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Abstract. A preconditioner for iterative solution of the interface problem in Schur Com-
plement Domain Decomposition Methods is presented. This preconditioner is based on
solving a problem in a narrow strip around the interface. It requires much less memory
and computing time than classical Neumann-Neumann preconditioner and its variants,
and handles correctly the flux splitting among subdomains that share the interface. Per-
formance of this preconditioner is assessed with an analytical study of Schur complement
matrix eigenvalues and several numerical experiments conducted in a sequential compu-
tational environment. Even if the crucial practical test will be the implementation in a
production parallel code, the results shown here are promising.



1 INTRODUCTION

Linear systems obtained from discretization of PDE’s by means of Finite Difference or
Finite Element Methods are normally solved in parallel by iterative methods1 because
they are much less coupled than direct solvers.

Schur complement domain decomposition method leads to a reduced system better
suited for iterative solution than the global system, since its condition number is lower (∝
1/h in place of ∝ 1/h2 for the global system, h being the mesh size) and the computational
cost per iteration is not so high once the subdomain matrices have been factorized. In
addition, it has other advantages in comparison to global iteration. It resolves bad “inter-
equation” conditioning, it can handle Lagrange multipliers and in some sense it can be
thought as a mixture between a global direct solver and a global iterative one.

The efficiency of iterative methods can be further improved by using preconditioners.2

For mechanical problems, Neumann-Neumann is the most classical one. From a mathe-
matical point of view, the preconditioner is defined by approximating the inverse of global
Schur complement matrix by the weighted sum of local Schur complement matrices. From
a physical point of view, Neumann-Neumann preconditioner is based on splitting the flux
applied to the interface in the preconditioning step and solving local Neumann problems
in each subdomain. This strategy is good only for symmetric operators.

We propose here a preconditioner based on solving a problem in a “strip” of nodes
around the interface. When the width of the strip is narrow, the computational cost and
memory requirements are low and the iteration count is high, when the strip is wide the
converse is true. This preconditioner performs better for non-symmetric operators and
doesn’t suffer from the “rigid body modes” for “internal floating subdomains” as is the
case for the Neumann-Neumann preconditioner. A detailed computation of the eigenvalue
spectra for a simple case is shown, and several numerical examples are presented.

2 SCHUR COMPLEMENT DOMAIN DECOMPOSITION METHOD

It is clear that knowing the eigenvalue spectrum of the Schur complement matrix is one
of the most important issues in order to develop suitable preconditioners. To obtain
analytical expressions for Schur complement matrix eigenvalues and also the influence
of several preconditioners, we consider a simplified problem, namely the solution of the
Poisson problem in a unit square:

∆φ = g, in Ω = {0 ≤ x, y ≤ 1} (1)

with boundary conditions
φ = φ̄, at Γ (2)

where φ is the unknown, g(x, y) is a given source term and Γ is the boundary. Consider
now the division of Ω in Ns non-overlapping subdomains Ω1,Ω2, . . . ,ΩNs , such that Ω =
Ω1

⋃
Ω2

⋃
. . .

⋃
ΩNs . For simplicity we assume that the subdomains are rectangles of unit

height and width Lj. In practice this is not the best partition, but it will allow us to



compute the eigenvalues of the interface problem in closed form. Afterwards, we will
show through numerical examples that the conclusions drawn from this simple case can
be applied to more general partitions and operators. Let Γint = Γ1

⋃
Γ2

⋃
. . .

⋃
ΓNs−1 be

the interior interfaces among adjacent subdomains. Given a guess for the trace of φ at
the interior subdomains ψj = φ|Γj

, we can solve each interior problem independently as

∆φ =g, in Ωj,

φ =


ψj−1, at Γj−1

ψj, at Γj

ψ, Γup,j + Γdown,j

.
(3)

where ψ0 = φ̄
∣∣
x=0

and ψNs = φ̄
∣∣
x=1

are given.

