
High Performance Computing: High Performance Computing:
An IntroductionAn Introduction

Alvaro L.G.A. Coutinho

High Performance Computing Center

COPPE/Federal University of Rio de Janeiro,
Brazil

E-mail: alvaro@nacad.ufrj.br

Web: http://www.coc.ufrj.br/~alvaro

Recommended Skills

� Programming, FORTRAN, C, C++

� On-line programming book:

– How to Design Programs

• http://www.htdp.org/2001-09-22/

� Scientific Computing

» Michael Heath’s: http://www.cse.illinois.edu/heath/scicomp/

� Numerical Methods for PDE’s, FD, FV, FE, BE …

Contents:
� Computational Science and Engineering

� Basics of Computer Architecture:

– What a normal programmer should know about

� High Performance Computers

– What is this? What’s on? Why should I care?

� High Performance Applications

– What I can expect? What are the tools? What should

I learn?

� HPC in Computational Mechanics

– What are the difficulties? Is it worth doing?

� Final Comments and Discussion

COMPUTATIONAL SCIENCE AND
ENGINEERING

Computational Science Engineering

� In broad terms it is about using computers to

analyze scientific problems.

� Thus we distinguish it from computer science,

which is the study of computers and computation,

and from theory and experiment, the traditional and from theory and experiment, the traditional

forms of science.

� Computational Science and Engineering seeks to

gain understanding principally through the

analysis of mathematical models on high

performance computers.

Computational Science and Engineering

Web Material and Food for Thought

� IEEE Computing in Science and Engineering

� Strang’s book in CSE

� SIAM’s Activity Group in CSESIAM’s Activity Group in CSE

– http://www.siam.org/activity/cse/

� Simulation Based Engineering Science: the future

– http://www.ices.utexas.edu/events/SBES_Final_Report.pdf

Layered Structure of CSE

From: A SCIENCE-BASED CASE FOR LARGE-SCALE SIMULATION, DOE, 2003

BASICS OF COMPUTER
ARCHITECTURE

Basics of Computer Architecture

� Processors

� Memory

� Buses

� I/OI/O

� Operational Systems

� Performance Model

� See: Hennessy and Patterson, Computer

Architecture

The main components of a computer
system are:

· Processors
· Memory
· Communications Channels

These components of a computer architecture are
often summarized in terms of a PMS diagram.
(P = "processors", M = "memory", S = "switches".)

Processors

Fetch-Decode-Execute Cycle

The essential task of computer processors is to perform a Fetch-
Decode-Execute cycle:

1.In the fetch cycle the processor gets an instruction from
memory; the address of the instruction is contained in an internal
register called the Program Counter or PC. register called the Program Counter or PC.
2.While the instruction is being fetched from memory, the PC is
incremented by one. Thus, in the next Fetch-Decode-Execute
cycle the instruction will be fetched from the next sequential
location in memory (unless the PC is changed by some other
instruction in the interim.)
3.In the decode phase of the cycle, the processor stores the
information fetched from memory in an internal register called
the Instruction Register or IR.
4.In the execution phase of the cycle, the processor carries out
the instruction stored in the IR.

Classification of Processor Instructions

Instructions for the processor may be classified into
three major types:

1.Arithmetic/Logic instructions apply primitive
functions to one or two arguments; an example is
the addition of two numbers.
2.Data Transfer instructions move data from one 2.Data Transfer instructions move data from one
location to another, for example, from an internal
processor register to a location in the main
memory.
3.Control instructions modify the order in which
instruction are executed, for example, in loops or
logical decisions.

Clock Cycles

Operations within a processor are controlled by an
external clock (a circuit generating a square wave of
fixed period).

The quantum unit of time is a clock cycle. The clock
frequency (e.g., 3GHz would be a common clock frequency (e.g., 3GHz would be a common clock
frequency for a modern workstation) is one measure
of how fast a computer is, but the length of time to
carry out an operation depends not only on how fast
the processor cycles, but how many cycles are
required to perform a given operation.

This is a rather involved function of topics to be
discussed below.

Computer Memory

Memory Classifications

Computers have hierarchies of memories that may be classified
according to
· Function
· Capacity
· Response Times

Memory Function

"Reads" transfer information from the memory; "Writes" transfer
information to the memory:
· Random Access Memory (RAM) performs both reads and writes.
· Read-Only Memory (ROM) contains information stored at the
time of manufacture that can only be read.

Memory Capacity

bit = smallest unit of memory (value of 0 or 1); commonly abbreviated by "b"
byte = 8 bits; commonly abbreviated by "B"
Common prefixes: k=kilo=1000, M=mega=10^6, G=giga=10^9, Tera=10^12. In modern
computers, the total memory may range from say 4Gb in a small personal computer
to several TB (terabytes) in large supercomputers. This total memory is divided into
sections with different functions (see below).

Memory Response
Memory response is characterized by two different measures: Memory response is characterized by two different measures:
· Access Time (also termed response time or latency) defines how
quickly the memory can respond to a read or write request.
· Memory Cycle Time refers to the minimum period between two
successive requests of the memory

Access times vary from about 80 ns [ns = nanosecond = 10^(-9) seconds]
for chips in small personal computers to about 10 ns or less for the
fastest chips in caches and buffers (see below). For various reasons, the
memory cycle time is more than the speed of the memory chips (i.e., the
length of time between successive requests is more than the 80 ns speed
of the chips in a small personal computer).

Locality of Reference and Memory
Hierarchies

In practice, processors tend to access memory in a patterned
way. For example, in the absence of logical branches, the
Program Counter is incremented by one after each
instruction. Thus, if memory location x is accessed at time t,
there is a high probability that the processor will request an
instruction. Thus, if memory location x is accessed at time t,
there is a high probability that the processor will request an
instruction from memory location x+1 in the near future. This
clustering of memory references into groups is termed
Locality of Reference.

