











































































































10 The Equations of Motion §5

from the principle of least action by independently varying each of the co-
ordinates (i.e. by proceeding as if the remainder were given quantities), we
can find the Lagrangian Ly4 of the system 4 by using the Lagrangian L of
the whole system A4+ B and replacing the co-ordinates ¢p therein by given
functions of time.

Assuming that the system A+ B is closed, we have L = T4(qa4, Ga)+
+ T'8(¢8, §)— U(q4, ¢8), where the first two terms are the kinetic energies of
the systems 4 and B and the third term is their combined potential energy.
Substituting for ¢p the given functions of time and omitting the term
T(gs(t), ¢r(t)] which depends on time only, and is therefore the total time
derivative of a function of time, we obtain L4 = T (g4, §4)— Ul94, ¢5(t)]-
Thus the motion of a system in an external field is described by a Lagrangian
of the usual type, the only difference being that the potential energy may
depend explicitly on time.

For example, when a single particle moves in an external field, the general
form of the Lagrangian is

L = yme2—U(r, 1), (5-6)
and the equation of motion is
mv = —oUl/or. (5.7)

A field such that the same force F acts on a particle at any point in the field
is said to be uniform. The potential energy in such a field is evidently

= —F.r (5.8)

To conclude this section, we may make the following remarks concerning
the application of Lagrange’s equations to various problems. It is often
necessary to deal with mechanical systems in which the interaction between
different bodies (or particles) takes the form of constraints, i.e. restrictions on
their relative position. In practice, such constraints are effected by means of
rods, strings, hinges and so on. This introduces a new factor into the problem,
in that the motion of the bodies results in friction at their points of contact,
and the problem in general ceases to be one of pure mechanics (see §25). In
many cases, however, the friction in the system is so slight that its effect on
the motion is entirely negligible. If the masses of the constraining elements of
the system are also negligible, the effect of the constraints is simply to reduce
the number of degrees of freedom s of the system to a value less than 3N. To
determine the motion of the system, the Lagrangian (5.5) can again be used,
with a set of independent generalised co-ordinates equal in number to the
actual degrees of freedom.

PROBLEMS

Find the Lagrangian for each of the following systems when placed in a uniform gravita-
tional field (acceleration g).
































































































































































































74 Small Oscillations §25

Hence we see that the co-ordinate Qq corresponds to a normal vibration antisymmetrical
about the y-axis (x1 = x3, y1 = —y3; Fig. 29a) with frequency

ky 2ma
- 1y in?
“e ’\/[mA(l me a)].

The co-ordinates g¢s1, gs2 together correspond to two vibrations symmetrical about the
y-axis (x1 = —xs3, y1 = y3; Fig. 29b, c), whose frequencies ws1, wss are given by the roots
of the quadratic (in @?) characteristic equation

ky 2ma 2ks 2m4
w4—m2[——(1+ cosza)—i— (1+
mp

my mpg ma

2pkiky
in2 = =0.
sin’ a)] + T

When 2a = =, all three frequencies become equal to those derived in Problem 1.

PropLEM 3. The same as Problem 1, but for an unsymmetrical linear molecule ABC
(Fig. 30).

3 L 2 4 !
c 8 A
Fic. 30

SoLutioN. The longitudinal (x) and transverse (y) displacements of the atoms are related
by
maxy-+mpxatmexg = 0, mayi1t+mpyet+mceys = 0,
maliyr —~ mclays.
The potential energy of stretching and bending can be written as k3(8/1)2 4 4k1'(8l2) 2+ }kol282,
where 2! = I; 4I2. Calculations similar to those in Problem 1 give

kol2 ¢ 12 12 412

w? = ___f ( ! 22y ___)
0Lle?

for the transverse vibrations and the quadratic (in «?) equation

1 1 1 kik1”
w‘—wz[/q(—l— + ~_) +k1'(— + —)] + B e )

Mma mBp. mpB mc mampmc

mc mA mp

for the frequencies w1, wiz of the longitudinal vibrations.