2.1 The Stekhlov operator

Not any combination of trace values {ψj} gives the solution to the original problem (1).
Indeed the solution to (1) is obtained when the trace values are chosen in such a way that
the flux balance condition at the internal interfaces is satisfied,

fj =
∂φ

∂x

∣∣∣∣−
Γj

− ∂φ

∂x

∣∣∣∣+
Γj

= 0 (4)

where the ± superscripts stand for the derivative taken from the left and right sides of
the interface. We can think at the correspondence between the ensemble of interface
values ψ = {ψ1, . . . , ψNs−1} and the ensemble of flux imbalances f = {f1, . . . , fNs−1} as
an interface operator S such that

f = Sψ + f0 (5)

where all inhomogeneities coming from the source term g and Dirichlet boundary con-
ditions φ̄ are concentrated in the constant term f0, and the homogeneous operator S is
equivalent to solving the equation set (3) with g = 0 and homogeneous Dirichlet boundary
conditions at the external boundary x, y = 0, 1.

Here, S is the “Stekhlov operator”. In a more general setting, it relates the unknown
values and fluxes at boundaries when the internal domain is in equilibrium. In the case of
internal boundaries, it can be generalized by replacing the fluxes by the flux imbalances.
The Schur complement matrix is a discrete version of the Stekhlov operator, and we will
show that in this simplified case we can compute the Stekhlov operator eigenvalues in
closed form, and then a good estimate for the corresponding Schur complement matrix
ones.

2.2 Eigenvalues of Stekhlov operator

We will further assume that only two subdomains (one internal interface) are present, so
that a given interface value function ψ (we drop the interface subindex) is an eigenfunc-



tion of the Stekhlov operator if the corresponding flux imbalance f = Sψ is proportional
to ψ, i.e. f = ωψ, being ω the corresponding eigenvalue. The flux imbalance is computed
by solving the Poisson problem in each subdomain with homogeneous Dirichlet boundary
condition at the external boundary and ψ at the interface. If the domain were an infinite
strip in the y direction, then by translation invariance of the problem along that direc-
tion we could guess that the eigenfunctions are sinusoids, and then they could be easily
computed. An infinite problem equivalent to the original one can be posed by replacing
the homogeneous Dirichlet boundary conditions by symmetry reflection conditions. This
amounts to assume the eigenfunctions are proportional to sinusoids, such that an odd
number of half wavelengths fit in the unit height square, i.e.

ψ(y) = sin kny, kn = 2π/λn, L = (2n+ 1)λn, n = 0, ...,∞ (6)

where L = 1 is the side length, kn is the wave number, and λn is the wavelength. The
solution of Laplace problem in each subdomain is

φn(x, y) =

{
[sinh(knx)/ sinh(knL1)] sin kny; 0 ≤ x ≤ L1,

[sinh(kn(L− x))/ sinh(knL2)] sin kny; L1 ≤ x ≤ L2.
(7)

The flux imbalance can be computed as

f = Sψn,

= S−ψn + S+ψn

=
∂φn

∂x

∣∣∣∣
x=L−1

− ∂φn

∂x

∣∣∣∣
x=L+

1

,

= kn

(
cosh(knL1)

sinh(knL1)
+

cosh(knL2)

sinh(knL2)

)
sin(kny),

= kn [coth(knL1) + coth(knL2)] sin(kny),

(8)

so that this demonstrates that (6) is an eigenfunction of the Stekhlov operator with
eigenvalues

ωn = eig(S)n = eig(S−)n + eig(S+)n = kn [coth(knL1) + coth(knL2)] . (9)

S± are the Stekhlov operators for each of the left and right subdomains,

∂v1

∂x

∣∣∣∣
L−1

= S−v1

∂v2

∂x

∣∣∣∣
L+

1

= −S+v2

(10)

and their eigenvalues are
eig(S∓)n = kn coth(knL1,2) (11)



