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The purpose of this book is to give an easily accessible introduction to thefinite
element method as a general method for the numerical solution of partial
differential equations in mechanics and physics covering all the three main
types of equations, namely elliptic, parabolic and hyperbolic equations. The
main part of the text is concerned with linear problems, but a chapter
indicating extensions to some nonlinear problems is also included. There is
also a chapter on finite element methods for integral equations connected with
elliptic problems. The book is based on material that I have used in
undergraduate courses at Chalmers University of Technology, Goteborg. The
first half of the book (Chapters 1-7), which treat elliptic problems in a rather
standard way, is a translation of a textbook in Swedish that appeared 1981
[Jl]. Two chapters on parabolic and hyperbolic problems present recent
developments based on my work on discontinuous Galerkin and streamline
diffusion type finite element methods using, in particular, finite elements for
the time discretization as well. For first order hyperbolic problems these are
the first finite element methods with satisfactory properties and thus show
promise of extensive applications. For parabolic problems, time-discretization
by the discontinuous Galerkin method gives new efficient methods and makes
a precise error analysis with associated automatic time step control possible
for the first time.

The emphasis of the text is on mathematical and numerical aspects of the
finite element method but many applications to important problems in
mechanics and physics are also given. I have tried to keep the mathematics
as simple as possible while still presenting significant results and maintaining
a natural mathematical framework . Lately I have used the text of the book
as part of the material in a series of undergraduate courses on partial
differential equations leading up to graduate level treating in integrated form
both mathematical questions on existence and regularity together with
numerical methods. I have found this to be a fruitful approach where, on one
hand the numerical methods can be given the necessary mathematical
background, and on the other hand, the fascinating and important techniques
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of solving differential equations numerically using computers can give crucial
motivation for the theoretical mathematical studies. In fact , the numerical and
mathematical aspects are intimately connected and the new possibilities of
computer simulation makes proper understanding of the mathematical
structure and properties of the mathematical models very important also in
applications. In the present book only a bare minimum of mathematical
background is included and the reader is referred to the literature for a more
complete account.

The list of references is limited and many contributions important for the
development of the various subjects have been omitted. I have given just a
few references leading into the very rich literature on finite element methods.

I want to thank Prof Raymond Chandler for revising the English , Tekn Lie
Peter Hansbo for supplying most of the numerical results and Dr Kenneth
Eriksson for reading parts of the material. Special thanks also to Mrs Yumi
Karlsson who swiftly typed a first version of the text and with great patience
helped me with seemingly endless alterations and corrections.

0. Introduction

0.1 Background
The mathematical models of science and engineering mainly take the form
of differential or integral equations. With the rapid development of high speed
computers over the last decades the possibilities of efficiently utilizing these
models have dramatically increased. Using computer-implemented math-
ematical models, one can simulate and analyze complicated systems in
engineering and science. This reduces the need for expensive and time-
consuming experimental testing and makes it possible to compare many
different alternatives for optimization, etc. In fact, with the new possibilities
an intense activity has started in Computer Aided Design, Engineering and
Manufacturing (CAD, CAE and CAM) which is bringing revolutionary
changes to engineering science and practice, and a new scientific field
“scientific computing” is emerging as a complement to theoretical and
experimental science.

To use mathematical models on a computer one needs numerical methods.
Only in the very simplest cases is it possible to find exact analytical solutions
of the equations in the model, and in general one has to rely on numerical
techniques for finding approximate solutions. The finite element method
(FEM) is a general technique for numerical solution of differential and integral
equations in science and engineering. The method was introduced by
engineers in the late 50’s and early 60’s for the numerical solution of partial
differential equations in structural engineering (elasticity equations, plate
equations, etc). At this point the method was thought of as a generalization
of earlier methods in structural engineering for beams, frames and plates,
where the structure was subdivided into small parts, so-called finite elements,
with known simple behaviour. When the mathematical study of the finite
element method started in the mid 60’s it soon became clear that in fact the
method is a general technique for numerical solution of partial differential
equations with roots in the variational methods in mathematics introduced in
the beginning of the century. During the 60’s and 70’s the method was

Goteborg in July 1987

Claes Johnson
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developed, by engineers, mathematicians and numerical analysts, into a
general method for numerical solution of partial differential equations and
integral equations with applications in many areas of science and engineering.
Today, finite element methods are used extensively (often integrated in CAD
or CAE-systems) for problems in structural engineering, strength of materials,
fluid mechanics, nuclear engineering, electro-magnetism, wave-propagation,
scattering, heat conduction, convection-diffusion processes, integrated cir-
cuits, petroleum engineering, reaction-diffusion processes and many other
areas.

hind ufleVj, such that F( uh )^F( v ) for al l veVh.

This problem is equivalent to a (large) linear or nonlinear system of equations.
The hope is now that the solution uh of this problem is a sufficiently good
approximation of the solution u of the original minimization problem (M),
ie, the original partial differential equation. Usually one chooses Vh to be a
subset of V (in other words Vh <= V, ie, if veVh then veV) and in this case
(Mh) corresponds to the classical Ritz-Galerkin method that goes back to the
beginning of the century. The special feature of a finite element method as
a particular Ritz-Galerkin method is the fact that the functions in Vh are
chosen to be piecewise polynomial. As will be seen below, one may also start
from more general variational formulations than the minimization problem
(M); this corresponds eg to so-called Galerkin methods.

To solve a given differential or integral equation approximately using the
finite element method, one has to go through basically the following steps:

(i) variational formulation of the given problem,
(ii) discretization using FEM: construction of the finite dimensional space

( A*h )

0.2 Difference methods - Finite element methods
The basic idea in any numerical method for a differential equation is to
discretize the given continuous problem with infinitely many degrees of
freedom to obtain a discrete problem or system of equations with only finitely
many unknowns that may be solved using a computer. The classical numerical
method for partial differential equations is the difference method where the
discrete problem is obtained by replacing derivatives with difference quotients
involving the values of the unknown at certain (finitely many) points.