§25. Damped oscillations

So far we have implied that all motion takes place in a vacuum, or else that
the effect of the surrounding medium on the motion may be neglected. In
reality, when a body moves in a medium, the latter cxerts a resistance which
tends to retard the motion. The energy of the moving body is finally dissipated
by being converted into heat.

Motion under these conditions is no longer a purely mechanical process,
and allowance must be made for the motion of the medium itself and for the
internal thermal state of both the medium and the body. In particular, we
cannot in general assert that the acceleration of a moving body is a function
only of its co-ordinates and velocity at the instant considered; that is, there
are no equations of motion in the mechanical sense. Thus the problem of the
motion of a body in 2 medium is not one of mechanics.

There exists, however, a class of cases where motion in a2 medium can be
approximately described by including certain additional terms in the















§26 Forced oscillations under friction 79

In steady motion, when the system executes the forced oscillations given
by (26.5), its energy remains unchanged. Energy is continually absorbed by
the system from the source of the external force and dissipated by friction.
Let I(y) be the mean amount of energy absorbed per unit time, which depends
on the frequency of the external force. By (25.13) we have I(y) = 2F, where
F is the average value (over the period of oscillation) of the dissipative func-
tion. For motion in one dimension, the expression (25.11) for the dissipative
function becomes F = {ax2 = Amax2. Substituting (26.5), we have

F = dmb%y2 sin2(yt + 8).

The time average of the squared sine is §, so that
I(y) = dmb%2. (26.8)
Near resonance we have, on substituting the amplitude of the oscillation

from (26.7),

I(e) = f2A/4m(2+ A2). (26.9)
This is called a dispersion-type frequency dependence of the absorption.
The half-width of the resonance curve (Fig. 31) is the value of |e| for which
I(€) 1s half its maximum value (e = 0). It is evident from (26.9) that in the

present case the half-width is just the damping coefficient A. The height of
the maximum 1s I(0) = f2/4m), and is inversely proportional to A. Thus,

yZ40)]

Fic. 31

when the damping coefficient decreases, the resonance curve becomes more
peaked. The area under the curve, however, remains unchanged. This area
is given by the integral

[1) dv = [ 19 de.
0 —,

Since I(e) diminishes rapidly with increasing |e|, the region where |e| is
large is of no importance, and the lower limit may be replaced by — co, and
I(e) taken to have the form given by (26.9). Then we have

fI(e)de:ﬁ de _o°

= . 26.10
4m J E+22 4m ( )
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§33 Angular momentum of a rigid body 105

the notation being as in Problem 7. The instantaneous axis of rotation is the gencrator OA
which passes through the point where the cone touches the plane. The centre of mass is at a
distance g sin « from this axis, and so & = V/a sin @ = 6/sin a. The components of the
vector S2 along the principal axes of inertia are, if the xz-axis is taken perpendicular to the
axis of the cone and to the line OA4, Q) sin a = 6, 0, O cos « = & cot a. The kinetic energy
is therefore

T = 3pa?02 4 3L62 3562 cot?a
= 3uh26%(sec?a+5)/40.

Fic. 43

ProBLEM 9. Find the kinetic energy of a homogeneous ellipsoid which rotates about one
of its axes (AB in Fig. 44) while that axis itself rotates about a line CD perpendicular to it
and passing through the centre of the ellipsoid.

SoLutioN. Let the angle of rotation about CD be 8, and that about 4B (i-e. the angle
between CD and the xi-axis of inertia, which is perpendicular to AB) be ¢. Then the com-
ponents of §2 along the axes of inertia are 0 cos ¢, 0 sin ¢, ¢4, if the xg-axis is AB. Since the
centre of mass, at the centre of the ellipsoid, is at rest, the kinetic energy is

T = 3(5 cos?¢+Is sin) 6243142,

'S

Fic. 44 F1c. 45

ProBLEM 10. The same as Problem 9, but for the case where the axis ABis not perpendicu-
lar to CD and is an axis of syrnmetry of the ellipsoid (Fig. 45).

