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Fast Fourier nonlinear vibration analysis 
A. Cardona, A. lerusse, M. Géradin 

Abstraet We present an irnplernentation of the multi ­
harmonie balance method (MHB) where intensive use of 
the Fast Fourier Transform algorithm (FFT) is rnade at all 
stages of calculations. The MHB method is not modified in 
essence, but computations are organized to obtain a very 
attractive method that can be applied systematically on 
general nonlinear vibration problerns. The resulting non­
linear algebraic problem is solved by a particular irnple­
mentation of a continuation method. Nonlinear vibration 
results are analyzed a posteriori by a Floquet method to 
determine their stability. The technique is applied on a 
series of problems of different nature, demonstrating the 
robustness and ftexibility of the approach. 

1 
Introduction 
The multi-harrnonic balance method (MHB) has been 
widely used to solve nonlinear vibration problems under 
periodie excitation. It finds applications in several fields of 
rnechanical engineering, e.g. machine dynamics, vehicle 
dynamics, he1icopter rotor blade analysis, structural dy­
namics. 

The method is well-known from literatu re. Urabe [l] 
investigated the convergence conditions of the rnethod and 
presented numerical applications [2] using the classical 
Fourier transformo Lau et al. [3-5] and more recently [6J 
developed an incremental form of the method. Pierre et al. 
[7, 8] and Ferri [9] followed the same approach to solve 
nonlinear vibration problems involving dry-frietion. Ling 
and Wu [10] introduced the use of the Fast Fourier 
Transform (FFT) algorithrn in Urabe's forrnulation. The 
same path was followed by other authors [11-16]. 

The use of FFT permits an overwhelming gain of CPU 
time when eomputing the Fourier transformo Most authors 
use the FFT to switch displacements, velocities, accelera-
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tions and forces between the time and frequency dornains. 
However, even if the original proposal by Urabe included 
the analytical expression of the Iacobian of the nonlinear 
algebraic problem, most of them avoid computing this 
matrix. Ling and Wu [10] used a Broyden method; 
Cameron and Griffin [11] used either a Picard iteration or 
a Iacobian matrix evaluated by finite differences; Lewan­
dowski [14] gave particular expressions for the contribu­
tions of nonlinear terms to the Jacobian for the case of 
geometric nonlinearities in the form of trigonometric ex­
pansions. 

In reference [15] we presented an approach which dif­
fers from most others in that an analytical expression for 
the [acobian matrix of the nonlinear algebraic problem is 
developed for general applications. This fact allows to 
solve the nonlinear algebraic problem with utmost effi­
ciency, reaching quadratic convergence rateo We have 
shown how the Iacobian matrix can be computed from the 
Fourier transform of the time domain stiffness, damping 
and mass matrices of the system under analysis. 

The MHB leads to a nonlinear algebraic problem in 
which the solution should be searched in the Fourier 
transformed displacements versus excitation period space. 
The solution is found in the form of a nonlinear dynamic 
equilibrium path in this space for varying values of the 
excitation periodo Standard Newton iteration fails to find a 
solution in the vicinity of singular points on the nonlinear 
dynamic path. In order to solve this problem, Lewandowski 
[14] used a continuation method in which the solution is 
searched in an enlarged parameter space, following a 
strategy proposed by Crisfield and widely used in structural 
mechanics [17, 18]. In this paper, we use the same ap­
proach, extending it to general nonlinear vibration prob­
lems. To this end, we develop general expressions of the 
derivative of the transformed residue with respect to the 
period of analysis which are eomputed by using the FFT. 

We investigate next the stability of solutions by a Flo­
quet method. We discuss two different approximations for 
evaluating numerically the monodromy matrix. The first 
one follows an idea by Hsu [19,20] in which a step wise 
variation of the system matrix is assumed and the state 
matrix integration is done by computing matrix expo­
nentials. The second approach is based on using the 
Newmark time integration scheme for integration of the 
state transition matrix. Particular aspects concerning the 
numerical problems encountered and how to solve thern 
are discussed in section 4. 

Finally, several application examples are presented. The¡ 
first one concerns the Duffing equation which is so!ved fOr¡ 
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a wide range of values of the nonlinear cubic termo The 
second example is an application of the technique to 
compute nonlinear vibrations of a clamped beam with a 
dry-friction damper. Results are compared to those of an 
experimental setup. The third and final example concerns 
the computation of nonlinear vibrations in a shallow 
hanging cable excited by a moving support. This last ex­
ample is representative of cable vibrations in cable stayed 
bridges and in electric power transmission lines [21]. 

The multi-harmonic balance method 
The multi-harmonic balance method can be applied to 
autonomous and non-autonornous dynamic systems with 
different types of nonlinearities (1arge displacernents, dry 
friction, contact, ...). We develop hereafter the formula­
tion for non-autonomous dynamic systerns, the autono­
mous case requiring a slight modification to impose the 
vibration amplitude. The objective is to obtain a solution 
q (t) to the nonlinear dynamics problem 

Mq + gnl(q, q) = f(t)	 (1) 

under periodic loading f(t), where gnl is the nonlinear 
forces vector of the dynamic system and f is the periodic 
excitation such that f(t + Te) = f(t), with Ts the period of 
excitation. 

The proposed method to solve problem (1) consists of 
alternating between time and frequency dornains, taking 
advantage in this manner of the ease to evaluate nonlin­
earities in the time domain while capturing periodic mo­
tion in the frequency domain. The solution q is sampled at 
N instants and assumed periodic, 

qk = q(k.1t) k = 0, ... , N - 1	 (2) 

with ó't = h = TIN. Here, T = np x Tf is the period of 
analysis; it is selected to be several (np) times the period of 
excitation to allow the search of sub-harmonics in the 
response. 