The discretization process using a finite element method is different. In this
case we start from a reformulation of the given differential equation
equivalent variational problem. In the case of elliptic equations this variational
problem in basic cases is a minimization problem of the form

Find ueV such that F(u)sSF(v) for all veV,

where V is a given set of admissible functions and F:V
F(v)eR for all veV with R denoting the set of real numbers). The functions
v in V often represent a continuously varying quantity such as a displacement
in an elastic body, a temperature, etc, F(v) is the total energy associated with
v and (M) corresponds to an equivalent characterization of the solution of the
differential equation as the function in V that minimizes the total energy of
the considered system. In general the dimension of V is infinite (ie the
functions in V cannot be described by a finite number of parameters) and thus
in general the problem (M) cannot be solved exactly. To obtain a problem
that can be solved on a computer the idea in the finite element method is to
replace V by a set Vh consisting of simple functions only depending on finitely
many parameters. This leads to a finite-dimensional minimization problem
of the form:

Vh,
(iii) solution of the discrete problem,
(iv) implementation of the method on a computer: programming.

Often there are several different variational formulations that may be used
depending eg on the choice of dependent variables. The choice of finite
dimensional subspace Vh, ie, essentially the choice of the finite element
discretization or the finite elements, is influenced by the variational formu-
lation , accuracy requirements, regularity properties of the exact solution etc.
To solve the discrete problem one needs optimization algorithms and/or
methods for the numerical solution of large linear or nonlinear systems of
equations. In this book we shall consider all the steps (i) — (iv) with (iv) kept
at an introductory level.

The advantage of finite element methods as compared with finite difference
methods is that complicated geometry, general boundary conditions and
variable or non-linear material properties can be handled relatively easily. In
all these cases one meets unneccessary artificial complications with finite
difference methodology. Further, the clear structure and versatility of the
finite element method makes it possible to construct general purpose software
for applications and there is also a large number of more or less general finite
element codes available. Also, the finite element method has a solid
theoretical foundation which gives added reliability and in many cases makes
it possible to mathematically analyze and estimate the error in the approxi-
mate finite element solution.

as an

(M)

R is a functional (i e
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The problem sections play an important role in the presentation and the
reader is urged to spend time to solve the problems.

As a general reference giving a more detailed presentation of the material
in Chapters 1 to 5, we refer to [Ci] (see also [SF]). For variational methods
for partial differential equations in mechanics and physics, see e g [DL], [ET]
and [Ne].

0.3 Scope of the book
The purpose of this book is to give an introduction to the finite element
method as a general technique for the numerical solution of partial differential
and integral equations in science and engineering. The focus is on mathemat-
ical and numerical properties of the method, but we also consider many
important applications to problems from various areas. An effort has been
made to keep the mathematics simple while still presenting significant results
and considering non-trivial problems of practical interest.

We will consider the three main types of partical differential equations, ie,
elliptic, parabolic and hyperbolic equations. To connect these types of
equations with problems in mechanics and physics, we recall that elliptic
equations model for example static problems in elasticity, parabolic equations
model time-dependent diffusion dominated processes, and hyperbolic
equations are used to describe convection or wave-propagation processes. We
also give an introduction to finite element methods for boundary integral
equations associated with elliptic boundary value problems in mechanics and
physics. These methods are referred to as boundary element methods (BEM).
We will mainly consider linear problems and only briefly comment on some
non-linear ones.

The material presented concerning elliptic problems is by now standard ,
but for parabolic and hyperbolic problems we present recent developments
that have not earlier appeared in text books. With these later contributions
it is possible to give a unified treatment of the three main types of partial
differential equations as well as boundary integral equations. In all cases we
emphasize the basic role played by the stability properties of the finite element
method and the relation to the corresponding properties of the partial
differential or integral equation.

The book is an extended version of an earlier book in Swedish by the author
that has been used for several years in undergraduate courses for engineering
students at Chalmers University of Technology, Goteborg, Sweden, and also
at other Scandinavian universities.

The necessary prerequisites are relatively moderate: Basic courses in ad-
vanced calculus and linear algebra and preferably some acquaintance with the
most well-known linear partial differential equations in mechanics and
physics, such as the Poisson equation, the heat equation and the
equation. With some oversimplification we may say that the mathematical
tools used in the book reduce to the following: Green’s formula, Cauchy’s
inequality and elementary calculus and linear algebra.

wave
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1. Introduction to FEM for elliptic where E is the modulus of elasticity . If we take here E=\ and eliminate o,
we obtain ( D ).

ifx
¥

%A ¥

u (x)

Fig 1.1
In this chapter we introduce FEM for some elliptic model problems and study
the basic properties of the method. We first consider a simple one-dimensional
problem and then some two-dimensional generalizations.

B An elastic cord

Consider an elastic cord with tension 1, fixed at both ends and subject to
transversal load of intensity f (see Fig 1.2). Assuming again small displace-
ments, we have that the transversal displacement u satisfies (D) (cf Problem
1.2) .1.1 Variational formulation of a one-dimensional

model problem
Let us consider the two-point boundary value problem

for 0<x<l, u (x)— u"(x) — f(x)
u(0)= u(l)=0,( D )

Fig 1.2dvwhere v and f is a given continuous function. By integrating the
dx

equation -u"=f twice, it is easy to see that this problem has a unique solution
u. We recall that the boundary value problem (D) can be viewed as modelling,
in particular , the following situations in continuum mechanics:

C Heat conduction

Let u be the temperature and q the heat flow in a heat conducting bar, subject
to a distributed heat source of intensity f. Assuming the temperature to be
zero at the end points, we have in the stationary case

(Fourier’s law),
(conservation of energy),

A An elastic bar

Consider an elastic bar fixed at both ends subject to a tangential load of
intensity f (x) (see Fig 1.1). Let o(x) and u(x) be the traction and tangential
displacement at x, respectively, under the load f. Under the assumption of
small displacements and a linearly elastic material , we have in the interval

-q = ku'
q' =f

u(0) =u(l)=0,

where k is the heat conductivity, which again gives (D) if k=l.

