenada axial excepto en los entornos de las paredes
 - ightharpoonup Re intermedios: M_z alcanza un máximo y la presencia de una distorsión ondulante de la burbuja sugiere una estructura celular por inestabilidad hidrodinámica del flujo base frente a perturbaciones periódicas axiales
 - $\,\vartriangleright\,$ Re altos: M_z decrementa de un modo poco claro pero las observaciones sugieren un movimiento turbulento
- ullet la presencia de un ángulo de nutación heta hace que las ecuaciones se desvíen de la rotación rígida, en donde la misma nutación es un término forzante
- ullet cuando $\omega_s\gg\omega_n$ la burbuja queda muy cerca del eje del cilindro y sugiere un campo de velocidad prácticamente estacionario en la terna aerobalística

Figura 5: Momento de frenado M_z en función de la velocidad y ángulo de nutación ω_n y θ , para velocidad de espín $\omega_s=3000$ [rpm]. Ref.: Vaughn/Oberkampf/Wolfe, "Fluid motion inside a spinning nutating cylinder", J. Fluid Mech., 1985, vol. 150, pp. 121-138

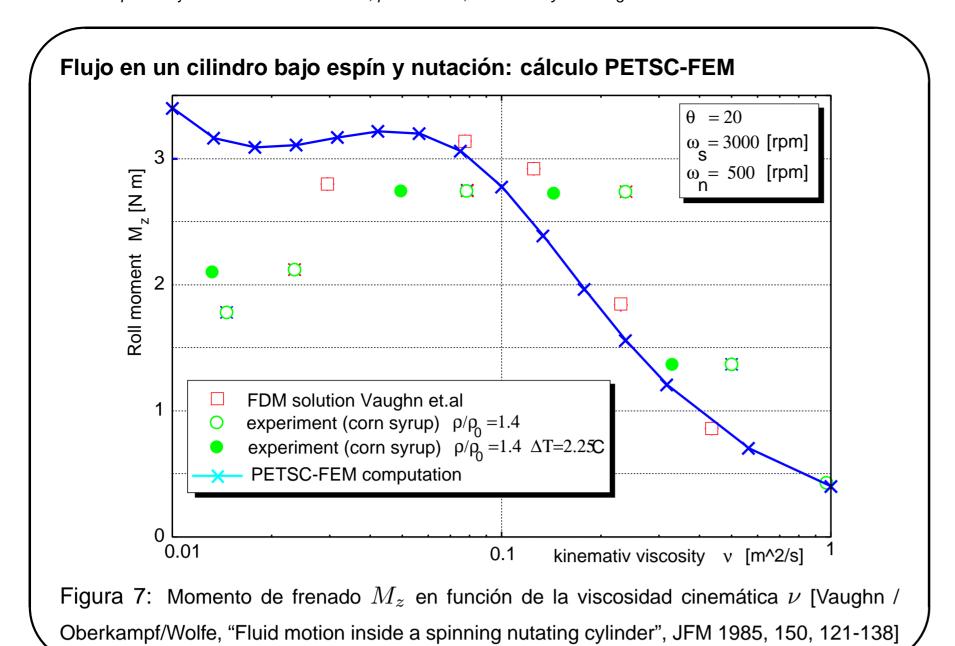
Centro Internacional de Métodos Computacionales en Ingeniería CIMEC

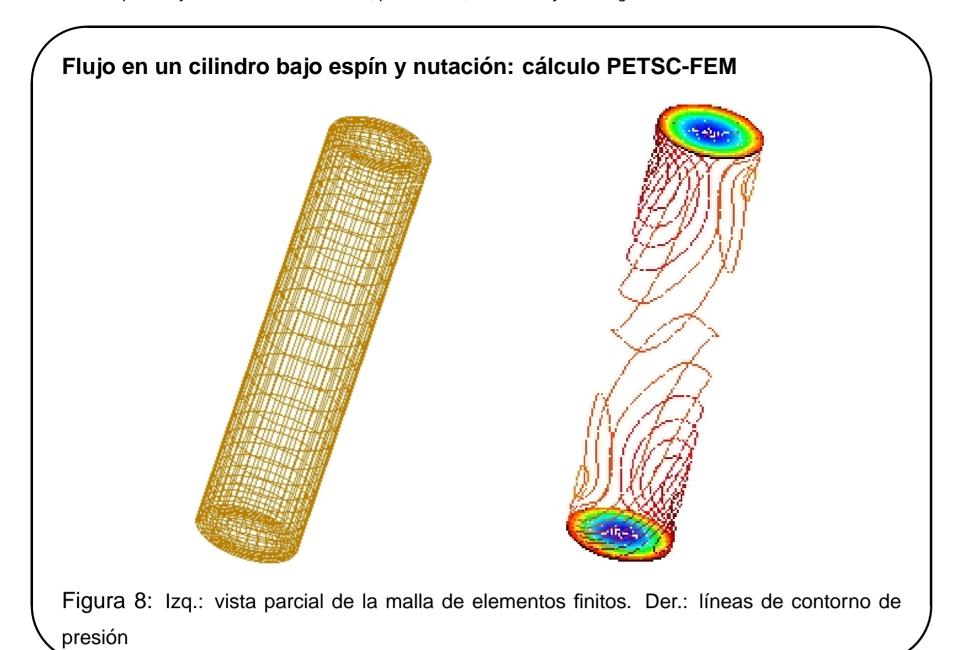
nutation rate Ω_n [rpm]