Since q is sampled at N instants, it can be expressed in 
terms of at most N Fourier components 

1 ( N/2-1 

qk = J2N '10,0 + 2 ~ (Ckn,O'1n,o + Ckn,l'1n,l) 

+ (-I)kck/2,O)	 (3) 

The Fourier components of displacement <In m correspond 
to the n-th term of the series with phase m; the coefficients 
Ckn,m are defined as 

2nn n)Ckn,m = cos T tk -	 (4)( m 2 
the phase number m being either Oor 1, denoting res­
pectively the cosine and sine terms. 

Equation (3) is nothing else than the inverse Fourier 
transform of <In,m' We note it in the concise form 

qk = iftz,m('1n,m)	 (5) 

Clearly, this form of cxpressing LJ"e Fourier series is in­
tended for implementation by the Fast Fourier Transform 
algorithm [22]. 

The number oí harmonics required to obtain satisfac­

tory approximation to the solution depends on the fre­

quency and on the amplitude of the excitation but is
 
generally much lower than N. Therefore we can truncate
 
the Fourier expansion to NH harmonics
 

fi(1 N 
H 

1 )
qk = YN 2'10,0 + ~~ Ckn,m'1n,m (6) 

NH < N/2 - 1 being the number of harmonics retained in
 
the expansiono
 

Velocities and accelerations are computed through
 
time-differentiation of equations (6)
 

. fi 2n ~ (A A )
qk = YNT	 LJ n -Ckn,l qn,O + Ckn,Oqn,l
 

n=l
 

..	 n 2 Af&(2 )
2 NH 

A 

(7)qk = - N T ~ n (Ckn,Oqn,o + Ckn,l qn,l) 

2.1 
Fourier Galerkin dynamic solution 
The local solution to the nonlinear dynamic problem (1) is 
such that the residue fk is annihilated at any time instant tk 

rk = r(tk) = Mqk + gnl(qk, qk) - fk = O 

k=O,I, ... ,N-l, (8) 

Instead of verifying the strong form of equilibrium (8), let 
us require to verify the following averaged form of dy­
namic equilibrium 

fl,m 

fiN-l 1= O
 
= !V~ ECkl,O(M<Ík + gnl - fk) = O
 

m=O 
(iN-l l = 1,2, ... ,NHV~ L Ckl,m(Mqk + gnl - f k) = O m = O, 1
¡

k=O 
(9) 

Note that there are only 2 x NH + 1 values fl,m since 
fO,l = O. Equation (9) is almost the direct Fourier trans­
form of fk (truncated to NH harmonics). It differs only by 
the term fo.o which is affected by a coefficient of one half to 
obtain a symmetric tangent matrix (see later). From now 
on, we refer to fl m as the Fourier transform of fb but 
keeping in mind 'the particular expression (9). We note it 
in the following compact form 

fl,m = fttm(rk)	 (10) 

Actually, the latter equation can be seen as a system of 
2 x NH + 1 nonlinear algebraic equations with 2 x NH + 1 
unknowns <II m' The following diagram describes the re­
lations existing between the considered entities 

(eqns (6, 7) 
qk,qk,qk	 '11,m 

Iro	 Iro (11) 
1 ftk .j.. 

I.m 
)rk	 rl,m 

";" ~~ \', .~ , o',, 'o, ,'.~ :', .­
*f~~~'~~~'~~o~.~,,~o?" ,J"o ,

;'~,	 ~~ ~~~; {.:~~#:.~.. ~ ,,'.; 
;-J..;,~.'..i;.. ~ .l..;~ .... ,." ~~;JO ..... < 
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It illustrates the process of switching between frequency 
and time domains to compute the solution. The residual 
vector can then be written in the form 

fl,m = ft~m(f(qk,<h,¿Ík(qnJ)) (12) 

This system of nonlinear algebraic equations will be solved 
using an appropriate method of solution (see next sec­
tion). A solution of Newton type requires computing the 
[acobian matrix 

S = [O~I,m] (13) 
oqn,s 

Let us denote by K, the tangent stiffness (derivative of the 
nonlinear force r) evaluated at qk 

or ( .) ognl ( .)
K, = oq qk, qk = oq qk, qk (14) 

and KI.m its Fourier transform 
..-.. k 
Kl.m = ftl.m(Kk) (15) 
It can then be shown that the coefficient matrix S is formed 
of three contributions 

S = s, + Si¡ + Sq (16) 
where Sq is the contribution arising from stiffness, Si¡ is 
the contribution from damping and Sq is the contribution 
from inertia. Their analytic expressions are given in terms 
of the Fourier transform of the corresponding (time do­
main) matrices 

1 
S -­q - j2N 

1"-"
2Ko.o '" Kn .o Kn .1 

x 

KI.o KI+n.o + KI-n.o KI+n.l - KI-n.1 

Ku KI-n.1 + KI+n.1 Kl- n.o - KI+n.O 

2rr 
Si¡ = TV2N 

O -nCn,l nCn,O 

x 
O n(CI-n.l - CI+n.l) n(CI+n.O+ CI-n,O) 

O n(CI+n.o - CI-n,O) n(Ch l- n. 1 + CI+n.l) 

O O O 

4rr2 

S" = --M 
q T2 21O b1nn O 

O O b1n n21 

1,n=I, ... ,NH (17) 

with el,m = fttm(Ck) and C, = ognlíoq (qk, <h). Wc havc 
assumed that the mass matrix is constant, but the for­
rnulation can he easilv zeneralized to account for non­
linear inertia terms as' occurring in systems described in a 
non-inertial frame. 