We shall now show that the solution u of the boundary value problem or
differential equation (D) also is the solution of a minimization problem ( M )
and a variational problem (U). To formulate the problems (M) and (U) we
introduce the notation

(0,1)

(Hooke’s law),
(equilibrium equation),
(boundary conditions),

o =Eu'
— o' — f
u(0) = u(l)=0

1514



(v,w)= J v(x)w(x)dx, since by (1.1), ( u # , w' )-(f , w ) = ( ) and (w \ w')^(), which shows that u is a
solution of (M). On the other hand , if u is a solution of (M) then we have
for any veV and real number e

F(u)^F(u+ev),

since u +eveV. Thus, the differentiable function

o
for real-valued piecewise continuous bounded functions. We also introduce
the linear space

V ={v: v is a continuous function on [0,1], v' is piecewise
continuous and bounded on [0,1], and v(0)=v(l)=0},

\ (u' , u ' )+ e(u \ v')+-|(v', u)-e(f , v),and the linear functional F: V —> R given by g(e)=F(u +ev)=-
1F(v)=|(v'. v')-(f, v).

has a minimum at e=0 and hence g'(0)=0. But
The problems (M) and (F) are the following:

Find ueV such that F(u)^F(v)
Find ueV such that (u \ v')=(f , v) VveV.

Let us notice that in the context of the problems A and B above, the quantity
F(v) represents the total potential energy associated with the displacement

veV. The term - (v' , v' ) represents the internal elastic energy and (f ,v) the

load potential. Thus, the minimization problem (M) corresponds to the
fundamental Principle of minimum potential energy in mechanics. Further the
variational problem (F) corresponds to the Principle of virtual work .

Let us now first show that the solution u of ( D) also is a solution of ( V).
To see this we multiply the equation — u"=f by an arbitrary function veV,
a so-called test funtion v, and integrate over the interval (0, 1) which gives

g'(0)= (u ' , v')-(f, v),
(M) VveV,

and we see that u is a solution of (F).
Let us also show that a solution to (F) is uniquely determined. Suppose then

that ui and U2 are solutions of (F), ie, ui, U2eV and

(u{, v')=(f , v) VveV,
(U2, v # )=(f , v)

Subtracting these equations and choosing v= ui — U2eV, we get

( V)

VveV.

l
J (ul ~ u2)2 dx=0,
0

which shows that

ui(x)-u2(x)=(ui-u2)'(x)=0

It follows that (ui — U2)(x) is constant on [0,1] which together with the
boundary condition ui(0)=u2(0)=0 gives ui(x)= u2(x), Vxe[0,l], and the
uniqueness follows.

To sum up, we have shown that if u is the solution to (D), then u is the
solution to the equivalent problems (M) and ( F) which we write symbolically

Vxe[0, 1].v
-(u", i)= (f , v).

We now integrate the left-hand side by parts using the fact that v(0)=v(l) =0
to get

~(u", v)=-u'(l)v(l)+ u'(0)v(0)+(u', v' )= (u', v'),

and we conclude that
as

(u\ v')=(f , v)(1.1) VveV,

which shows that u is a solution of (F).
Next, we show that the problems (F) and (M) have the same solutions.

Suppose then first that u is a solution to (F), let veV and set w=v-u so that
v= u +w and weV. We have

(/>) => (V)*> (Af).
Let us finally also indicate how to see that if u is the solution of (F) then u
also satisfies (D). Thus, we assume that ueV satisfies

l l
Ju'v'dx-Jfvdx=0 VveV.

1 o oF(v)=F(u +w)=- (u'+w\ u ' +w')-(f , u+w)

(u\ u')-(f , u)+(u' , w')-(f , w)+i (w' , w')3=F(u),
If we now assume in addition that u" exists and is continuous, then we can
integrate the first term by parts to get, using the fact that v(0)=v(l)=0,

16 17



1 V— J(u"+f)vdx=0 VveV.
o

But with the assumption that (u"+f ) is continuous this relation can only hold
if (cf Problem 1.1)

(u"+f)(x)=0 0<x<l,

and it follows that u is the solution of (D).
Thus we have seen that if u is the solution of (V) and in addition satisfies

a regularity assumpton (u" is continuous) , then u is the solution of (£)). It is
now possible to show that if u is the solution of (V), then u in fact satisfies
the desired regularity assumption and thus we have (V ) ( D ) which shows
that the three problems (D), ( VO and ( M ) are equivalent (cf Section 1.5
below).

Fig 1.3 Example of a function veVh

We observe that Vh <=V. As parameters to describe a function veVh we may
choose the values rjj=v(xj) at the node points xj, j=0,. . . , M+l . Let us
introduce the basis functions cpjeVh, j= l,. . . , M, defined by

1 if i= j
0 if i =Aj, i, j = l,. M,

i e, cpj is the continuous piecewise linear function that takes the value 1 at node
point xj and the value 0 at other node points (see Fig 1.4).

<Pj(xi)=Problems
Show that if w is continuous on [0, 1] and1.1

wvdx=0 VveV,
o

then w(x)=0 for xe[0, 1].
Show that under suitable assumptions the problem B above can be
given the formulation (1.1).