Locality of reference can be exploited by implementing the
memory as a hierarchy of memories, with each level of the
hierarchy having characteristic access times and capacity.

Memory Hierarchy

fast, expensive slow, cheap

Now the processor sends its request to the fastest, smallest
partition of memory (cache). If what it wants is there, it can be
quickly loaded. If it isn't, the request is forwarded to the next lowest
level of the hierarchy and so on.

The key idea is that when the lower (slower and larger and cheaper)
members of the hierarchy answer a request from higher levels for
the content of location x, they also send at the same time the contentthe content of location x, they also send at the same time the content
of x+1, x+2, ... Because of locality of reference, it is likely that these
will be needed in short order, and if they are, they can be loaded
quickly from faster memory.

By such a hierarchical scheme, one can improve the effective speed of
the memory, even though only a small part of it is composed of fast
(and expensive) chips.

Terminology

• Cache = fast memory closest to processor.
• Split Cache = separate caches for instructions and data.
• Instruction Buffer = sophisticated cache for instructions that
also performs other functions optimizing the fetching of
instructions.
• Primary Memory = the main memory below cache.
• Secondary Memory = memory at lower end of hierarchy; often
disk.
• Block = unit of information transferred between items in memory • Block = unit of information transferred between items in memory
hierarchy.
• Cache Lines = blocks transferred to or from cache.
• Pages = units transferred between primary and secondary memory.
• Replacement Strategy = algorithm for deciding which items in
higher memory are discarded to make room for items moved from
lower memory. Common possibilities are random, first-in-first-out
(FIFO), or least recently used (LRU).
• Hit = request satisfied at particular level of memory.
• Miss = request that must be passed on to lower memory levels.
• Hit Rate = percentage of requests resulting in a hit.

Effective Access Time

The performance of a hierarchical memory is characterized by an Effective
Access Time. If T = effective access time, H = cache hit rate, T(cache) = cache
access time, and T(main) = main memory access time,

T = H*T(cache) + (1-H)*T(main)

For example, if the hit rate is 98% (not uncommon on modern computers), cache
speed is 10 ns, and main memory has a speed of 100 ns,

T = 0.98*10ns + 0.02*100ns = 11.8 ns

The memory behaves as if it were composed entirely of fast chips with 11.8 ns
access time, even though it is composed mostly of cheap 100 ns chips!
Hierarchical memories are complex, but efficient hardware algorithms that
work in parallel with other processes to implement the replacement strategy
mean that the fetch-decode-execute cycle time is not appreciably lengthened
by the implementation of hierarchical memory.

Data Buses

Buses transfer information between parts of a computer. Smaller computers have a
single bus; more advanced computers have complex interconnection strategies.

Transaction = Unit of communication on bus.
Bus Master = The module controlling the bus at a particular time.
Arbitration Protocol = Set of signals exchanged to decide which of two competing
modules will control a bus at a particular time.
Communication Protocol = Algorithm used to transfer data on the bus.
Asynchronous Protocol = Communication algorithm that can begin at any time; Asynchronous Protocol = Communication algorithm that can begin at any time;
requires overhead to notify receivers that transfer is about to begin.
Synchronous Protocol = Communication algorithm that can begin only at well-know
times defined by a global clock.
Transfer Time = Time for data to be transferred over the bus in single transaction.
Bandwidth = Data transfer capacity of bus; usually expressed in bits per second
(bps). Sometimes termed throughput.

Bandwidth and Transfer Time measure related things, but bandwidth takes into
account required overheads and is usually a more useful measure of the speed of the
bus.

Computer I/O

There are various methods of input and output for a computer. In this section we will
discuss only one: output to a video display.

The dominant technology for displaying an image is the raster scan, where a beam of
electrons is swept across a screen of phosphors line by line. The beam can be turned on
and off very quickly; a phosphor hit by the beam glows white; otherwise, it remains dark.
Refresh Rate = Number of times per second the entire screen is swept by the beam.
Rates of 30-60/second are common. Rates of 30-60/second are common.
Pixels = "Picture Cells" = individual locations on the screen that can be painted by the
beam.
Resolution = Number of pixels per unit length. Modern large screens are often 1280
pixels across and 1024 pixels high. The controller for the electron gun reads from a
memory that has 1 bit per pixel. If the bit is 1, the pixel is painted, if it is 0, it isn't
painted.

Modern displays use a dedicated memory termed the frame
buffer to hold the bit patterns controlling the display. On
inexpensive systems, the main processor computes these patterns
and transfers them to the frame buffer. On more sophisticated
systems, a dedicated processor called the Graphics Engine
accomplishes this task.

· For Color Displays the same principles apply, but there are 3 guns (one for
each primary color, R = Red, G = Green, B = Blue) and 3 phosphors for
each location. To get a large range of colors, the guns must have variable
intensities (for example, violet results from 0.61R + 0.24G + 0.80B, where
the fractions refer to fractions of full electron intensity).
intensities (for example, violet results from 0.61R + 0.24G + 0.80B, where
the fractions refer to fractions of full electron intensity).

· Typical systems divide the range of intensities into 2^8 = 256 discrete
values. Thus, the intensity can be represented by an 8-bit number for
each color, and each pixel requires an 8 x 3 = 24 bit number in the frame
buffer to characterize it.

· But 1024 x 1280 x 24 = 32 MB of RAM. Instead, most systems create a
Color Map with a fixed number of 24-bit entries (often 256). Each pixel
then maps to one of these entries. Only 8 bits are required to
characterize a color map with 256 entries, so 24 - 8 = 16 bits of memory
are saved for each pixel. Only 256 colors can be displayed, but that is
sufficient for many applications.

Modern Viz Systems: Tiled Wall Displays

Stallion, tiled wall display with 45 Dell monitors, resolution of 184 million pixels
“Visualization Laboratory”, Advanced Computational Engineering and Sciences
(ACES), The University of Texas at Austin.