For large n the hyperbolic cotangents tend both to unity. This shows that the eigenvalues
of the Stekhlov operator grow proportionally to n for large n, and then it condition number
is infinity. However, when considering the discrete case the wave number kn is limited by
the largest frequency that can be represented by the mesh, which is kmax = π/h where h
is the mesh spacing. The maximum eigenvalue is

ωmax = 2kmax =
2π

h
, (12)

which grows proportionally to 1/h. As the lowest eigenvalue is independent of h, this
means that the condition number of the Schur complement matrix grows as 1/h. This is
to be compared with the condition number of discrete Laplace operator, which typically
grows as 1/h2. Of course, this reduction in the condition number is not directly translated
to total computation time, since we have to take account of factorization of subdomain
matrices and forward and backward substitutions involved in each iteration to solve in-
ternal problems. However, the overall balance is positive and reduction in the condition
number, beside its inherent parallelism, turns out to be one of the main strengths of
domain decomposition methods.

In figure 1 we can see the first and tenth eigenfunctions computed directly from the
Schur complement matrix for a 2 subdomain partition, whereas in figure 2 we see the first
and twenty-fourth eigenfunction for a 9 subdomain partition. It is verified that eigenvalue
magnitude is related to eigenfunction frequency along the inter-subdomain interface, and
that the penetration of the eigenfunctions towards subdomains interiors decays strongly
for higher modes.

Figure 1: Eigenfunctions of Schur complement matrix with 2 subdomains. Left: 1-st eigenfunction.
Right: 10-th eigenfunction.



Figure 2: Eigenfunctions of Schur complement matrix with 9 subdomains. Left: 1-st eigenfunction.
Right: 24-th eigenfunction.

3 PRECONDITIONERS FOR THE SCHUR COMPLEMENT MATRIX

In order to further improve the efficiency of iterative methods, a preconditioner has to be
added so that the condition number of the Schur complement matrix is lowered. The most
known preconditioners for mechanical problems are Neumann-Neumann and its variants3,4

for Schur complements methods, and Dirichlet for FETI methods and its variants.5–8 It
can be proved that they reduce the condition number of the preconditioned operator to
O(1) (i.e. independent of h)in some especial cases.

3.1 The Neumann-Neumann preconditioner

Consider the Neumann-Neumann preconditioner

PNNv = f (13)

where
v(y) = 1/2[v1(L

−
1 , y) + v2(L

+
1 , y)], (14)

and v1, v2 are defined in Ω1,2 through the following problems

∆v1 = 0, in Ω1,

v1 = 0, at Γ0 + Γdown,1 + Γup,1,

∂v

∂x
= 1/2f, at Γ1,

(15)

and
∆v2 = 0, in Ω2,

v2 = 0, at Γ2 + Γdown,2 + Γup,2,

∂v

∂x
= −1/2f, at Γ1.

(16)



The preconditioner consists in assuming that the flux imbalance f is applied on the in-
terface and that, since the operator is symmetric, this “heat load” is equally split among
the two subdomains. Then, we have a problem in each subdomain with the same bound-
ary conditions in the exterior boundaries, and a non-homogeneous Neumann boundary
condition at the inter-subdomain interface.

Again, we will show that the eigenfunctions of the Neumann-Neumann preconditioner
are (6). Effectively, we can propose for v1 the following form

v1 = a sinh(knx) sin(kny) (17)

where a is determined from the boundary condition at the interface in (15) and results in

a =
1

2kn cosh(knL1)
(18)

and similarly for v2, so that

v1(x, y) =
1

2kn

sinh(knx)

cosh(knL1)
sin(kny),

v2(x, y) =
1

2kn

sinh(kn(L1 − x))

cosh(knL2)
sin(kny).