1.2 1 - -

x
1Xj-1 Xj Xj+1

Fig 1.4 The basis function cpj1.2 FEM for the model problem with piecewise
linear functions

A function veVh then has the representation
We shall now construct a finite-dimensional subspace Vh of the space V
defined above consisting of piecewise linear functions. To this end let
0=xo<xi . . . <XM<XM+ I =1, be a partition of the interval (0,1) into subinter-
vals Ij=(xj-i , Xj) of length hj=Xj — Xj _ i , j=l, . . M+l and set h = max hj.
The quantity h is then a measure of how fine the partition is. We now let Vh
be the set of functions v such that v is linear on each subinterval Ij , v is
continuous on [0,1] and v(0)=v(l)=0 (cf Fig 1.3).

M
v(x)= 2 T)iCpi(x) , xe[0,l],

i = l

where r]j =v(xj), ie, each veVh can be written in a unique way as a linear
combination of the basis functions cpj. In particular it follows that Vh is a linear
space of dimension M with basis {<Pi}i^i -

The finite element method for the boundary value problem (D) can now
be formulated as follows:

1918



~2 dx + JJ +‘-4
Xj-lhj xj ** j +l

(<pj. <pj-l) = (q>j-l » «pj) = — f
xj—1 n j

Note also that the matrix A is symmetric and positive definite since

(M) xiFind UheVh such that F(uh) =£F(v) VveVh.

In the same way as above for the problems (M) and (V), we see that (Afh)
is equivalent to the finite-dimensional variational problem (Vh): Find UheVh
such that

1 . 1
<Pj' ) = J dx =

hj hj+1

and for j=2, . . M,
11—2 dx = —(1.2) (uh' , v ' )=(f , v) VveVh.

Thus the finite element method for (D) can be formulated as (14) or
equivalently (Afh) . The problem (14) is usually referred to as Galerkins
method and (A/h) as Ritz’ method. We observe that if UheVh satisfies (1.2),
then in particular

hiJ

M
(cpi', <Pj' )= ( <Pj' > <Pi ' ) and with v(x)= 2 rijCpj(x), we have

J = I
MMM

2 r)i(cpi\ qpj')rij=(Irii^pi', 2 nj<Pj' )=(v' > v')^°>
i, j= i i=1 i =1

with equality only if v'=0, that is since v(0) =0 only if v=0, or r] j =0 for j=l,
. . M. We recall that a symmetric MxM matrix S=(sjj) is said to be positive
definite if

(1.3) K', qpj')=(f , cpj)
and if these equations hold, then by taking linear combinations, we see that
Uh satisfies (1.2). Since

j= l, • • M,

M
Muh(x)= 2 £i <Pi(x), ii=uh(xi ) , VqeRM, r]^0,r) • Sr|= I rjiSijrjjX)
j= i

where the dot denotes the scalar product in RM. We also recall that a
symmetric matrix S is positive definite if and only if the eigenvalues of S are
strictly positive.

Since a positive definite matrix is non-singular it follows that the linear
system (1.5) has a unique solution. We also note that A is sparse, ie, only
a few elements of A are different from zero (A is tridigagonal). This very
important property depends, as we have seen, on the fact that a basis function
cpj of Vh is different from zero only on a few intervals and thus will interfere
only with a few other basis functions. The fact that the basis functions may
be chosen in this way is an important distinctive feature of the finite element
method.

i = l

we can write (1.3)
M

(1.4) S!i(cpi \ «Pj')= (f , <Pj) j= l , . . M,
i= l

which is a linear system of equations with M equations in M unknowns
£i, • • £M - In matrix form the linear system (1.4) can be written as

A£=b,

where A=(ajj) is the MxM matrix with elements ajj=(q)j', qpj '), and where
£M) and b=(bi , . . b\i) with bj=(f , cpj) are M-vectors:

an . . aiM

(1.5)

?i bi 1 the systemIn the special case of a uniform partition with hj = h =
(1.5) takes the form

A= , 5= , b= M + l
bM3M1 • aMM,

The matrix A is called the stiffness matrix and b the load vector , with
terminology from early applications of FEM in structural mechanics.

The elements ajj=(cp;', cpj') in the stiffness matrix A can easily be computed:
We first observe that (cpj', cpj')=0 if |i-j|>l since in this case for all xe[0, l ]
either qpj(x) or cpj(x) is equal to zero. Thus, the matrix A is tri-diagonal, ie,
only the elements in the main diagonal and the two adjoining diagonals may
be different from zero. We have for j= l , . . ., M,

1 ' 2 -1 0 • • • • 0
-1 2 -1 0

fell [bil
h

0 -1 2 *(1.6)

00
. 2 •

• 0 ’-1 2
-1
|M b\i0
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After division by h this may be interpreted as a variant of a standard differencemethod for (D) where the elements of the right hand side bj/h are mean valuesof f over the intervals (xj_ i , xj+ i) (cf Problem 1.4).
To sum up, we have seen that the finite element method (Vh) for (D) leads

to a linear system of equations with a sparse, symmetric and positive definitestiffness matrix .

(b) Show that the problem ( 1.7 ) can be given the following variational
formulation: Find ueW such that

VveW,

where W= {v : v and v' are continuous on [0, 1], v" is piecewise
continuous and v(0)=v'(0)=v(l )=v'( l ) =0}.

(c) For I=[a , b] an interval , define

P3(I)={v: v is a polynomial of degree^3 on I , ie , v has the form
v(x)=a3X3+ a2X2+aix+ao, xel where ajeR}.

Show that veP3(I) is uniquely determined by the values v(a) , v'(a) ,
v(b), v'(b) . Find the corresponding basis functions (the basis function
corresponding to the value v(a) is the cubic polynomial v such that
v(a)= l , v'(a)=0, v(b)=v'(b) =0, etc) .

(d) Starting from (c) construct a finite-dimensional subspace Wh of W
consisting of piecewise cubic functions. Specify suitable parameters to
describe the functions in Wh and determine the corresponding basis
functions.