Operating Systems

Most modern computers are Multitasking: they run several Processes or Tasks at the
same time. The most common operating system for workstations and high-performance
computers is Unix.

Active Processes are being executed by the Processing Unit(s)
Idle Processes are waiting to execute
Blocked Processes are waiting for some external event (e.g., the reading of data from a
file). When this is accomplished, they become idle, waiting their turn for execution.
Blocked Processes are waiting for some external event (e.g., the reading of data from a
file). When this is accomplished, they become idle, waiting their turn for execution.

Multitasking operating systems let each process run for a short time termed the Time
Slice (a typical time slice might be 20 ms), stops it and changes its status to idle, and
then installs one of the idle tasks as the new active program. The system cycles through
the tasks in the Process Queue, giving each time slices of a size dictated by some
allocation algorithm.
On many Unix systems, the command top will give a dynamic display of the jobs in the
processing queue and the percentage of processor time each is receiving.
In multitasking systems, one must be careful to distinguish elapsed "wall time" from
actual CPU time for a task in evaluating code performance.

Performance Models

Measures of Machine Performance

The clock cycle time is a simple, but rather inadequate measure of
the performance of a modern compute:

· Processors must act in conjunction with memories and buses.
· The efficiency of executing instructions for each clock cycle can
vary widely.

The basic performance for a single-processor computer system The basic performance for a single-processor computer system
can be expressed in terms of

T= n x CPI x t

where T is the time to execute, n is the number of instructions
executed, t is the time per instruction, and CPI is the number of cycles
per instruction.

RISC vs. CISC Architectures

RISC (Reduced Instruction Set Computer): Implement a few
very simple instructions.
CISC (Complex Instruction Set Computer): Implement a larger
instruction set that does more complicated things.

In recent years, the RISC architecture has proven a better
match with modern developments in VLSI (Very Large Scale match with modern developments in VLSI (Very Large Scale
Integration) chip manufacture:

· Simple instructions allow powerful implementation techniques
such as pipelining (see below).
· Simple instructions allow more stuff on the chip: on-board
cache, CPUs with multiple arithmetic units, etc.
· Simple instruction sets mean cycle times can often be much
faster.
· Simple instruction sets need less logic, smaller space

required on chip, and smaller circuits run faster and cooler.

Overlapping Instructions: Pipelining

Some Performance Metrics

MIPS = "Millions of instructions per second"

MFLOP/S = "Millions of floating-point operations per second“,
GigaFlop/s, TeraFlop/s, ExaFlop/s …

Theoretical Peak MFLOP/S = MFLOP/S if the machine did Theoretical Peak MFLOP/S = MFLOP/S if the machine did
nothing but numerical operations

Benchmarks = Programs designed to determine performance
metrics for machines. Examples: HPL, NASA-NPB’s

See: R.W. Hockney, The Science of Computer Benchmarking,
SIAM, 1995

Parallel Processing

The basic performance for a single-processor computer system can be expressed in
terms of

T= n * CPI * t

where T is the time to execute, n is the number of instructions executed, t is the time
per instruction, and CPI is the number of cycles per instruction.
Decreasing the clock time t is a matter of engineering. Generally smaller, faster
circuits lead to better clock speed. Decreasing the other two factors involves some
version of parallelism. There are several levels of parallelism: version of parallelism. There are several levels of parallelism:

1. Job-Level Parallelism: The computer center purchases more computers so more
jobs can be run in a given period.
2. Program-Level Parallelism: A single program is broken into constituent parts, and
different processors compute each part.
3. Instruction-Level Parallelism: Techniques such as pipelining allow more
throughput by the execution of overlapping instructions.
4. Arithmetic and Bit-Level Parallelism: Low-level parallelism primarily of interest
to designers of the arithmetic logic units; relatively invisible to user.

Example: Program-Level Parallelism

This form of parallelism manifested in:
· Independent sections of a program.
· Individual iterations of a loop.

Such parallelism may be exploited by employing multiple processors. For
example, consider the loop

do 10 i=1,ndo 10 i=1,n
A(i)=B(i) + C(i)

10 continue

This calculates n sums that are independent: A(i) + B(i) does not depend on
A(j) + B(j) for j < i .

Thus, the n sums can be done in any order. In particular, they could be done
simultaneously by assigning each of the sums to one of n processors or
functional units.

Example: Instruction-Level Parallelism

There are two basic kinds of Instruction-Level
Parallelism:

· Individual instructions are overlapped (executed at
the same time) in the processor.
· A given instruction is decomposed into sub-
operations and the sub-operations are overlapped. operations and the sub-operations are overlapped.

A common example of the former type is the overlap of a
load instruction that copies something from memory to
an internal CPU register, and an arithmetic instruction.
The second type is exemplified by pipelines, which will be
discussed further later.

Granularity of Tasks

Parallel operations may be classified according to the size of the
operations running in parallel.

Large-Grain System: Operations running in parallel are large (of
the order of program size).
Small-Grain System: Operations running in parallel are small (of
the order of a few instructions). the order of a few instructions).

The preceding example of parallel execution of a do-loop is very
small-grain.

Pipelined Architectures

Pipelines are now standard components even of smaller computer
systems.

The common analogy for a pipeline in a processing unit is the
assembly line of normal manufacturing: productivity is increased
by dividing the overall task into pieces that can be performed in
parallel by separate workers in successive stages of the line. parallel by separate workers in successive stages of the line.

Pipelines are used for both instruction processing and arithmetic
operations. A system is a candidate for pipelined operation if,

· It repeatedly executes a basic function.
· The basic function must be divided into independent stages
having minimal overlap with each other.
· The stages must be of similar complexity.

The number of stages is termed the Depth of the Pipeline.