We remark that the exact analytic expression for the 
Iacobian matrix allows us to implement a very efficient 
method for solving the resulting nonlinear algebraic pro­
blern, reaching quadratic convergence rate. 

3 
Continuation methods for multiharmonic balance analysis 
The system of nonlinear algebraic equations (12) should 
be solved for a wide range of analysis periods. This pro­
blem can be referred to as that of tracing the nonlinear 
dynamic equilibrium path of the system. Usually, the 
standard Newton's method is not able to converge for the 
full range of parameter values, so that continuation 
methods have to be used to progress on the equilibrium 
path with controlled convergence. Basically, these methods 
consist of enlarging the set of unknowns of the problem 
while adding constraints that remove the singularities that 
affect convergence [17, 23, 24, 18]. 

The nonlinear equilibrium problem to be solved can be 
written 

r(q,T)=O (18) 

for varying values of the period of analysis T. The Newton 
scheme breaks down whenever S = or/oq is singular, a 
condition that is very easily attained in practice. To cir­
cumvent this drawback, the following homotopy is usually 
employed. 

Let h : [R ~ [Rn+ 1 be defined by 

h(s) = r(q(s), T(s)) = O (19) 

1/( q', T')" = 1 (20) 

where s is the new homotopy parameter, q' = oq/os, 
T' = oTlos and 11 . 11 is an adequate norm in [Rn+1 (in 

this work we use the R2 norm, although in many situations 
weighted norms have been used with success [18]). Dif­
ferentiating (I9) we get 

Sq' + V'IfT' = O (21) 

Parameter s has a direct geometrical interpretation: it is 
the arc-Iength of the equilibrium path in the metric in­
duced by the selected norm. 

We assume in the following that the equilibrium curve, 
when parameterized with s, do es not have any singular 
point. This means that each point is associated with only 
one unit tangent vector (thus precluding points of bi­
furcation of solutions). This is a rather restrictive as­
surnption, however. Enhanced continuation algorithms 
have been proposed to analyze bifurcation, but they are 
out of the scope of this presentation (see e.g. [25]). 

In order to advance along the solution path, we use the 
predictor-corrector scheme described in the next section. 

3.1 
Predidor step 
By applying a forward-Euler (explicit) scheme to (20-21) 
to advance the solution along the equilibrium curve by a 
distance L1s, we obtain a first iterate (L\qk. 0, L\ Tk,0) 

(,1AkO) 

[S \7r rJt~~'~',~ f = O, 11(L\qk,O, !\ Tk,U)1I = ~s (22) 

-. ::1 
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where ~S is a generalized distance in the Fourier cornpo­
nents/period space, and where 

qk.l =qk-l +.1qk.O, r-: = t":' +~Tk.O (23) 

The solution of the nonlinear system of equations (22) is 
computed in a two-stage procedure (see the bordering 
algorithm proposed by Keller [26]): 

1. Computation of a search direction (w,1) 

Sw = -Vrr (24) 

2. Computation of the effective predictor step 

/1 r- o= ± ~s/II (w, 1)11 (25) 

/1qk. o =.1T k. o w (26) 

Note that the system (22) has two possible solutions: 
(~q, ~r) and (-~q, -~r). The sign of the predictor step 
(~qk. 0,~yk. 0) is selected such that the inner product 

.1qk. o . .1qk-1 > O (27) 

where ~qk-l is the total increment of the previously con­
verged predictor-corrector step, 

3.2 
Corrector step 
General1y, we will get a nonzero residue after the predic­

tion phase (unless the problem is linear), i.e.:
 
r( qk. 1, yk. 1) =1 O. Io return to the equilibrium path, an
 
iterative scheme is applied starting from this point. If we
 
adopt a Newton method, the correction equations are
 

n ~]{ bqm} 
= _ ~(~k.m-l Tk,m-l)[S v rr o'I" r q, . (28) 

The total increment at iteration m results: 

.1¿{ m = .1qk. m-I + bqm (29) 

si' m = .1Tk. m-l + bTm (30) 

Note that the [acobian in (28) is a n x (n + 1) matrix. 
Thus, we need to impose a restriction to determine 
uniquely the correction vector (<5qm,bym). The scheme 
proposed by Crisfield is used to this purpose. It consists of 
imposing to the sequence {(qk. '. r k• i), i = 1, ...} to rest 
on an hypersphere of radius ~s with center at point 
(qk- I , r k- l ) , i.e. at the previously converged point. 

"k 1 Tk,l)(q , , q 
/ -: ("k,2,rk,2) 

qk 

qk-1 _ 

•Tk-1 T k 
T

Fig. l. Constraint description 

Therefore, in order to determine the increment (bqm, brm ) 

we have to solve the quadratic equation 

1I(.1qk. m,.1Tk. m)11 = .1s (31 ) 

The nonlinear system of equations (28, 31) is solved using
 
the bordering algorithm.
 

To this end, let us define v, w E [Rn such that
 

Sv = -r (32) 

Sw = -Vrr (33) 

where 5, f, Vrl' are evaluated at (qk.m-l, rk. m - l ) . From 13 1 

(28), the iteration increment can be written in terms of v, 
w 

(bqm, bTm) = (v + bTmw, brm 
) (34) 

and after replacing into the quadratic restriction (31), we 
get 

a (bT'" )2+2 b bT" + e = O (35) 

where 

a = wT w + 1 (36) 

b = (.1qk. m-l + vlw + .1Tk. m-l (37) 

e = (2.1qk, m-l + v)Tv (38) 

System (28, 31) has two solutions, denoted (~ql, ~rl) and 
(~q2, ~y2), corresponding to the two roots of (35). An 
appropriate criterion is used to determine which solution 
is the most convenient one (see Crisfield [27]). 