(e) Formulate a finite element method for (1.7) based on the space Wh.
Find the corresponding linear system of equations in the case of a
uniform partition . Determine the solution in eg the case of two
intervals and f constant . Compare with the exact solution .

(u", v")=(f , V)

Problems
1.3 Construct a finite-dimensional subspace Vh of V consisting of functions

which are quadratic on each subinterval Ij of a partition of I =(0, 1).How can one choose the parameters to describe such functions? Findthe corresponding basis functions. Then formulate a finite element
method for (D) using the space Vh and write down the correspondinglinear system of equations in case of a uniform partition.
Formulate a difference method for (D) and compare with (1.6).
Consider the boundary value problem

0<x<l ,

u(0)=u'(0)=u(l)=u'(l)=0.

Here u represents e g the deflection of a clamped beam subject
transversal force with intensity f (see Fig 1.5).

1.4

1.5

d4u f,(1.7) dx4

to a

1.3 An error estimate for FEM for the model
problem

Fig 1.5

(a) In mechanics this beam problem would naturally be formulated asfollows:

(1.8a)
(1.8b)
(1.8c)

We shall now study the error u-Uh where u is the solution of ( D) and Uh is
the solution of the finite element problem ( Vh) , ie , UheVh and uh satisfies
(1.2). The proof is based on the following equation for the error:

VveVh.

This follows by recalling that (u' , v')=(f ,v) , VveV, so that in particular since
Vh <=V

M=u",
M"=f,
u(0)=u'(0)=u(l)=u'( l)=0.

What does here the quanity M represent and what is the mechanicalinterpretation of (1.8a-c)?

0<x<l ,
(1.9) ((u-uh)' , v')=00<x<l ,

(1.10) (U \ V')=(f, v) VveVh.
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Subtracting (1.2) from (1.10) we obtain (1.9).We shall use the notation It is easy to see ( cf any basic course in numerical analysis or Problem 4.1 below)
that if UheVh is chosen in this way , then for O^x^ l ,

(1.12)
l |u '(x)-Uh(x)|^ h max |u"(y)|,w||= (w, w)l/2=(f w2dx)1/2;

0
h2||*|| is the norm associated with the

Cauchy's inequality:
|u(x)-uh(x)|^max |u"(y)|.

Oo^y^l

Using (1.12) and Theorem 1.1 we now obtain the following estimate for the
derivative of the error u-Uh:

(1.14)

(1.13)scalar product (. , .). We also recall

(1-11)

We shall prove the following estimate for usense Uh is the best possible
|(u-Uh),||^ h max |u"(y)|.-Uh which shows that in a certainapproximation to the exact solution u.

0^ys=l

Since (u-Uh)(0) =0 we obtain from (1.14) by integration the following
estimate for the error itself (cf Problem 1.6):
(1.15)

Theorem 1.1. For any veVh we have
||(u-uh)'|N|(u-v)'||. |u(x)-Uh(x)|^ h max |u"(y)| for O^x^ l .

We observe that this latter estimate is less sharp than the estimate (1.13) for
the interpolation error where we have a factor h2. With a more precise analysis
it is possible to show that in fact also the finite element method gives a factor
h2 for the error u-Uh (cf also Problem 1.19 below).

Let us note that the quantity u', representing a deformation or a force in
Examples A and B above, is usually of more (or at least no less) practical
interest than the quantity u itself , representing in these cases a displacement.
Thus the estimate (1.14) is of independent interest and not just a step on the
way to an estimate of u — Uh.

Let us also notice that to prove (1.14) we do not need to concretely construct
Uh (which would require knowledge of the exact solution u); we only have to
be able to give an estimate of the interpolation error, for instance of the form
(1.12), (1.13).

To sum up, by Theorem 1.1 we have the qualitative information that
11(u — Uh)' 11 is “as small as possible” and by using also the interpolation estimate
(1.12) we obtain the quantitative error estimate (1.14), which in particular
shows that the error tends to zero as the maximum length of the subintervals
Ij tends to zero if u" is bounded on [0, 1].

Proof Let veVh be arbitrary and
with v replaced by

set w= Uh~v. Then weVh and using (1.9)w, we get, using Cauchy’s inequality also,
Il(u-uh)'||2=((u-uh)\ (u-uh)')+((u-uh)\ w')=((u-uh)\ (u-uh+w)')=((u-uh)' , (u-v)')«||(u-uh)'|| ||(u-v)'||.

Dividing by ||(u-uh)'||
||(u-uh)'||=0,

we obtain the statement ofthen the theorem clearly holds).
the theorem (if

From Theorem 1.1 we can obtain a quantitative estimate for the error||(u-Uh)'|| by estimating ||(u-Uh)'|| where UheVh is a suitably chosenfunction. We shall choose UheVh to be the interpolant of u, i e, Uh interpolatesu at the nodes xj, ie,

Problem
Prove (1.15) using (1.14) and the boundary conditions
u(0)= Uh(0)=0. Hint: Use the relation

1.6

(u-uh)(x) = J (u-uh)'(y)dyPig 1.6 The interpolant
0

together with Cauchy’s inequality.24
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1.4 FEM for the Poisson equation
We will now consider the following boundary value problem for the Poisson
equation:

(1.16a)

(1.16b)

wdx + f v — dx = Jvwnj ds,

Q Sxi 1'
fi 3x

i = l ,2.
( 1.17 )

3v 3v _ j
3xi’ 3x2 /

J we get from
Denoting by Vv the gradient of v, ie, Vv=
(1.17) the following Green’s formula:

- 3v 3w

n 9xi 9xi

— Au=f in Q,

u =0 on T,

where Q is a bounded open domain in the plane R2={x =(xi , X2): xieR} with
boundary T, f is a given function and as usual ,

32u 32u
3xj 8x2

A number of problems in physics and mechanics are modelled by (1.16); u
may represent for instance a temperature, an electro-magnetic potential or
the displacement of an elastic membrane fixed at the boundary under a
transversal load of intensity f (see Fig 1.7 and compare also with problem B
of Section 1.1).