Example: Pipelined Adder

Consider floating-point addition of two numbers of the form m*2^e.
This operation could be broken into the following stages:

1. If e(1) < e(2), swap the operands. Find the difference in
exponents e = e(1) - e(2).
2. Shift m(2) to the right by e bits.
3. Compute the mantissa of the sum m(1) + m(2). The exponent of 3. Compute the mantissa of the sum m(1) + m(2). The exponent of

the sum is e(1).
4. Normalize the sum.

The added complexity of such a pipelined adder pays off if long
sequences of numbers are being added: one stage of the adder can
be comparing the exponents of one number pair while another stage
is adding the mantissas of a different pair of numbers .

Resource Conflicts and Dependencies

Overlapping operations in a pipeline require that the operations be
independent of each other. There are various ways in which this condition
may be violated. Such Resource Conflicts or Dependencies inhibit the
pipelining efficiency. For example, suppose a code implements the
instructions

R2 = R0 + R1

R4 = R2 + R1

This is an example of a data dependency: the processor cannot send the
second pair of operands to the pipeline adder until the result of the first
addition has exited the pipeline (because only then will the correct value
of R2 be known). Such dependencies lead to periods when the pipeline
stages are empty that are termed bubbles. These are well represented in
terms of what are called Gantt Charts.

Instruction pipelines are used to speed the fetch-decode-execute cycle. The pipeline
is constantly exploiting locality of reference by "looking ahead" and fetching
instructions it thinks the processor will soon need. If a branch or loop instruction in
the program invalidates this look-ahead, a bubble appears in the instruction pipeline
while the fetch stage goes to look for the new instructions. This is called a control
dependency.

Memory Organization

In high-performance computing, it is important to match the
(generally slower) memory accesses as well as possible with the
(generally faster) processor cycling. This is particularly true for
pipelined units that derive their efficiency from a constant supply of
fresh operands for the pipeline. The primary difficulty is the memory
cycle time, during which the memory is not accessible by subsequent
operations.
cycle time, during which the memory is not accessible by subsequent
operations.

For parallel systems there are two general memory designs:
· Shared Memory Systems for which there is one large virtual
memory that all processors have equivalent access to.
· Distributed Memory Systems for which each processor has its
own local memory not directly accessible from other processors.

Interconnect Topologies for Parallel Systems

A major consideration for parallel systems is the manner in which
the processors, memories, and switches communicate with each
other. The connections among these define the topology for the
machine.

Ring vs. Fully Connected Network
Hipercubes

Tree and Star Topologies

Mesh Topologies

Basic Types of Parallel Architectures

http://csep1.phy.ornl.gov/csep.html

Basic Types of Parallel Architectures

Memory

P0 P1 P2 ……. PN

Shared memory Machine

Flinn’s Taxonomy of Parallel Architectures

http://csep1.phy.ornl.gov/csep.html

Vector Supercomputers

Cluster - Beowulf Systems

Work on this type of distributed parallel commodity-off-the-shelf
system was initiated at NASA Goddard in 1993 using Intel 486
processors. These systems are also being investigated at several of the
other National Laboratories and major Universities. Some of the main
attributes are:

•Promising Price-Performance for small and moderate scale parallel
processing. processing.
•Easily upgraded to new PC technology and different PC vendors.
•Operating System Software in place (e.g. Linux). Now has TCP/IP,
NFS, NIS, Gnu compilers (C, C++, F77).
•Message Passing Libraries such as MPI.

See: T.L. Sterling, J. Salmon, D.J. Becker, D. Savarese, How to Build a
Beowulf: A Guide to the Implementation and Application of PC Clusters,
MIT Press, 1999.

More Reading Material

� Barney’s Online Tutorial on Introduction to Parallel

Computing

– https://computing.llnl.gov/tutorials/parallel_comp/

� Jim Demmel’s Applications of Parallel Computing course

at Berkeley, USAat Berkeley, USA

– http://www.cs.berkeley.edu/~demmel/cs267_Spr10/

� Jack Dongarra, Ian Foster, Geoffrey C. Fox, William

Gropp, Ken Kennedy, Linda Torczon, Andy White, The

Sourcebook of Parallel Computing, 2002

HIGH PERFORMANCE
COMPUTERS

High Performance Computers or
Supercomputers

Supercomputers are the fastest
and most powerful general
purpose scientific computing
systems available at any given
time.

Dongarra et al, “Numerical Linear Algebra for

Turing´s Bombe, UK, 1941
Dongarra et al, “Numerical Linear Algebra for

High-Performance Computers”, SIAM, 1998

Cray XT5 at Oak Ridge, USA, 2009
2.3 Petaflops, 224K AMD cores

The TOP500 List
www.top500.org

� The main objective of TOP500 is to provide a ranked list of

general purpose systems that are in common use for high end

applications

� It is based on LINPACK Benchmark, that solves a dense

system of linear equations by LU factorization

� A parallel implementation of the LINPACK benchmark and

instructions on how to run it can be found at

http://www.netlib.org/benchmark/hpl/

� TOP500 uses the benchmark version that allows the user to

scale the size of the problem and to optimize the software in

order to achieve the best performance for a given machine

The LINPACK Benchmark

� Direct solver for dense linear systems based on LU
factorization

� Initially used as a tool to predict execution time only.
Original report listed execution times for a matrix of order
100 in 23 computers (LINPACK100)

3

100

3100
n

tempo n
tempo

⋅
=

� Today lists more than 1300 systems

� Web: http://www.netlib.org/benchmark/hpl

� See: Jack J. Dongarra, Piotr Luszczek and Antoine Petitet, The
LINPACK Benchmark: past, present and future, Concurrency and
computation: practice and experience. 2003; 15:803–820

3100
n

LINPACK’s Evolution

LINPACK100

LINPACK1000

Serial

LINPACK1000

High Performance LINPACK n×n (HPL)