3.3 
Derivative of the transformed residue with respect 
to the period 01 analysis 
In order to implement the continuation method, we need 
computing the partial derivative of the transformed resi­
due with respect to the period of analysis, computed 
keeping the Fourier components q¡.m fixed (i.e, term O~~m in 
equation (28». To calculate this vector, let us first note 
from (6, 7) that 

aqk aqk qk aqk 2qk
-=0 -- -- ---- (39)ar er t ar t 
After replacing the latter into equation (8) we get 

~~ _ -2Mqk - Ckqk 
(40)ar r 

Final1y, from (9) we see that the Fourier transform of this 
vector provides the desired result 

arl,m = ftk (ark) (41 )ar l.m ar 

3.4 
Special features and remarks 
At each step, the value of the hypersphere radius Ss is 
adapted according to the number of iterations per step 
prescribed by the user 

IN" 
t.1i = di- 1 V-i
_l (42)N.k ­

rt 

~!m!llm'~::5':~.f.:'/ ~... 
.. 

~'.., ..: ... :.~ .'- . 
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where Ni~-l is the number of iterations required for con­
vergence at the previous increment and Ni~ is the target 
number of iterations set by the user. The target number 
of iterations Ni~ controls indirectIy the actual arc-length 
used in computations. Usually, this value is set to three or 
four iterations per step to trace correctly the nonlinear 
dynamic path without missing any important character­
istics. However, an optimal selection of this parameter is 
somehow problem dependent. 

During computations, it may happen that L\ T takes 
values which are not acceptable, leading to negative exci­
tation frequencies. In this case, we do not perform the 
update: we reject the step and restart with a smaller value 
of increment As, 

One further restriction is applied to the arc-length in­
crement: whenever the tangent to the nonlinear dynamic 
path becomes close to horizontal, the arc-length increment 
is limited to fo of the analysis period in order to avoid 
computing excessively large predictions. 

4 
Solution stability analysis 
Let us suppose that a periodic solution q(t) to the system 
of equations (1) has been obtained and let us now in­
vestigate its stability. This can be achieved by making use 
of Floquet's theory. 

Let y(t) be a perturbation to the periodic solution q(t) 
such that actual motion is given by 

q(t) -t q(t) + y(t) 
q(t) -t q(t) + y(t) (43) 
q(t) -t q(t) + y(t) 

After replacing the expressions for perturbed motion into 
the dynamic equilibrium equation (1) and by linearizing 
with respect to the perturbation y( t) we get 

My + C(t)y + K(t)y = O	 (44) 

with the time-dependent tangent stiffness and damping 
matrices K(t) and C(t). We can express this second order 
system as a 2n-first order system 

x = A(t)x	 (45) 

where 

(46)A(t) = [-MO-1K -M~IC] x = [;] 

where xdenotes the derivative of the 2n-state vector x with 
respect to t, and where matrix A(t) is periodic, i.e. 
A(t) = A(t + T). Equation (45) constitutes an homoge­
neous linear parametrically-excited system described in 
state equation formo 

Let <p/ t), j = 1, 2n be the solutions to the 2n linear 
systems 

4>j(t) = A(t)eP}(t) eP¡( to) = ej	 (47) 

where ej is the j-th canonical basis vector in 1R 2n 
• The time 

varying-solutions 4>j(t) are grouped to form the state 
transition matrix 

<I>(t, to) = [ePI (t) cP2(t) ... 4>2n(t)] (48) 

where the second argument denotes the dependence on 
initial time. <I>(t, to) forms a fundamental system if the 
determinant 

4>(t) = det(<I>(t, to)) f:- O	 (49) 

is different from zero everywhere in the time interval of 
interest. In such case, the general homogeneous solution of 
equation (45) can be constructed from the 2n linear in­
dependent solutions 4J/t). 

The monodromy matrix is defined as the state transi­
tion matrix at the end of one analysis period 

B = <I>(T, O)	 (50) 

This nonsingular matrix plays the main role in stability 
investigation of periodic systems. Its eigenvalues, solutions 
of the characteristic equation 

det(B - pI) = O	 (51 ) 

are gene rally complexo They are denoted the characteristic 
multipliers J1. of the system in terms of which the stability 
statements of linear parametrically-excited systems can be 
formulated. 

Stable periodic solutions of equation (1) are character­
ized by a solution x = O to the linearized equation (45). 
Then, the following conditions can be obtained from 
equation (51): 

The solution x = O of a linear system 45) of first order 
differential equations with periodic system matrix A(t) is 

1.	 asymptotically stable if all characteristic multipliers are 
such that Ipjl < 1, j = 1, ... .Ln, 

2.	 stable in Lyapunov sense if Ipjl :::; e j = 1, ... ,2n, and 
at least one lJ1.kl = 1 with dk = Vb 

3.	 unstable if lJ1.kl > 1 or lJ1.kl = 1, with d, < vk for at least 
one k, k E [1, 2n), 

where dk and Vk characterize respectively the defect and 
the multiplicity of the eigenvalue Jlk' 

4.1 
Numerical evaluation of the monodromy matrix 
The key aspect of the Ploquet method is the computation 
of the monodromy matrix B. It can be numerically de­
termined in different ways. For example, a high order 
Runge-Kutta approach with 2n integrations of equation 
(47) over the time interval [O, T) has been used in [28]. In 
this work, we have tested two methods [29] to evaluate B. 
Qur first approach has been based on the work by P. 
Friedmann et al. [19, 20] in terms of an assumed stepwise 
variation of the state transition matrix and integration by 
matrix exponentiation. The second approach we have 
followed is based on the Newmark time integration 
scheme. 