§1- dx
3X2 3X2

„2 + ?̂1 d*
Q 3xj

J Vv • Vw dx=J
Q

3w3w
=1 V ni + v 9X23X2r »l 3xi

Au =
= Jv — ds- J vAw dx ,

r 3n Q

f V v • Vw d x= f v — ds-JvAw d x ,

Q r a

ie,

(1.18)

where
3w3w _ 3w

3n 3Ki
ni -f r— n2

3X2

is the normal derivative, ie, the derivative in the outward normal direction

to the boundary T.
We shall now give a variational formulation of problem (1.16). We shall

first show that if u satisfies (1.16), then u is the solution of the following

variational problem: Find ueV such that

VveV,

J fdx

,U (x)

Fig 1-7 a(u, v)=(f , v)(1.19)

Let us now before continuing recall a certain Green’s formula which will
be of fundamental importance in what follows. Let us start from the diverg
theorem (in two dimensions):

/ div A dx=J A • n ds,

where
. dx,

3xi 3xi 3x2 3x2 .

3u 3v
a(u, v)= J Vu • Vvdx= jf

Q Ql

(f , v)= Jfvdx,
Q

V={v: v is continuous on Q, and
3xi 3x2

ence

Q r are piecewise
where A=(Ai, A2) is a vector-valued function defined on Q,

3Ai 3A2
3XI 3x2 ’

and n = (nj, n2) is the outward unit normal to T. Here dx denotes the element
of area in R2 and ds the element of arc length along T. If we apply the
divergence theorem to A=(vw, 0) and A=(0, vw), we find that

continuous on Q and v=0 on T}.

In exactly the same way as in Section 1.1, we see that ueV satisfies (1.19) if

and only if u is the solution of the following minimization problem: Find ueV

such that F(u)^F(v), VveV, where F(v) is the total potential energy

div A=

F(v)=i a(v, v) (f, v).

26
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Here V|K denotes the restriction of v to K , ie, the function defined on K

agreeing with v on K. The space Vh consists of all continuous functions that
_ _ each triangle K and vanish on T. We notice that VhczV. As

to describe a function veVh we choose the values v(Nj) of v at
. . , M, of Th (see Fig 1.8) but exclude the nodes on the

T. The corresponding basis functions cpjeVh,

Io see that (1.19) follows Irom (1.16) we multiply (1.16a) with an arbitrarytest function veV and integrate over Q. According to Green’s formula (1.18)we then have
i

are linear on
parameters
the nodes Nj, i= l, .(f, v)=-/ Au vdx=- f —

Q 3n
v dx+ jVu * Vv dx=a(u, v),

Q

where the boundary integral vanishes since v=0 on T. On the other hand, ifueV satisfies (1.19) and u is sufficiently regular, then we see as in Section 1.1that u also satisfies (1.16) (cf Problem 1.10).
Let us now construct a finite-dimensional subspace Vh of V. For simplicitywe shall assume that T is a polygonal curve, in which case we say that Q isa polygonal domain (if T is curved we may first approximate T with a polygonalcurve, see Chapter 12). Let us now make a triangulation of Q, by subdividingQ into a set Th=Ki, . . . , Km of non-overlapping triangles Kj

Q
boundary since v=0 on

. M, are then defined by (see Fig 1.9)j=1> -
1 if i — j

cpj(Nj)=Sip [ 0 i f i# j

Q — U K. — K1U K2 . . . U K
KeTh

such that no vertex of one triangle lies
Fig 1.8)

m ?

the edge of another triangle (on see

Fig 1.9 The basis function cpj.K .
J

N,
We see that the support of cpj (the set of points x for which cpj(x)^O) consists

of the triangles with the common node Nj (the shaded area in Fig 1.9). A

function veVh now has the representation
M

v(x)= 2 r]jCpj(x), r]j=v(Nj), for xeQUT.
j=i

formulate the following finite element method for (1.16)

starting from the variational formulation (1.19): Find UheVh such that

(1.20)

Exactly as in Section 1.2 we see that (1.20) is equivalent to the linear system

of equations

(1.21)

Fig 1.8 A finite element triangulation

We can now
We introduce the mesh parameter

h=max diam (K), diam (K)=diameter of K=longest side of K.KeTh
We now define Vh as follows:

Vh={v: v is continuous on Q, v|K is linear for KeTh, v=0 on T}.

a(uh, v)= (f , v) VveVh.

Ai;= b,

2928



where A=(ajj), the stiffness matrix, is an MxM matrix with elements
ajj=a((pi, cpj) and b=(bj) are M-vectors with elements S;i= Uh(Nj),
bi=(f , cpi).

Clearly A is symmetric and as in Section 1.2 we see that A is positive definite
and thus in particular non-singular so that (1.21) admits a unique solution
Moreover, A is again sparse; we have that aij=0 unless Nj and Nj are nodes
of the same triangle.

In the same way as in Section 1.2 we realize that UheVh is the best
approximation of the exact solution u in the sense that

VveVh,

1h = N+ 1

©
O—0—o

||Vu — Vuh||=s||Vu — Vv||(1.22)

owhere

|| Vv||=a(v,v)1/2 = ( J| Vv|2dx)1/2. Fig 1.11Fig 1.10Q

In particular we have

(1.23) ||Vu-Vuh|| =s|| Vu-Vuh||,
where Uh is the interpolant of u, ie, UheVh and

uh(Ni)=u(N1) i=l, . . . , M.

In Chapter 4 we prove that if the triangles KeTh are not allowed to become
too thin, then

(1.24) ||Vu-Vuh||^Ch.