(19)

And then, the value of P−1
NNf = v is

P−1
NNf = v(y) =

1

4kn

[tanh(knL1) + tanh(knL2)] sin(kny), (20)

so that the eigenvalues of PNN are

eig(PNN)n = 4kn [tanh(knL1) + tanh(knL2)]
−1 . (21)

As its definition suggests, it can be verified that

eig(PNN)n = 4[eig(S−)−1
n + eig(S+)−1

n ]−1 (22)

As the Neumann-Neumann preconditioner (13) and the Stekhlov operator (8) diagonal-
ize in the same basis (6) (i.e., they “commute”), the eigenvalues of the preconditioned
operator are simply the quotients of respective eigenvalues, i.e.

eig(P−1
NNS)n = 1/4[tanh(knL1) + tanh(knL2)] [coth(knL1) + coth(knL2)]. (23)

We see that all tanh(knLj) and coth(knLj) factors tend to unity for n→∞, then we have

eig(P−1
NNS)n → 1, for n→∞, (24)



so that this means that the preconditioned operator P−1
NNS has a condition number O(1),

i.e. it doesn’t degrade with mesh refinement. This is optimal, and is a well known feature
of the Neumann-Neumann preconditioner. In fact, for a symmetric decomposition of the
domain (i.e. L1 = L2 = /half), we have

eig(P−1
NNS)n =

1

4
2 tanh(kn/2) 2 coth(kn/2) = 1, (25)

so that the preconditioner is equal to the operator and convergence is achieved in one
iteration. However, the computational cost of the preconditioner is relatively high, since
it amounts to solve a problem in each subdomain with Neumann boundary conditions at
the interfaces, i.e. a problem with more unknowns than the internal subdomain problem.
At first sight, one could argue that the number of additional unknowns is relatively small
because it represents the unknowns on a surface, in contrast with the internal unknowns
that correspond to a volume, so that it is asymptotically negligible. However, in practical
problems it can be relatively high. For instance, for a regular cube mesh of 10× 10× 10
hexahedral elements (equivalent to 5, 000 tetrahedral elements) the number of unknowns
in the interior are 93 = 729, while the number of unknowns for the Neumann-Neumann
preconditioner is 113 = 1331 nodes, near twice.

Note that comparing (9) and (22) we can see that the preconditioning is good as long
as

eig(S−)n ≈ eig(S+)n. (26)

This is true for symmetric operators and symmetric domain partitions (i.e. L1 ≈ L2).
Even for L1 6= L2, if the operator is symmetric, then (26) is valid for large eigenvalues.
However, this fails for non-symmetric operators as in the advection-diffusion case, and also
for irregular interfaces. Another disadvantage of the Neumann-Neumann preconditioner
is the occurrence of indefinite internal Neumann problems, which leads to the need of
solve a coarse problem3,4 in order to resolve the “rigid body modes” for internal floating
subdomains.

3.2 The Interface Strip (IS) preconditioner

A key point about the Stekhlov operator is that its high frequency eigenfunctions decay
very strongly far from the interface, so that a preconditioning that represents correctly
the high frequency modes can be constructed if we solve a problem on a narrow strip
around the interface. More precisely, the n-th eigenfunction with wave number kn given
by (6) decays far from the interface as exp(−kn|s|) where s is the distance to the interface
(the hyperbolic sine factors appearing in (8)). Then, this high frequency modes can be
correctly represented if we solve a problem on a strip of width b around the interface,
provided that the interface width is very large with respect to the mode wave length λn.
The Interface Strip preconditioner is defined as

PISv = f (27)



where
∆v = 0, in |x− L1| < b,

v = 0, at |x− L1| = b and y = 0, 1.
(28)

Note that, for high frequencies (i.e. knb large) the eigenfuctions of the Stekhlov operator
will be negligible at the border of the strip, so that the boundary condition at |x−L1| = b
is justified. The eigenfuctions for this preconditioner are again given by (6) and the
eigenvalues can be taken from (9), replacing L1,2 by b, i.e.