4.1.1 
Evaluation of the monodromy matrix 
through matrix exponentiation 
Let us assume that the linear system (45) is time invariant 
(zero-hold approximation) between time instants tk and 
tk+l> and that matrix A is thus constant on this interval. 
Between these two time instants one can write 
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Xkf I = exp(hAk)Xk	 (52) 

where Ak is the system matrix between times tk and tk+ 1 

and h = tk+l	 - tk is the time-step length. 
The monodromy matrix is then computed as the 

product of the individual transition matrices. This as­
sembling phase is performed over one cyele of the re­
sponse 

XN ti = II
N 

exp(hAk) XI = BXI (53) 
k=1 
~ 

8 

The multiplication ordering sequence is such that the k-th 
factor must be premultiplied by the (k + 1)-th one; N is 
the number of time steps over one analysis cyele. 

The spectral radius of the monodromy matrix B char­
acterizes the stability of the periodic solution. The only 
assumption made so far is that the system is considered 
constant between two consecutive time steps. This is a 
weak assumption because of the large number of time 
steps used by the multi-harmonic method. Two numerical 
difficulties are raised by this approach: the evaluation of 
the matrix exponential and the matrix multiplication 
during the assembly phase. Both aspeets are discussed 
hereafter. 

4.1.1.1 
Computation of the matrix exponential 
Let us compute the matrix exponential by an L-th order 
truncated Taylor series 

oc (hA v L (hA v 
exp(hAk) =	 I:-.,k_J ~ I:_.,k_J (54) 

j=o J. j=o J. 

This is one of the many methods that have been proposed 
in the literature to evaluate the exponential of a matrix (see 
for instance [30]). We have made also sorne experiments 
using Padé approximants (in fact, (54) is a particular Padé 
approximant) but the truncated power series performs 
better in the present context and therefore we retain this 
algorithm. 

The matrix exponential can be adequately approxi­
mated by a truncated power series around zero provided 
that the norm of matrix hAk remains small compared to 1. 
In order to remain within the domain of convergence of 
the power series, matrix hAk is scaled by computing an 
integer a and a matrix A verifying the relationship 

hAk = 2a A (55) 

with 

IIXllx S; ~ (56) 

We can then write 

exp(hAk) = exp(2a X) = (exp(X))2 
Q 

(57) 

Therefore, in order to evaluate accurately exp(hAk) we first 
compute exp(A) by the truncated power series (54) and 
then perform a suecessive matrix-matrix products. 

The relative error of this method for computing the 
exponential of a matrix is bounded by [31] 

2 2+a-L22+a-L	 ( ) 

Erel S; / exp (L + 1)!	 (58)Yo. \1 

giving us a means to adjust L by specifying a required
 
relative accuracy. For instance, if a = 3 and L = 6, we get
 
4-digit aecuracy when evaluating the matrix exponential in
 
this way.
 

4.1.1.2 
Computation of the product of exponentials 
After having computed exp(hAk), k = 1, ... ,N, the 
monodromy matrix is obtained by making the product of 
all the factors as indicated in (53). However, even if the 
final monodromy matrix B has small components, the 
partial products can be very large in magnitude, leading to 
partial product overflow. 

To avoid it, we compute successive scale factors t:i.k such 
that the matrix obtained after each sub-product has an 
infinity norm set equal to 1. The seale factors t:i.k are 
meanwhile stored in logarithm forrn, resulting in the fol­
lowing recursive procedure to compute B: starting from 

Co = 1, compute 

e; = Ck-l exp(hAk) ) 

t:i.k = IICkl1 k = 1. .... N (59) 
-IC*Ck = (J.k k 

and finally 

B~ exp (~log(Cik)) eN	 (60) 

4.1.2 
Evaluation of the monodromy matrix 
through newmark time integration 
Let us again assume the system (45) is time invariant be­
tween consecutive discrete time instants tk and tk+l' If we 
make use of the approximation formulas for the Newmark 
method 

Yk+l = Yk + (1 - y)hYk + yhYk+l 

h · h2(1 f3) .. h2f3" 
(61 ) 

Yk+l = Yk + Yk + 2 - Yk + Yk+l 

and express the equations of linearized dynamic equilib­
riurn at times tk and tk,l 

MYk = -CkYk - KkYk 
(62)
 

MYk+l = -Ck+ lYk+l - K, 11Yktl
 

the combination of (61) and (62) and pre-multiplication 
by the mass matrix yields 

2MYkT 1 = MYk + hMYk + G- (3)h [-CkYk - KkYk] 

+ 13h
Z 

[-Ck+1Yk+l - Kk+1Yk+1J 
(63)MYk+l = MYk + h(1 - y) [-CkYk - KkYk] 

+ yh [-Ck+1Yk+l - Kk+1Yk+1J 

Equation (63) can be put into the discrete matrix form 

Xk+l = DkXk	 (64) 

"'~sq .q*,~~~:e' .:r: t'-:t .. 