SowutioN. ‘The components of & along the axis AB and the other two principal axes of
inertia, which are perpendicular to 4B but otherwise arbitrary, are § cos « cos ¢, § cos a x
xsin ¢, $+6 sin «. The kinetic energy is T = }182 cos2a+§Is(d+0 sin a)2.

§33. Angular momentum of a rigid body

The value of the angular momentum of a system depends, as we know, on
the point with respect to which it is defined. In the mechanics of a rigid body,





























































































136 The Canonical Equations §42

If one of the functions f and g is one of the momenta or co-ordinates, the
Poisson bracket reduces to a partial derivative:

[/, gx] = of/opr, (42.11)

Lf, px] = ~ of[ogs. (42.12)

Formula (42.11), for example, may be obtained by putting g = gx in (42.5);
the sum reduces to a single term, since dgx/dq; = 8x; and dgx/dp; = 0. Put-

ting in (42.11) and (42.12) the function f equal to g; and p; we have, in parti-
cular,

{g ] = 0, [po k] =0, [po ] = Sux- (42.13)
The relation

L/ [g 2N+ g [ f 1)+ 1 [, 1] = O, (42.14)

known as Jacobi’s identity, holds between the Poisson brackets formed from
three functions f, g and k. To prove it, we first note the following result.
According to the definition (42.5), the Poisson bracket [f, g] is a bilinear
homogeneous function of the first derivatives of f and g. Hence the bracket
{4, [f, £]), for example, is a linear homogeneous function of the second
derivatives of f and g. The left-hand side of equation (42.14) is therefore a
linear homogeneous function of the second derivatives of all three functions
f, g and k. Let us collect the terms involving the second derivatives of f.
The first bracket contains no such terms, since it involves only the first
derivatives of f. The sum of the second and third brackets may be symboli-
cally written in terms of the linear differential operators Dy and Dy, defined by

Di($) = [g, 4], D$) = [%, ¢]. Then
lo. [ f11+1A Uf €1) = L& P S 11— [P L5 F1]
= Di[Dx(f)]— Do[D(f)]
= (D1D2— D2Dy)f.

It is easy to see that this combination of linear differential operators cannot
involve the second derivatives of f. The general form of the linear differential
operators is

0
D, = %flc‘a;;’, D; = Z"]k o

where £ and 7 are arbitrary functions of the variables xy, x2, .... Then

oq 0
DiD: = g ,
' 25" ’bxkaxl sz oxy om

2
Deb = Z”"f‘a w05 z Bxk o

and the difference of these,




§42 Poisson brackets 137

2 o\ o
DyDy—DeD; = Z(g,d_;”__,,,c_L)

ox;’

is again an operator involving only single differentiations. Thus the terms in
the second derivatives of f on the left-hand side of equation (42.14) cancel
and, since the same is of course true of g and £, the whole expression is identi-
cally zero.

An important property of the Poisson bracket is that, if f and g are two
integrals of the motion, their Poisson bracket is likewise an integral of the
motion:

[f, £] = constant. (42.15)

This is Poisson’s theorem. The proof is very simple if f and g do not depend
explicitly on the time. Putting 2 = H in Jacobi’s identity, we obtain
[H, [f, el + . [g, 11+ g, [H, f11 = 0.
Hence, if [H,g]l =0 and [H,f] =0, then [H, [f, £]] = 0, which is the
required result.
If the integrals f and g of the motion are explicitly time-dependent, we
put, from (42.1),

d d
a[f’g] = _ai[f’g]'*‘[H) [f’g]]

Using formula (42.10) and expressing the bracket {H, [ f, £]] in terms of two
others by means of Jacobi’s identity, we find

8= [ L+ [1E] -1t -l U111
_ :%+[H,f],g] + [f, %HH, g]]
_ T%f{’ g] + [f, —3%], (42.16)

which evidently proves Poisson’s theorem.

Of course, Poisson’s theorem does not always supply further integrals of
the motion, since there are only 2s— 1 of these (s being the number of degrees
of freedom). In some cases the result is trivial, the Poisson bracket being a
constant. In other cases the integral obtained is simply a function of the ori-
ginal integrals f and g. If neither of these two possibilities occurs, however,
then the Poisson bracket is a further integral of the motion.