eig(PIS)n = 2 eig(Sb)n = 2kn coth(knb), (29)

where Sb is the Stekhlov operator corresponding to a strip of width b. For the precondi-
tioned Stekhlov operator

eig(P−1
IS S)n = 1/2 tanh(knb) [coth(knL1) + coth(knL2)] . (30)

We note that eig(P−1
IS S)n → 1 for n → ∞, so that the preconditioner is optimal, in-

dependently of b. Also, for b long enough we recover the original problem so that the
preconditioner is exact (convergence is achieved in one iteration). However, in this case
the use of this preconditioner is impractical, since it amounts to solve the whole problem.
Note that, in order to solve the problem for v, we need information from both sides of
the interface, while the Neumann-Neumann preconditioner only needs in each subdomain
information from itself. This is a disadvantage from the perspective of efficiency, since
we have to waste some communication time in sending the matrix coefficients in the strip
from one side to the other or either compute them in both processors. However, we will
see that efficient preconditioning can be achieved with few node layers and negligible
communication, or either we can solve the preconditioner problem by iteration itself, so
that no migration of coefficients is needed.

4 THE ADVECTIVE-DIFFUSIVE CASE

Consider now the advective diffusive case,

κ∆φ− uφ,x = g (31)

where κ is the thermal conductivity of the medium and u the advection velocity. The
problem can be treated in a similar way, and the Stekhlov operators are defined as

S−v̄ = v,x|L−1 , (32)

where
κ∆v − uv,x = 0

v = 0, at x = 0, y = 0, L,

v = v̄, at x = L1.

(33)



and similarly for the other subdomain. The eigenfunctions are always given by (6). Look-
ing for solutions of the form v ∝ exp(µx) sin(kny) it results in a constant coefficient
second order differential equation whose characteristic polynomial is

κµ2 − uµ− κk2
n = 0 (34)

whose solutions are

µ± =
u±

√
u2 + 4κ2k2

n

2κ
(35)

and, after some algebra

v =

{
eu(x−L1)/2κ [sinh(δx)/ sinh(δL1)]; for 0 ≤ x ≤ L1

eu(x−L1)/2κ [sinh(δ(L− x))/ sinh(δL2)]; for L1 ≤ x ≤ L2,
(36)

and the eigenvalues are

eig(S−)n =
u

2κ
+ coth(δnL1)δn

eig(S+)n = − u

2κ
+ coth(δnL2)δn

(37)

In figure 3 we see the first and tenth eigenfuctions for a problem with an advection term
at a global Pèclet number of uL/2κ = 2.5. For low frequency modes, advective effects are
more pronounced and the first eigenvalue (on the left) is notably biased to the right. In
contrast, for high frequency modes (like the tenth mode shown at the right) the diffusive
term prevails and the eigenfunction is more symmetric about the interface, and (as in
the pure diffusive case) concentrated around it. Note that now the eigenvalues for the
right and left part of the Stekhlov operator may be very different due to the asymmetry
introduced by the advective term. This difference in splitting is more important for the
lowest mode.

Figure 3: Eigenfunctions of Schur complement matrix with 2 subdomains and advection (global Pèclet
5). Left: 1-st eigenfunction. Right: 10-th eigenfunction.



In figures 4, 5, 6, 7 we see the eigenvalues as a function of the wave number kn. Note
that, for a given side length L only a certain sequence of wave numbers, given by (6) should
be considered. However, it is perhaps easier to consider the continuous dependence of the
different eigenvalues upon the wave number k.

For a symmetric partition (L1 = L2 = L/2) and a symmetric operator (u = 0, see
4), the symmetric flux splitting is exact and the Neumann-Neumann preconditioner is
optimal. The major discrepancy between the IS preconditioner and the Stekhlov operator
occurs at low frequencies and yields a condition number less than two.
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Figure 4: Eigenvalues of Stekhlov operators and preconditioners for the Laplace operator (Pe=0) and
symmetric partitions (L1 = L2 = L/2).