Other packages for dense linear algebra (www.netlib.org):

LAPACK and ScaLAPACK

LINPACK’s Building Blocks

� BLAS (Basic Linear Algebra Subprograms):
http://www.netlib.org/blas
– Level 1: vector-vector operations; y = y + ax

– Level 2: matrix-vector operations; y = y + Ax

– Level 3: matrix-matrix operations; A=B+C

� Highly optimzed BLAS:� Highly optimzed BLAS:
– ATLAS (free optmized BLAS generator);

http://www.netlib.org/atlas

– Intel’s MKL

– GOTO BLAS
• K. Goto, R. A. Van de Geijn, Anatomy of High-Performance Matrix

Multiplication, ACM Transactions on Mathematical Software, 34(3):
2008

• K. Goto, R. A. Van de Geijn, High-performance implementation of the
level-3 BLAS, ACM Transactions on Mathematical Software, 35(1):
2008

• http://www.tacc.utexas.edu/?id=402

HPL Benchmark Highlights

� Extract MAXIMUM sustained performance of a
given system

� Results listed in TOP500:

– Rmax = Performance in Gflop/s for the biggest problem ran

– Nmax = Size of biggest problem

– N1/2 = Size of problem where half of Rmax is sustained

– R = Theoretical peak performance
1/2 max

– Rpeak = Theoretical peak performance

� How to Run?

– HowTo – HPL Over Intel MPI
• http://software.intel.com/en-us/articles/running-the-hpl-
benchmark-over-intel-mpi/

� Factors affecting HPL performance

– Implementation; human effort; operational system;
hardware, network, compiler, BLAS, etc.

The TOP500 List

http://www.top500.org
Lists the top 500 supercomputers
Updated in 06/XX and 11/XX

Performance Development

source: J. J. Dongarra, http://www.netlib.org/utk/people/JackDongarra/talks.htm

Performance of TOP20 over time

source: J. J. Dongarra, http://www.netlib.org/utk/people/JackDongarra/talks.htm

most flops/pop

Brazil & Spain in TOP500/Nov 2009

The Power Wall

#1 TOP500, Jaguar, 7MW, MFLOPS/W=251

Fonte: J. Dongarra, http://www.netlib.org/utk/people/JackDongarra/talks.html

Fonte: J. Dongarra, http://www.netlib.org/utk/people/JackDongarra/talks.html

Moore’s Law revisited

Clock frequency scaling replaced by scaling cores / chip

source: J. J. Dongarra, http://www.netlib.org/utk/people/JackDongarra/talks.htm

Fonte: J. Dongarra, http://www.netlib.org/utk/people/JackDongarra/talks.html

#1 TOP500 ORNL Cray XT5

http://www.nccs.gov/jaguar/

http://www.lanl.gov/roadrunner/

Ranger

� Compute power - 504 Teraflops

– 3,936 Sun four-socket blades

– 15,744 AMD “Barcelona” processors

– Quad-core, four flops/cycle (dual pipelines)

� Memory - 123 Terabytes

– 2 GB/core, 32 GB/node

– 132 GB/s aggregate bandwidth– 132 GB/s aggregate bandwidth

� Disk subsystem - 1.7 Petabytes

– 72 Sun x4500 “Thumper” I/O servers, 24TB each

– 40 GB/sec total aggregate I/O bandwidth

– 1 PB raw capacity in largest filesystem

– Interconnect - 10 Gbps / 3.0 µsec latency

– Sun InfiniBand-based switches (2), up to 3456 4x ports each

– Full non-blocking 7-stage Clos fabric

– Mellanox ConnectX InfiniBand

NACAD’s Galileu System
#76 in TOP500, 1st in LA

SUN Cluster 6464 Intel Nehalem cores, IB
Preliminary tests: 65Tflops Final configuration: 7200 cores

76

NACAD’s Research Systems

SGI InfiniteStorage

SGI Altix 450
SGI Altix ICE 8200

Cluster Dell

Rack de serviços

Hybrid Architectures GPGPUs

source: http://gpgpu.org/sc2009

New Products Coming

More integration into existing
hardware

Requires specific tools for
programming

More reading

� T.H. Dunning et al, Science and Engineering in the Petascale

Era, IEEE Computing in Science & Engineering,

September/October 2009

� Peter M. Kogge, The Challenges of Petascale Architectures,

IEEE Computing in Science & Engineering, September/October IEEE Computing in Science & Engineering, September/October

2009

� William D. Gropp, Software for Petascale Computing Systems,

IEEE Computing in Science & Engineering, September/October

2009

� D. Bader, Petascale Computing

Fonte: J. Dongarra, http://www.netlib.org/utk/people/JackDongarra/talks.html

from: J. Dongarra, http://www.netlib.org/utk/people/JackDongarra/talks.html

from: J. Dongarra, http://www.netlib.org/utk/people/JackDongarra/talks.html

Future HPC Systems

from: J. Dongarra, http://www.netlib.org/utk/people/JackDongarra/talks.html

Future HPC Systems

from: J. Dongarra, http://www.netlib.org/utk/people/JackDongarra/talks.html

HIGH PERFORMANCE
APPLICATIONS

Taxonomy of Parallel Applications

Explicit (Neighbor)
Communication

Few or no
communication

Embarssingly Parallel
(EP)

Explicit
Unstructured

(EU)

Explicit
Structured

(ES)

Structured
Communication

Unstructured
Communication

Communication

Implicit (Global)
Communication

Implicit
Structured

(IS)

Implicit
Unstructured

(IU)

(EU)(ES)

H. D. Simon. High performance computing: Architecture, software, algorithms.
Technical Report RNR-93-018, NASA Ames Research Center, Moffett Field, CA 94035, December 1993

Taxonomy of Parallel Applications – Computations
Changing Dynamically During Execution