PROBLEMS

ProBLEM 1. Determine the Poisson brackets formed from the Cartesian components of
the momentum p and the angular momentum M = rxp of a particle.

SoLuTiOoN. Formula (42.12) gives [Mz, py] = —0M2z[0y = —3(yps—zpy)[dy = —ps,
and similarly (M, pz] = 0, [Mz, pz] = py. The remaining brackets are obtained by cyclically
permuting the suffixes x, ¥, 2.



138 The Canonical Equations §43

PROBLEM 2. Determine the Poisson brackets formed from the components of M.

SoLuTION. A direct calculation from formula (42.5) gives [Mx, My] = —M,, [M,, M:]
= —Mx, [Mz, Mx] = —My.

Since the momenta and co-ordinates of different particles are mutually independent variables,
it is easy to see that the formulae derived in Problems 1 and 2 are valid also for the total
momentum and angular momentum of any systern of particles.

ProBLEM 3. Show that [¢, M.] = 0, where ¢ is any function, spherically symmetrical
about the origin, of the co-ordinates and momentum of a particle.

SoLuTiON. Such a function ¢ can depend on the components of the vectors r and p only
through the combinations 12, p2, r+ p. Hence

_ o . o
w2 o)

and similarly for 9¢/2p. The required relation may be verified by direct calculation from
formula (42.5), using these formulae for the partial derivatives.

i

ProBLEM 4. Show that [f, M.] = fixn, where f is a vector function of the co-ordinates
and momentum of a particle, and n is a unit vector parallel to the z-axis.

SoLUTION. An arbitrary vector f(r, p) may be written as f = ré;+pée+r X phs, where
¢1, P2, $3 are scalar functions. The required relation may be verified by direct calculation
from formulae (42.9), (42.11), (42.12) and the formula of Problem 3.

§43. The action as a function of the co-ordinates
In formulating the principle of least action, we have considered the integral
123
S=[La, (43.1)
121
taken along a path between two given positions g1} and ¢® which the system
occupies at given instants #; and f2. In varying the action, we compared the
values of this integral for neighbouring paths with the same values of g(1)
and ¢(¢z). Only one of these paths corresponds to the actual motion, namely
the path for which the integral S has its minimum value.

Let us now consider another aspect of the concept of action, regarding S
as a quantity characterising the motion along the actual path, and compare
the values of S for paths having a common beginning at ¢g(t1) = ¢@, but
passing through different points at time #2. In other words, we consider the
action integral for the true path as a function of the co-ordinates at the upper
limit of integration.

The change in the action from one path to a neighbouring path is given
(if there is one degree of freedom) by the expression (2.5):

ta
oL 1t oL d oL
5 = [—qu]2+ f(——-— )ath.
o "1y og dt dq
1

Since the paths of actual motion satisfy Lagrange’s equations, the integral
in 8S is zero. In the first term we put 8¢(#1) = 0, and denote the value of























































































§52 Conditionally periodic motion 167

PROBLEM
Calculate the action variables for elliptic motionin a field U = —a/r.

SoLuTION. In polar co-ordinates 7, ¢ in the plane of the motion we have

2
1
I¢=?jpe dé = M,
7T
o

1 'mnx M2
I =2— f J[zm(E+f)——] dr
27 r r2
"min
= —M+aV(m/2|E).
Hence the energy, expressed in terms of the action variables, is E = -—mu2/2(1r+1¢)2. It

depends only on the sum Ir+1f;, and the motion is therefore degenerate; the two funda-
mental frequencies (in 7 and in ¢) coincide.
The parameters p and e of the orbit (see (15.4)) are related to Ir and I s by

Ig2 I 2
p:i g2=]_( ¢ ).
I¢+Ir

Since I, and I are adiabatic invariants, when the coefficient o or the mass m varies slowl
the eccentricity of the orbit remains unchanged, while its dimensions vary in inverse propor-
tion to « and to m.