:~.;~;ik~.~~o:;';,.~: ('.-¡' 00.;':: '" • 



with the transition matrix
 

Dk = H¡IHo (65)
 

Matrices H I and Ha are computed in terms of the mass,
 
damping and stiffness matrices as follows: 

2K
_ [M+IJh k+1 f3h2Ck+l ] ( )H¡- ~ 

yhKk+ I M + yhCk+ I 

_[M -G- f3) h2Kk+1 hM - G- f3) h2Ck+l ]
Ha ­

-(1 - y)hKk+l M - (1 - y)hCk+l 
134 

(67) 

Note that, in fact, the transition matrix Dk can be seen as 
another form of approximation to the matrix exponential 
exp(hAk)' 

Having obtained the expression of the transition matrix 
between any two consecutive instants, the monodromy 
matrix is computed by performing the products of all of 
them. To this end, we use the algorithm with normalization 
of partial products at each step. The algorithm parameters 
are set to y = t and f3 = ~ so that the scheme is uncondi­
tionally stable and no amplitude error is introduced. 

Numerical experiments have shown that in order to D, 
approximate correctly the matrix exponential exp(hAk), 
the time step should be less than l/lO of the minimum 
period of the system 

h «. Tmin=~ (68)
10 10wmax 

Below this threshold, D, ~ exp(hAk) quadratically with h. 
This relation gives us a means to estimate an appropriate 
value of h for stability analysis. 

We should mention, however, that numerical experi­
ments have shown when using larger time steps that the 
computed Floquet multipliers are upper estimates to exact 
values. Therefore the algorithm gives conservative results 
from the point of view of stability assessment, a property 
of great value in practice. 

5 
Numerical results 
In order to assess the performance of the method, we next 
present three application examples: a Duffing oscillator, a 
clamped beam with a friction damper and a shallow 
hanging cable' with an oscillating support. 

5.1 
Duffing oscillator 
Duffing's equation is written as follows 

x+ ex + kx + knIX
3 = F cos(wt) (69) 

It is representative of a large class of nonlinear problems. 
Consider for instance a nonlinear pendulum where the 
linear assumption (sin(x) ;;;:; x) is replaced by the third 
degree approximation (sin(x) ~ x - iX3). The interest in 
Duffing's equation resides mainly in the fact that it can 
produce a large number of solution types and therefore 
has been thoroughly described in the literature [32-35]. 

The response behavior depends cssentially on the 
magnitude and the sign of the nonlinear term knlX 3• The 
proposed method has been tested in the following case 

x + 0.02x + x + knIX 
3 = cos(wt) (70) 

for excitations in the range 0.02 Hz-0.7 Hz. The linear 
eigenfrequency is Wa = 0.1592 Hz. The sub-harmonic 
resonance frequency is located near tWa = 0.053 Hz. 

The multi-harmonic balance method has been applied 
for the following parameters set: 1024 sampling points, 
analysis period equal to 3 excitation periods and 15 har­
monics retained. 

In order to investigate the global response behavior, 
various simulations have been performed for different 
values of the knl parameter. Figure 2 displays the curves of 
displacement amplitude versus frequency obtained for 
different values of knl. They agree with the theoretical 
predictions [32, 34] and coincide with the results obtained 
by Crooijmans [36]. We see that the curves are bent to the 
right for positive values of knl and to the left for negative 
values. In all cases where k« < O the computation has to 
be organized in two steps due to the fact that the nonlinear 
dynamics path becomes discontinuous. The number of 
computation points for tracing these curves was com­
prised between 100 and 500 and the mean number of it ­
erations at eaeh point was equal to 3. 

All curves traeed for (knI ::/=- O) present a disturbance at a 
frequency very close to twa corresponding to sub-har­
monic resonance. The sub-harmonic response exhibits a 
difference in behavior depending on the magnitude and 
sign of the nonlinear parameter knI • This can be observecl 
by zooming on the previous diagram about tWo (see Fig. 
3). 

Next, we analyze more specifically the results obtained 
for the case knI = 0.04. The resonance curve presents a 
deflection to the right and the sub-harrnonic resonanee 
occurs at 0.055 Hz. Observing the response in the phase 
plane explains the nature of the sub-harmonic resonance 
(see Fig. 4). For a frequency of 0.4836 Hz (which corre­
sponds to maximum amplitude) we get a diagram with one 
loop per cyele. For a frequency of 0.055 Hz (which cor­
responds to the sub-harmonic resonance frequency) the 
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Fig, 2. Resonance curves of the Duffing oscillator for different 
values of the parameter knl• 
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Fig. 5. Plot of phase angle versus frequency for the Duffing os­
cillator with knl = 0.04.
 

diagram obtained presents 3 loops per cyele. Finally, the 
plot of phase angle versus frequency (Fig. 5) provides the 
same type of information with a peak located at the sub­
harmonic resonance frequency. 

Finally, we investigate the stability of the computed 
response by the methods of matrix exponentiation and 
Newmark time integration. Figure 7 displays the maxi­
mum norm of the Ploquet coefficients for both methods 
and for different numbers of FFT sampling points. We see 
on Fig. 7 that both methods converge to the same solution. 
We note however that for a small number of points the 
Floquet multipliers predicted by the Newmark algorithm 
are greater than those predicted by matrix exponentiation. 

Numerical experiments have shown that convergence to 
the characteristic multipliers computed by the Newmark 
algorithm occurs by upper bounds (this can be related to 
the fact that the integration error produces an artificial 
elongation in the computed period). This behavior indi­
cates that the results are conservative in the sense that they 
predict greater level of instability. 

Pinally, Fig. 6 plots the zones of instability in the re­
sponse. 