Communication Dynamic
During Computation

Communication Static
During Computation

Parallel Implementation Difficulties

EIS EEU

EP

EES

Easy

EIU DES

DIS DEU

DIU

Moderate

Hard

EIS EEU

EP

EES

Monte-Carlo, MTC

Dense Linear Algebra
FD, FV
Structured Grids

Numerical Methods and Its Difficulties

Unstructured

EIU DES

DIS DEU

DIU

Structured Grids

FD, FV

FEM, FV

Unstructured
grids

Unstructured
Grids, Adaptivity …

Measuring Parallel Performance

� T1 – serial execution time (1 processor)

� TP – parallel execution time in p processors

� Speed-up ���� SP=T1/TP

� Efficiency ���� EP = T1/(pTP)� Efficiency ���� EP = T1/(pTP)

� Therefore:

EP = SP/p SP ≤≤≤≤ p EP ≤≤≤≤ 1

� Note: anomalies may happen due to other resources

(cache) as p increases– superlinear speed-up

Amdahl’s Law (1967)

� Serial fraction: s, 0 ≤≤≤≤ s ≤≤≤≤ 1

� Parallel fraction in p processors: 1-s

� Then:

� Corollary:

Scalability

� Scalability refers on how an given algorithm can

use efficiently additional processors;

� An algorithm is scalable when p increases if its

efficiency is constant as problem size increases

� Those ideas goes back to Gustafson (1988)

• http://www.scl.ameslab.gov/Publications/Gus/Amdah

lsLaw/Amdahls.html

• Benner, R.E., Gustafson, J.L., and Montry, G.R.,

Development and analysis of scientific application

programs on a 1024-processor hypercube," SAND

88-0317, Sandia National Laboratories, Feb. 1988.

Problem Scaling

� Amdahl’s law is relevant only for a fixed size
problem, or when the serial fraction is
independent of problem size, a situation hard to
find in practice.

� Often parallel fraction increases with problem
size; size;

� Parallel fraction growth rate can be
characterized keeping a fixed quantity as p
varies:

– Size n (Amdahl), computational work, execution time,
memory per processor, efficiency, etc.

� Today it’s hard to have serial time available

– Strong scaling – p increases, n fixed

– Weak scaling – p increases, n increases

Performance Measurement: NPB

NAS Parallel Benchmarks (NPB) are a small set of
programs designed to help evaluate the performance of
parallel supercomputers.

5 kernels (EP, MG, CG, 3D-FFT, IS)

http://www.nas.nasa.gov/Resources/Software/npb.html

5 kernels (EP, MG, CG, 3D-FFT, IS)

3 CFD pseudo-applications (LU, SP, BT)

see: Subhash Saini, Dale Talcott, Dennis Jespersen, Jahed Djomehri, HaoqiangJin, and Rupak Biswas, Scientific Application-
Based Performance Comparison of SGI Altix 4700, IBM Power5+, and SGI ICE 8200 Supercomputers, NAS Technical Report
NAS-09-001, February 2009

Benchmarks – NASA Parallel Benchmark bt

250000.00

300000.00

350000.00

NASA Parallel Benchmark C - SGI Altix ICE 8200 512 cores
Intel Xeon Quad-core 3.00GHz , 2GB/core RAM

Slide 98

0.00

50000.00

100000.00

150000.00

200000.00

Mop/s

16 64 256 484

#cores

bt

Benchmarks – NASA Parallel Benchmark cg

15000.00

20000.00

25000.00

NASA Parallel Benchmark C - SGI Altix ICE 8200 512 cores
Intel Xeon Quad-core 3.00GHz , 2GB/core RAM

Slide 99

0.00

5000.00

10000.00

15000.00

Mop/s

16 64 256 512

#cores

cg

Benchmarks – NASA Parallel Benchmark ft

50000.00

60000.00

70000.00

NASA Parallel Benchmark C - SGI Altix ICE 8200 512 cores
Intel Xeon Quad-core 3.00GHz , 2GB/core RAM

Slide 100

0.00

10000.00

20000.00

30000.00

40000.00

Mop/s

16 64 256 512

#cores

f t

Benchmarks – NASA Parallel Benchmark lu

100000.00

120000.00

140000.00

NASA Parallel Benchmark C - SGI Altix ICE 8200 512 cores
Intel Xeon Quad-core 3.00GHz , 2GB/core RAM

Slide 101

0.00

20000.00

40000.00

60000.00

80000.00

Mop/s

16 64 256 512

#cores

lu

Benchmarks – NASA Parallel Benchmark mg

100000.00

120000.00

140000.00

NASA Parallel Benchmark C - SGI Altix ICE 8200 512 cores
Intel Xeon Quad-core 3.00GHz , 2GB/core RAM

Slide 102

0.00

20000.00

40000.00

60000.00

80000.00

Mop/s

16 64 256 512

#cores

mg

Benchmarks – NASA Parallel Benchmark sp

60000.00

70000.00

80000.00

90000.00

NASA Parallel Benchmark C - SGI Altix ICE 8200 512 cores
Intel Xeon Quad-core 3.00GHz , 2GB/core RAM

Slide 103

0.00

10000.00

20000.00

30000.00

40000.00

50000.00

Mop/s

16 64 256 484

#cores

sp

Code Optimization and
Programming

� Optimize your code for a given class of processors

– This is what reduces CPU time

� Use all optimization TOOLS existing in the

Before even thinking in parallelizing a code:

� Use all optimization TOOLS existing in the

compiler and in the system;

� Always verify if the code is working properly;

� Always use standard libraries such as BLAS,

LAPACK, etc.

Basic Parallel Programming Models

� Distributed Memory Machines

Message Passing: send/receive

� Message Passing Library� Message Passing Library

Message Passing Interface http://www.mpi.com

call MPI_Send(...)

call MPI_Recv(...)