Here and below we denote by C a positive constant, possibly different at
different occurences, that does not depend on the mesh parameter h. In the
case (1.24) the constant C depends on the size of the second partial derivatives
of u and the smallest angle of the triangles KeTh. One can also prove (see
Section 4.7) that

In this case the linear system (1.21) reads as follows:

h bi0*

4 -1 0 -1 0
-1 4 -1 0 -1 0

0 -1 4 -1 0 -1
-1 0 -1 4 -1 0 -1 0

• • • • 0 —1
• • • • —1 0. -1 0 -1 4 -1

0 -1 0 -1 4

row N+1

(1.25) 0
0

bM0

Note that here the left-hand side of equation i is a linear combination of the
values of Uh at the 5 nodes indicated in Fig 1.10 with coefficients given in Fig
1.11. Dividing by h2 we recognize this as the linear system obtained by
applying the so-called 5-point difference method for (1.16) with the com-
ponents of the right-hand side being weighted averages of f around the nodes
Ni (cf Problem 1.7 below).

The elements ay =a(q)i, cpj) in the stiffness matrix A are usually in practice
computed by summing the contributions from the different triangles:

a(Ti, <Pj)= 2 aK(<Pi, <Pj) >
KeTh

u — Uh||=(/(u-Uh)2dx)1/2^Ch2
Q

with a similar dependence of C. In particular these estimates show that if the
exact solution u is sufficiently regular, then the error and the gradient of the
error u-Uh tend to zero in the norm || • as h tends to zero.

(1.26)
Example 1.1. Let Q be a square with side length 1 and let Th be the uniform
triangulation of Q according to Fig 1.10 with the indicated enumeration of
the nodes of Th. where

aK(qpi , cpj)= J Vcpi • Vcpjdx.
K
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We notice that ai<(9i, cpj)=0 unless both nodes Nj and Nj are vertices of K.
Let Nj, Nj and Nk be the vertices of the triangle K. We call the 3x3-matrix

an(<Pi , cpj)
aK(<Pj , «Pj)

1.8 Find the linear basis functions for the triangle K with vertices at
(0, 0) , (h , 0) and (0, h). Show that the corresponding element stiffness
matrix (1.27) is given by

ajc(<Pi ? 9k)
aK(<Pj > 9k)
aic(9k, 9k)

aic(9i > 9i)(1.27)
1 11
2 2sym

the element stiffness matrix for K. The global stiffness matrix A may thus be
computed by first computing the element stiffness matrices for each KeTh and
then summing the contributions from each triangle according to (1.26). In a
corresponding way we compute the right-hand side b. This process of
computing A and b by summation is called the assembly of A and b.

To compute the elements in the stiffness matrix (1.27) we clearly work with
the restrictions of the basis functions cpi, cpj and cpk to the triangle K. Denoting
these restrictions by 9i, 9j and 9k, we have that each 9 is a linear function
on K that takes the value one at one vertex and vanishes at the other two
vertices of K. We call 9i, 9j and 9k the basis functions on the triangle K, cf
Fig 1.12. If w is a linear function on K, then w has the representation

xeK.

1 1 0
2 2

1 10
2 2

Using this result show that the linear system (1.25) of Example 1.1 has
the stated form.

1.9 Find the element stiffness matrix (1.27) for a general triangle K in
terms of the coordinates a*=(a}, a^), i= l, 2, 3, of the vertices of K.
Show that if ueV satisfies (1.19) and u is twice continuously differ-
entiable, then u satisfies (1.16).

Find the element stiffness matrix for the problem

— u"=f

1.10

w(x) =w(Ni)9i(x) +w(Nj)9j(x) +w(Nk)9k(x),
1.11

*3 for 0<x<l, u(0)= u(l) =0,

if we use piecewise quadratic functions according to Problem 1.3. Then
determine the corresponding global stiffness matrix in the case of a
uniform subdivision. Can you interpret the resulting equations as
difference approximations of the equation — u"=f?

x 2/
*3 = <9*xi

N •
3

KNk

Fig 1.12 The basis function ipj associated with K.
1.5 The Hilbert spaces L2(Q), HJ(Q) and Hj(Q)

Problems When giving variational formulations of boundary value problems for partial
differential equations, it is from the mathematical point of view natural and
very useful to work with function spaces V that are slightly larger (i e contain
somewhat more functions) than the spaces of continuous functions with
piecewise continuous derivatives used in the preceeding sections. It is also
useful to endow the spaces V with various scalar products with the scalar
product related to the boundary value problem. More precisely, V will be a
Hilbert space, (see below).

Formulate a difference method for (1.16) in the case when Q is a square
using the difference approximation

1.7

32u u(xi + h , X2)-2U(XI, x2)+ u(xi-h, x2)(xi, x2)~
3x? h2

1

32U. Compare with Exampleand a corresponding approximation for
1.1. 3X2
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The space L2(I) is a Hilbert space with the scalar product

(v, w) = Jvw dx,
I

and the corresponding norm (the L2-norm):

IMlL2(i)=(Jv2dx)1/2= (v, v)1/2.

Before introducing these Hilbert spaces let us recall a few simple concepts
from linear algebra: If V is a linear space, then we say that L is a linear form
on V if L: V —> R, ie, L(v)eR for veV, and L is linear, ie, for all v, weV
and |3, 0eR

L(Pv+0w)= PL(v) +0L(w).

Furthermore, we say that a(. , .) is a bilinear form on VxV if a: VxV —» R,
ie, a(v, w)eR for v, weV, and a is linear in each argument, ie, for all u, v,
weV and p, 0eR we have

a(u , Pv+ 0w)= Pa(u, v) +0a(u, w),
a(Pu -f 0v, w)= Pa(u , w)4- 0a(v, w).