5.2 
Clamped beam with dry-friction damper 
The problem of determining the periodic response of a 
friction-damped dynamic system has been treated by 
manyauthors [37, 9, 7, 39, 39, 15]. Here we have analyzed 
the response of a elamped beam with a dry-friction dam­
per located at nearly one-fourth of its length and sub­
mitted to a periodic excitation at its tip (see Fig. 8). 
Numerical results have been compared to experimental 
data for a broad frequency range. 

The material and geometrical properties of the beam 
are: Young modulus E = 2.0 X 1011 Pa, Poisson ratio 
v - 0.3, mass density p = 8125 kg/rrr', cross-sectional area 
A = 4.64 X 10-4 m2 and inertia 1 = 1.312 X 10-7 m", Two 
lumped inertias are placed over the beam. The first one is 
located at the connection with the friction damper: its 
mass equals mi = 2 kg and its inertia 

;:._-~~.~~,~" .'~ .,. 
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Fig. 6. Duffing oscillator : zone of response instability (circ1es) 
for knl = 0.04 

]¡ = 0.85 x 10 -4 kg m", The second one is located at the 
beam tip, with mass mi = 0.326 kg. The dry-friction 
damper has a spring constant k = 2.4 X 10-7 N/m, a 
Coulomb friction coefficient J1 = 0.66 and the compression 
force is constant and equal to N = 372.8 N. Three different 
cases have been analyzed for three different values of load 
amplitudes: 0.938 N, 29.063 N and 38.348 N. 

The beam has been modeled by using three Bernoulli 
beam finite elements. Structural darnping has been deter­
mined considering the damper locked (no sliding was al­
lowed). Rayleigh damping has been assumed in the form 
zM + 6K with constants 'Y. = 1.039 X 10-4 and 6 = 3.741. 
The latter values correspond to a structural damping 
El = 2.37 per cent for the first mode at frequency 35.2 Hz. 

The number of FFT points is equal to 2048, the period 
of analysis is 4 times the excitation period and the number 
of harmonics is equal to 12. 

Figure 9 displays the maximum displacement amplitude 
at the tip of the beam in terms of the excitation frequency 
for the three values of force amplitude. These results are 
compared to those obtained experimentally [40], showing 
a good agreement. For small values of excitation amplitude 
the friction damper is locked and therefore the system 
exhibits almost linear behavior. For increasing force values 
the friction damper unlocks and begins to damp out en­
ergy from the system. At the same time, the frequency at 
the response peak is shifted down from 35.2 to 26 Hz. 
Figure 10 presents a plot in the complex plan e of all Flo­
quet coefficients in the frequency range of analysis and for 
the intermediate value of excitation force 
(Fexc = 29.063 N). The computations were performed 
using the exponential matrix method. All Floquet coeffi­
cients líe inside the stability zone limited by the unit circle. 

The computation of Floquet coefficients based on the 
Newmark approximation is considered next. We can ob­
serve on Fig. 11 that some differences occur betwcen 
Newmark's and truncated power series results when using 
1024 sampling points. However, when increasing the 
number of points to 2048 both methods agree almost 
completely. 
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Again, we see that the Floquet multipliers predicted by 
Newmark's approximation are greater than by matrix ex­
ponentiation and that upper bound convergence to the 
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final values of the characteristic multipliers is thus ob­
tained. 

5.3 
Shallow hanging cable 
The last example consists into computing the harmonic 
response of a hanging cable submitted to imposed periodic 
displacement at one edge, the other edge being fixed (Fig. 
12). This parametric excitation problem has been consid­
ered previously by several authors [41-43]. 

The displacements of the cable are denoted by u(s, t), 
where s is the arc-length coordinate and t the time. The 
axial strain in the cable t:(s) can be expressed in the form 
[41] 

F , 
t: =-+ u - KU2EA 1 

+ 2'1 l" ( u,
1 - KU2 ) 2.+('Uz + KUI ) 2.+('u3

) ZJ~ (71 ) 

h 'nu 1 ... .. r dul ..•.J ·.lPig, 10. Clarnped beam with dry-friction damper : compiex piane w .ere u = fu anu wnere t: IS lile loung mo UlUS, A IS me 
plot of the Floquet coefficients cable normal cross-section, F(s) represents the tension 
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Fig. 12. Geornetric description of the hanging cable 

into the cable in the equilibrium configuration and K(5) 
the curvature. The kinetic energy jf' and strain energy r 
of the cable system are given by 

J. 
E 1 

Jf' = - po· ti ds (72) 
o 2 

J. 
f 1 

1/ = 1/0 + Fe + -EAe2 

o 2 

- pg[Ul sin e+ U2 cos O] ds (73) 

where p is the mass density, g is the gravity acceleration 
and e is the angle between e¡ and the horizontal and f is 
the length of the cable. 

The boundary conditions are 

u(O, t) = Uo eos(wt) (74) 

u(f,t) = 0 (75) 

where UD is the amplitude of imposed displacements at the 
end. An approximate solution is computed by a six terms 
expansion using the Rayleigh-Ritz method 

u(s, t) = Uo cos(wt) (1 - 2) +¡::}sin (7) 

+ \::} sin C;s) (76) 

where q = [q¡q2 ... q6] are the new generalized coordi­
nates. The static deformation of the cable has been ap­
proximated by a parabolic curve. 

The system behaviour is governed by Lagrange eqlla­
tions of motion 

d (02)- off- --=0 (77)
dt óq óq 

where 2(q, q) = :f{" - 1/ is the system Lagrangian. 
The equations of motion (77) and the tangent rnass, 

damping and stiffness matrices have been computed 
through symbolic differentiation using the Maple software 
[44]. The Fortran eomputer code was also generated in this 
way. Further details on the model are given in reference 
[45]. 