Basic Parallel Programming Models

� Threaded machines: compiler directives

OpenMP !$OMP PARALLEL DO PRIVATE (J)
DO J=1,M

...

ENDDO
http://www.openmp.org

OpenCL

CUDA: // send data from host to device: a_h to a_d

cudaMemcpy(a_d, a_h, sizeof(float)*N,
cudaMemcpyHostToDevice);

http://www.khronos.org/opencl/

http://www.nvidia.com/object/cuda_home.html#/

Development Tools

Numerical Libraries

– Netlib: http://www.netlib.org

– ACTS (Advanced Computational Testing and Simulation)

Toolkit http://acts.nersc.gov/

• PETSc (Portable, Extensible Toolkit for Scientific

Computation)

• ScaLAPACK library extends LAPACK's high-performance

linear algebra software to distributed memory

Why computer simulation?

From: A SCIENCE-BASED CASE FOR LARGE-SCALE SIMULATION, DOE, 2003

The process of scientific simulation

From: A SCIENCE-BASED CASE FOR LARGE-SCALE SIMULATION, DOE, 2003

HPC IN COMPUTATIONAL
MECHANICS

The world made discrete: from PDE’s The world made discrete: from PDE’s
to computer programsto computer programs

� General Form of PDE’s for Engineering Systems

Governing Equations in Eulerian Framework

NavierNavierNavierNavier----Stokes EquationsStokes EquationsStokes EquationsStokes Equations

Energy Transport EquationEnergy Transport EquationEnergy Transport EquationEnergy Transport Equation

Ω=⋅∇

Ω+=∇+∆∇⋅+
∂
∂

in

inTp
t

0

),f(q

u

c
1

u-uu
u

ρ
ν

Energy Transport EquationEnergy Transport EquationEnergy Transport EquationEnergy Transport Equation

Ω=∇⋅∇−∇⋅+
∂
∂

inThTkTc
t

T
c

pp
),()(

1
cuρρ

Mass Transfer EquationsMass Transfer EquationsMass Transfer EquationsMass Transfer Equations

Ω=∇Κ⋅∇−∇⋅+
∂
∂

inT
t

),(h)(
2

cccu
c

Parallel FEM Solver for Coupled Viscous
Flow and Transport

Eulerian Governing Equations

� Multi-phase Darcy-flow in

Porous Media:

j

ij

x∂
Φ∂−= π

π
π µ

K
u

κ

zg ⋅ρ−=Φ πππ p
jx∂πµ

()
πππ

π

π

ππ ρρ
µ

φρ
q

xt

S

j

ij +














∂
Φ∂⋅∇=

∂
∂ K

π =1, 2, ... , nphases

Governing Equations in Lagrangian Framework

� Equation of Motion for Solids and Structures:

Lagrangian Governing Equations

� Remarks:

courtesy of J. Alves

Arbitrary Eulerian Lagrangian Governing Equations

� Incompressible NS equations in ALE frame moving with
velocity w:

� Velocity w is conveniently adjusted to Eulerian (w=0), far
from moving object to Lagrangian (w=u) on the fluid-
structure interface.

� Fluid is considered attached to the body.

� Need to solve extra-field equation to define mesh
movement: our choice is to solve the Laplacian.

From Felippa, Park and Farhat (CMAME, 2001)

Fluid-structure interaction with free-surface

FEM DiscretizationFEM Discretization

� Good mathematical background and ability to handle

complex geometries by using unstructured grids

FEM Computing IssuesFEM Computing Issues

� FEM is a unstructured grid method
characterized by:
� Discontinuous data – no i-j-k addressing

� Gather-scatter operations

� Random memory access patterns� Random memory access patterns

� Data dependence

� Minimize indirect addressing is a must

� Memory complexity O(mesh parameters)

Mesh, Graphs and Sparse Matrices

Mesh Graph

Sparse
Matrix

Graph Types Associated to Meshes

2D Mesh Nodal Graph Element Graph,
Adjacency Graph
or Dual Graph

Where to place the data: graph partitioning

� NP-hard problem

� Type of partition depends on particular

architecture

– Distributed memory: minimize edge-cuts � minimize

communication

– Shared memory � avoid data dependencies

� Many problems we need to repartition on the fly:

adaptivity, for instance

Graph Partitioning for Distributed Memory Machines

METIS: http://www-users.cs.umn.edu/~karypis/metis/index.html

Example: METIS Partitioning for 8 procs

Graph Partitioning for Shared Memory

� Graph coloring or Mesh Coloring

� No adjacent node in the same color

� Applied either for node or element graphs

� Simple and fast greedy algorithm is generally Simple and fast greedy algorithm is generally

enough

Example: Mesh coloring

46 colors

Demonstration Problems

� Where does my performance go? Effects of

Memory Speed

– Los Angeles Class Submarine

� Wireless Cluster experiment� Wireless Cluster experiment

� Rayleigh-Benard

– Algorithmic improvements

– Pushing our limits

– Parallel visualization

Effects of Memory Speed

From Jack Dongarra, 2002

From Jack Dongarra, 2002

From Jack Dongarra, 2002

Los Angeles Class Submarine

504,947 tetrahedra
92,564 points
623,003 edges

Reordering Graph

� Improve cache utilization

� Minimize data movement in memory hierarchy

� Improve data locality

� Minimize indirect addressing effectsMinimize indirect addressing effects

� Reorder graph nodes and edges

� Maximize processor performance

Original Order

New Order

Solution times on PIV 1.8GHz

Original

20

25

30

35

C
PU

 T
im

es
 (
s)

Reordered

0

5

10

15

C
PU

 T
im

es
 (
s)

Los Angeles Class Submarine

Flow around a Los Angeles Class Submarine

138

METIS partition
16 procs

Parallel Performance

800.00

1000.00

1200.00

1400.00

1600.00

T
im

e
(s

ec
o

n
d

s)

Cray XD1 (Opteron 1.8 GHz)

SGI ALTIX 3700 (Itanium-2 1.3 GHz)

SGI ALTIX 3700 (Itanium-2 1.5 GHz)

4000

5000

6000

7000

8000

9000

T
im

e
(s

ec
o

n
d

s)

Element

Simple edge

139

0.00

200.00

400.00

600.00

1 2 4 8 16 32

Number o f CP Us

T
im

e
(s

ec
o

n
d

s)

0

1000

2000

3000

4000

1 2 4 8 16 32

Num be r of CP Us
T

im
e

(s
ec

o
n

d
s)

(Left) Message passing performance in SGI Altix and Cray XD1 – edge-based data structure,
(Right) Data structure comparisons on SGI Altix (MPI).