If the partition is non-symmetric (see figure 5) then the Neumann-Neumann precondi-
tioner is no longer exact, because S+ 6= S−. However, its condition number is very low
whereas the IS preconditioner condition number is still under two.

For a relatively important advection term, given by a global Pèclet number of 5 (see
figure 6), the asymmetry in the flux splitting is much more evident, mainly for small
wave numbers, and this results in a large discrepancy between the Neumann-Neumann
preconditioner and the Stekhlov operator. On the other hand, the IS preconditioner is
still very close to the Stekhlov operator.

The difference between the Neumann-Neumann preconditioner and the Stekhlov oper-
ator increases for larger Pe, as can be seen in figure 7 for Pe=50.
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Figure 5: Eigenvalues of Stekhlov operators and preconditioners for the Laplace operator (Pe=0) and
non-symmetric partitions (L1 = 0.75L, L2 = 0.25L).
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(Pe=5) and symmetric partitions.
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Figure 7: Eigenvalues of Stekhlov operators and preconditioners for the advection-diffusion operator
(Pe=50) and symmetric partitions.

This behavior can be directly verified by computing the condition number of Schur
complement matrix and preconditioned Schur complement matrix for the different pre-
conditioners, see tables 1 and 2. We can see that both the Neumann-Neumann and IS
preconditioners give a preconditioned condition number independent of mesh refinement
(it almost doesn’t change from a mesh of 50×50 to a mesh of 100×100), whereas the Schur
complement matrix exhibits a condition number roughly proportional to 1/h. However,
the Neumann-Neumann preconditioner exhibits a large condition number for high Pèclet
numbers whereas the IS preconditioner seems to perform better for advection dominated
problems.

u cond(S) cond(P−1
NNS) cond(P−1

IS S)

0 41.00 1.00 4.92
1 40.86 1.02 4.88
10 23.81 3.44 2.92
50 5.62 64.20 1.08

Table 1: Condition number for the Stekhlov operator and several preconditioners for a mesh of 50 × 50
elements.



u cond(S) cond(P−1
NNS) cond(P−1

IS S)

0 88.50 1.00 4.92
1 81.80 1.02 4.88

10 47.63 3.44 2.92
50 11.23 64.20 1.08

Table 2: Condition number for the Stekhlov operator and several preconditioners for a mesh of 100× 100
elements.

5 SOLUTION OF THE STRIP PROBLEM

Efficient implementation of the IS preconditioner in a parallel environment will be the
subject of future research. However, we will give some hints here.

A first possibility is a fully coupled, direct solution of the interface problem. This
approach involves transferring all the interface matrix to a single processor and solving
the problem there. This is not a significant amount of work, but doing it in only one
processor would largely imbalance the distribution of load among processors.

A second possibility is partitioning the strip problem among processors, much in the
same way as the global problem is. Then, the preconditioning problem may be solved
by an iterative method. Care must be taken in not to nest a non-stationary method like
CG or GMRES inside another outer non-stationary method. The problem here is that a
non stationary method executed a finite number of times is not a linear operator, unless
the inner iterative method is iterated enough and then approaches the inverse of the
preconditioner. In this respect, relaxed Richardson iteration is a candidate. The idea of
an iterative method is also suggested by the fact that the preconditioning matrix (i.e. the
matrix obtained by assembling on the strip domain with Dirichlet boundary conditions
at the strip boundary) is highly diagonal dominant for narrow strips. A subsequent
possibility is preconditioning the Interface Strip preconditioner problem itself with block
Jacobi.

6 NUMERICAL RESULTS

Performance of the proposed preconditioner is compared in a sequential environment. For
this purpose, we consider two different problems. The domain Ω in both cases is the unit
square discretized on an unstructured mesh of 120 × 120 nodes, and decomposed in 6
rectangular subdomains. We compare the residual norm versus iteration count by using
no preconditioner, Neumann-Neumann preconditioner, and the IS preconditioner (with
several node layers at each interface side).