The motion equations eontain both quadratic and eubic 
terrns, inducing thus sub-harrnonics (..p., -f,., n = 1; 2; 3 ... ) 

in the response. They are responsible for the complex re­
sponse pattern due to eoupling between in-plane and out-

Table 1. Natural frequencies of a shallow hanging cable 

Description of rnode shape Natural frequency 
(Hz) [46J 

Shallow parabolic sag o I 

Out-of-plane rnode it (~r 
In-plane rnode (skew-syrnrnetric) f (~) t 
In-plane rnode (syrnrnetric) ~ (~)t 

of-plane modes. The free vibration frequencies and mode 
shapes are listed in Table 1 (;.¡ = 1, ;.2 = 3, ... in this 
problem). 

The system analyzed eorresponds to a one stay of the 
Ben-Ahin bridge which has been previously studied using 
finite elements [21]. The system data are summarized as 
follows: length 110.505 m, mass density 62.841 kg/m, 
Young modulus 210 Gpa, initial sag at mid-Iength 
Yo = 0.2 m, cross-section 0.00826 rrr', tension 4895190 N. 

The set of parameters used to compute the response by 
the MHB method are: initial excitation frequeney 0.1 Hz, 
final excitation frequency 5 Hz, 256 sampling points, time 
sampling over 3 excitation periods, 16 number of har­
monies and average number of iterations set to 3. 

The forced response of the hanging cable has been 
studied for various forms of excitation and damping. In 
this work, we present results for the case with axial exci­
tation at the moving end (UD = 0.05 m) and zero damping. 
Figure 13 displays the computed peak-to-peak amplitudes 
of motion in terms of excitation frequeney. We can ob­
serve the presenee of sub-harmonics and Duffing-like be­
havior. The first resonance occurs at l w¡ and results from 
the presenee of cubie non-Iinearities, The seeond one 
eorresponds to !w¡ and results frorn the presenee of 
quadratic non-linearities. The third resonance corre­
sponds to w¡ but also to tW2. Therefore, for this frequeney 
a dynamic bifureation exists. One branch has a mode 
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shape corresponding to the first eigenmode, the second 
one has a mode shape corresponding to the second 
eigenmode. The fourth resonance occurs W2. 

Two zones have been analyzed with greater detail. The 
first one is the zone around the first resonance (0.41 Hz) 
and the second is located around the third resonance peak 
(1.24 Hz). 

Figure 14 provides a plot of the first resonance located 
at ~WI' At lower frequency (Fig. 15) the motion in the 
middle of the cable is harmonic and the period of the 
response corresponds to the period of the excitation 
(computations have been performed on a period corre­
sponding to three periods of the excitation). When in­
creasing the excitation frequency (Fig. 16) wave reftections 
occur and produce stops into the cable motion. Figure 17 
shows that when the excitation is equal to tWl' the stops of 
Fig. 16 have grown into a sinusoidal response with fre­
quency equal to WI' Figure 17 is also of interest because 
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Fig. 16. Hanging cable: sag at mid-Iength for excitation 
frequency = 0.4 Hz 
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Fig, 17. Hanging cable: sag at rnid-length for excitation 
frequency = 0.4138 Hz 

this is the first time that the cable motion crosses the X 
axis. This is a very dangerous resonance in practice since it 
develops at a very low excitation frequency. By still in­
creasing the excitation frequency one also increases the 
response amplitude but the shape of motion does no 
longer change. 

The response computed around 1.24 Hz is of great in­
terest since the system exhibits a dynamic bifurcation in 
that zone. By making a frequency sweep we get the curve 
of (Fig. 18). At the left end, when the excitation frequency 
equals 1.3024 Hz, the motion corresponds to the first 
eigenmode (Fig. 19). When increasing slowly the excitation 
frequency one observes that two "partially fixed points" 
are generated. These two points move to the X axis to 
finally merge into one nodal point at frequency 1.4399 Hz. 
Therefore we observe that on a very narrow band of ex­
citation frequency the system response switches from the 
first mode to the second one (Figs. 19-22). 
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for excitation frequency = 1.31 Hz 
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Fig.21. Hanging cable: sag evolution with time versus cable span 
for excitation frequency = 1.345 Hz 
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Fig. 22. Hanging cable: sag evolution with time versus cable span 
for excitation frequency = 1.4399 Hz 

6 
Concluding remarks 
A multiharmonic method to solve general nonlinear dy­
namic systems submitted to periodic external forces has 
been developed. The method is based on a systematic use 
of the FFT algorithm to transfer the motion equations 
from the time domain to the frequency domain and vice 
versa. The Jacobian matrix of the resulting system of 
nonlinear algebraic equations is exactly evaluated, reach­
ing quadratic convergence rate in the iterative solution. 

A Crisfield type continuation method has been imple­
mented to trace the nonlinear dynamic solution path. 
Again, the FFT is used to evaluate the additional deriva­
tives required to evaluate the matrix of coefficients. 

The stability of the computed periodic solutions has 
been investigated by a Floquet method. Two approaches 
for computing the monodromy matrix have been tested: a 
first one in which matrix exponentials are evaluated by 

~···f.. ~ ~. 
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truncated Taylor series and a second one based on 
Newmark's time integration formula. The latter approach 
yields conservative results about system stability in the 
sense that numerical experiments showed that predicted 
Fioquet multipliers converge by upper bounds to the true 
values. 

Several application examples of application have been 
described to illustrate the power of the proposed ap­
proach. In particular, an example involving cable vibra­
tions in a stay of cable-suspended bridge has been 
presented in detail. 
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