What we have learned from the applications

� HPC can transform engineering and
science

� Porting a code is not the issue:
performance needs code reformulation
and new data structures

� Focus is not the hardware: we need stable
and effective programming models,
scaling upwards

140

and effective programming models,
scaling upwards

Wireless Cluster Experiment

� mini-cluster formed by 4 laptops

and a wireless/fast-ethernet

network

� 2 Intel Centrino 1.6 GHz/512Mb,

1 Intel Centrino 1.3 GHz /512Mb

141

1 Intel Centrino 1.3 GHz /512Mb

and 1 Intel Pentium 4 2.4

GHz/512Mb

� Interconnection: Linksys

Wireless-B Hub, IEEE

802.11b/2.4GHz/11Mbps or

Fast-Ethernet 10/100Mbps

network

Wireless Cluster Experiment

2
3
1
4
.
9
1

1250.00

1500.00

1750.00

2000.00

2250.00

2500.00

2750.00

3000.00

T
im

e
 (

se
c)

WIRELESS

FAST-ETHERNET

142

3
9
8
.
6
6

5
2
3
.
0
2

3
9
8
.
6
6

1
7
8
.
6
9

1
5
4
.
5
2

0.00

250.00

500.00

750.00

1000.00

1250.00

1 2 4

Numbe r of Cluste r Node s

(Left) Minicluster mobile wireless/fast-ethernet,
(Right) Performance comparison between wireless and fast-ethernet networks.

Algorithmic Advances for Coupled Fluid Flow
and Transport: Adaptive Time Stepping and

Inexact Newton Method

MESH SIZE:

Elements..............: 93,925

Nodes.................: 21,384

Edges.................: 120,306

Flow equations........: 70,536

143

Transport equations...: 19,008

DIMENSIONLESS NUMBERS:

Prandtl...............: 0.72

Rayleigh..............: 30,000

From Griebel M., Dornseifer T. and Neunhoeffer T, “Numerical Simulation in Fluid Dynamics: A Practical

Introduction”, SIAM, 97

Performance Gains by Adaptive Time Stepping and
Inexact Newton

Max IN Tol CFL min CFL max SS time time steps wall time

0.001 2 10 0.5686 109 1110.49

5 0.2410 90 855.42

2 0.1829 171 1184.81

0.1 2 10 0.5635 108 803.89

144

5 0.2418 90 637.71

2 0.1840 172 1017.02

0.99 2 10 0.7436 142 1652.06

5 0.2417 90 991.96

2 0.1839 172 1501.97

SS Tolerance: 10-5 Transport P-GMRES Tol: 10-3 # Krylov Space Vectors: 25

Valli, Elias, Carey, Coutinho, PID adaptive control of incremental and arclength continuation in nonlinear applications,
Int. J. Numer. Meth. Fluids 2009; 61:1181–1200

Pushing our limits:
Rayleigh-Benard 4:1:1 on a fine mesh

145

Elements..............: 39,140,625
Nodes.................: 7,969,752
Edges.................: 43,833,636
Flow equations........: 31,879,008
Transport equations...: 7,642,824

Time steps: 2,9544
Mesh generation: SGI Altix 450 128GB RAM
Solver: SGI Altix ICE 8200, 128 cores, MPI

Software Tools

� Visualization:

– http://www.paraview.org/

� Mesh Generation: NETGEN

– http://www.hpfem.jku.at/netgen/

146

� Code Tuning and Profiling

– TAO: Toolkit for Advanced Optimization

• http://www-unix.mcs.anl.gov/tao/

– TAU: Tuning and Analysis Utilities

• http://www.cs.uoregon.edu/research/tau/home.php

1M tets in 1 click!

TAU Parallel Profiling

147

SGI Altix ICE 8200, 128 cores

Parallel Remote Visualization

SGI Altix ICE 8200 152 cores
Paraview: data in xdmf/hdf5
parallel formats
all memory available allocated

148

Steady-state temperature field

Final Remarks

� Computational Engineering and Science changed

the way we view engineering

� There is no general approach

� Integrated approach: HPC, Visualization, Storage

and Communications

� Challenges:

– Managing complexity: programming models, data structures

and computer architecture � performance

– Understanding the results of a computation: visualization,

data integration, knowledge extraction

– Collaboration: grid, web, data security

Acknowledgements

� Collaborators: J. Alves, L. Landau, F. Rochinha, A.
Loula (LNCC), S. Malta (LNCC), P. Sampaio (IEN),
G. Carey (UT-Austin), T. Tezduyar (Rice)

� Students (and ex): M. Martins, M. Cunha,
R. Sydenstricker, L. Catabriga, C. Dias, A. Valli,
P. Hallak, I. Slobodcicov, P. Antunes, D. Souza,
P. Sesini, A. Silva, R. Elias. A. Mendonça, W. Ney, P. Sesini, A. Silva, R. Elias. A. Mendonça, W. Ney,
J. Camata, A. Rossa

� Funding: CNPq, CAPES, FINEP/CTPetro, IBM, ANP,
Petrobras

� Computational Resources: NACAD, TACC