The first example is the Poisson’s problem ∆φ = g, were g = 1 and φ = 0 on all
de boundary Γ. The iteration counts and the problem solution (obtained in a coarse
mesh for visualization purposes) are plotted in figure 8. As it can be seen, the Neumann-
Neumann preconditioner has a very low iteration count, as is expected for a symmetric
operator. The IS preconditioner has a larger iteration count for thin strip widths, but it



decreases as well as the strip is thickened. For a strip of five-layers width, we reach an
iteration count comparable to the Neumann-Neumann preconditioner with a significantly
less computational effort. Regarding memory use, the required core memory for thin strip
is much less than for the Neumann-Neumann preconditioner. The strip width acts in fact
as a parameter that balances the required amount of memory and the preconditioner
efficiency.
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Figure 8: Solution of Poisson’s problem.

The second example is an advective-diffusive problem at a global Péclet number of
Pe = 25, g = δ(1/4, 7/8) + δ(3/4, 1/8), and φ(0, y) = 0. Therefore, the problem is strongly
advective. The iteration counts and the problem solution (obtained in a coarse mesh for
visualization purposes) are plotted in figure 9. In this example, the advective term intro-
duces a strong asymmetry. The Neumann-Neumann preconditioner is far to be optimal.
It is outperformed by IS preconditioner in iteration count (consequently, in computing
time) and memory demands, even for thin strips.
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Figure 9: Solution of advective-diffusive problem.

7 CONCLUSIONS

In this paper, we have presented a new preconditioner for the Schur complement matrix,
which is the heart of domain decomposition methods. This preconditioner is based on
solving a problem posed in a narrow strip around the inter-subdomain interfaces. Some
analytical results have been derived to present its mathematical basis. Numerical exper-
iments have been carried out to show its convergence properties.

The IS preconditioner is easy to construct as it does not require any special calculation
(it is assembled with a subset of the coefficients of subdomain matrices). It is much less
memory-consuming than classical optimal preconditioners such as Neumann-Neumann
(or Dirichlet in FETI methods). Moreover, it permits to decide how many memory to
assign for preconditioning purposes. In addition, it does not suffer from the “rigid body
modes” for internal floating subdomains.

In advective-diffusive real-life problems, were the Pèclet number can vary on the domain
between low and high values, the proposed preconditioner outperforms classical ones
in advection-dominated regions while it is capable to handle reasonably well diffusion-
dominated regions.



REFERENCES

[1] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Co., (2000).
[2] P. Le Tallec and M. Vidrascu. Solving large scale structural problems on parallel com-

puters using domain decomposition techniques. In M. Papadrakakis, editor, Parallel
Solution Methods in Computational Mechanics, chapter 2, pages 49–85. John Wiley &
Sons Ltd., (1997).

[3] J. Mandel. Balancing domain decomposition. Comm. Appl. Numer. Methods, 9, 233–
241 (1993).

[4] J.M. Cros. A preconditioner for the Schur complement domain decomposition method.
In 14th International Conference on Domain Decomposition Methods, (2002).

[5] C. Farhat and F.X. Roux. A method of finite element tearing and interconnecting and
its parallel solution algorithm. Int. J. Numer. Meth. Eng., 32, 1205–1227 (1991).

[6] C. Farhat, J. Mandel, and F.X. Roux. Optimal convergence properties of the FETI
domain decomposition method. Comput. Meth. Appl. Mech. Engrg., 115, 365–385
(1994).

[7] C. Farhat and J. Mandel. The two-level FETI method for static and dynamic plate
problems. Comput. Meth. Appl. Mech. Engrg., 155, 129–152 (1998).

[8] C. Farhat, M. Lesoinne, P. Le Tallec, K. Pierson, and D. Rixen. FETI-DP: a dual-
primal unified FETI method-part I: A faster alternative to the two-level FETI method.
Int. J. Numer. Meth. Eng., 50, 1523–1544 (2001).