/Wolfe, "Fluid motion inside a spinning nutating cylinder", JFM, 1985, 150, pp. 121-138]

Centro Internacional de Métodos Computacionales en Ingeniería CIMEC





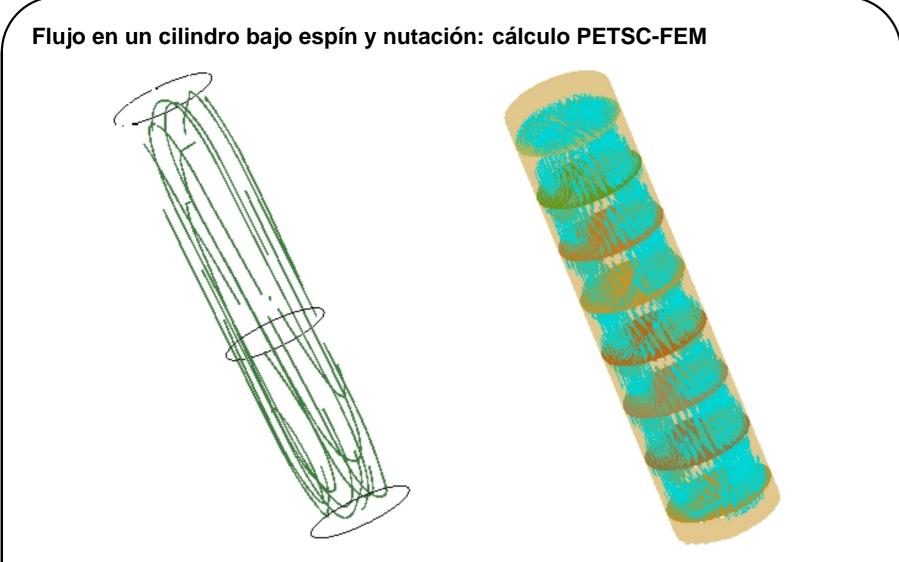


Figura 9: Izq.: vista en perspectiva de las líneas de corriente. Der.: vista en perspectiva del campo de velocidad diferencial

Flujo en un cilindro bajo espín y nutación: cálculo PETSC-FEM

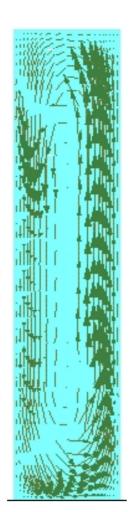


Figura 10: Campos de velocidades diferenciales según dos planos axi-simétricos perpendiculares entre si: yz (izq.) y xz (der.)

Conclusiones

- Ondas inerciales en una esfera rotante perturbada: el número de vórtices observados concuerdan, en general, con los reportados en el trabajo experimental-analítico de Aldridge/Toomre
- Flujo en un cilindro bajo un movimiento combinado de espín y de nutación: ecuaciones de Navier-Stokes en la terna aerobalística (acompaña sólo la nutación del cilindro pero no sigue su espín). Hay acuerdo general con los resultados de Vaughn et~al. en las dependencias del momento de frenado M_z con: la viscosidad cinemática ν , la velocidad de espín ω_s , la velocidad de nutación ω_n y el ángulo de nutación θ

Agradecimientos

- CONICET PIP 198/98 Germen-CFD, SECyT-FONCyT-PICT 6973 PROA, SECyT-PID 99/74 FLAGS y CAI+D UNL-PIP 02552-2000
- SO GNU/Linux, Octave, Xfig, Tgif, GMV. Procesador GiD (CIMNE, Barcelona)