The bilinear form a(. , .) on VxV is said to be symmetric if

a(v,w)=a(w,v)

A symmetric bilinear form a(. , .) on VxV is said to be a scalar product on
V if

i

By Cauchy’s inequality,

|(v, W)|S£||V||L2(I)||W||L2(I),

that (v, w) is well-defined , ie, the integral (v , w) exists, if v andwe see
weL2(I).

Remark. To really appreciate the definition of L2(I) and realize that this

space is complete requires some familiarity with the Lebesgue integral. In this

book , however, it is sufficient to get an idea of L2(I) by using the usual Rie-
integral; from this point of view we may think of a “typical" function

veL2(I) as a piecewise continuous function, possibly unbounded, such

that Jv2dx<o°.

Vv, weV.

mann
a(v, v)>0

| • ||a associated with a scalar product a(. , .) is defined by

11v 11a = (a(v, v))1/2,

Further, if <. , .> is a scalar product with corresponding norm || •

have Cauchy’s inequality

VveV, v^O.

The norm I

VveV. Example 1.2 We have that the function v(x)=x P, xel=(0, 1) belongs to L2(I)

,f P<i

We also introduce the space H1(I)={v: v and v' belong to L2(I)}, and we equip

this space with the scalar product

(v,w)H‘(i)= J(vw+v'w')dx,
I

and the corresponding norm

IMlH1(i)=(J[v2+(v')2]dx)1 /2.
I

The space H*(I) thus consists of the functions v defined on I which together

with their first derivatives are square-integrable, ie, belong to L2(I).

In the case of boundary value problems of the form — u"=f on I=(a, b) with

boundary conditions u(a)=u(b)=0, we shall use the space

H (I)={V £H'(I): v(a)=v(b)=0}

with the same scalar product and norm as for H!(I).

, then we

(1.28)

We further recall that if V is a linear space with a scalar product with
corresponding norm || • ||, then V is said to be a Hilbert space if V is complete,
ie, if every Cauchy sequence with respect to || • || is convergent. We recall that
a sequence vi, V2, V3, . . ., of elements Vj in the space V with norm ||- || is said
to be a Cauchy sequence if for all e>0 there is a natural number N such that

11 vi — vjl I <e if b j>N. Further, Vi converges to v if | |v-Vj||
reader unfamiliar with the concept of completeness may bypass this remark
and think of a Hilbert space simply as a linear space with a scalar product .

We now introduce some Hilbert spaces that are natural to use for variational
formulations of the boundary value problems we will consider. Let us start
with the one-dimensional case. If I =(a, b) is an interval, we define the space
of “square integrable functions” on I:

L2(I)={V: v is defined on I and Jv2dx< oc} .

0 as i —> 00 . The

1
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Our introductory boundary value problem — Au =f in Q ,
u =0 on T,

can now be given the following variational formulation :

Find ueHo(Q) such that a(u,v)=(f ,v) VV 6 HQ(Q),

( D )
on I= (0, 1),— u"=f

u(0)=u(l)=0,(1.29)

can now be given the following variational formulation:

Find ueHo(I) such that (u \ v')=(f , v)

with (. , .) as in Section 1.1. If we compare (1.30) with the formulation (F)
in Section 1.1, we note that the space Hg(I) is larger than the space V used
in the formulation (V). The space HQ(I) is specially tailored for a variational
formulation of (1.29) and is in fact the largest space for which a variational
formulation of the form (1.30) is meaningful. From a mathematical point of
view the “right” choice of function space is essential since this may make it
easier to prove the existence of a solution to the continuous problem. From
the finite element point of view the formulation (1.30) as opposed to (V) is
of interest mainly because the basic error estimate for the finite element
method is an estimate in the norm indicated by (1.30) (the H^IJ-norm).
Further, using the standard notation L2(I), H!(I), Hj(I) etc, we may give our
boundary value problems variational formulations in a concise way, as will
be seen below.

Now let Q be a bounded domain Rd, d =2 or 3, and define

L2(Q)={V: v is defined on Q and Jv2dx< oo}?

(V)

VveHo(I) ,(1.30) or equivalently

Find UGHQ(Q) such that F(u)^F(v) VveHj(Q),(M)

where
1F(v)=^a(v,v)-(f,v),

a(u , v)=J Vu • Vvdx, (f ,v)= Jfv dx.
Q Q

Remark The formulation (F) is said to be a weak formulation of (D) and the
solution of (V) is said to be a weak solution of (D). If u is a weak solution
of (D) then it is not immediately clear that u is also a classical solution of (D),
since this requires u to be sufficiently regular so that Au is defined in a classical
sense. The advantage mathematically of the weak formulation (F) is that it
is easy to prove the existence of a solution to (F), whereas it is relatively
difficult to prove the existence of a classical solution to (D). To prove the
existence of a classical solution of ( D) one usually starts with the weak solution
of (D) and shows, often with considerable effort , that in fact this solution is
sufficiently regular to be also a classical solution. For more complicated, eg
non-linear problems, it may be extremely difficult or practically impossible
to prove the existence of classical solutions whereas existence of weak
solutions may still be within reach.

Q

dvH1(Q)={veL2(Q): eL2(Q), i=l d},
3xj

and introduce the corresponding scalar products and norms

(v, w)= Jvw dx, ||v||L2(Q)= (Jv2dx)1/2,
QQ Problems

1.12 Let Q={xeR2:|x|^l}. Show that the function v(x)=|x|a belongs to
H2(Q) if a>0.

1.13 Prove Cauchy’s inequality (1.28).

1.14 Consider the problem corresponding to (D) with an inhomogeneous
boundary condition , ie, the problem

— Au=f in Q,
U = UQ on T,

where f and uo are given . Show that this problem can be given the
following equivalent variational formulations:

(v, W)H'(Q)=J[VW+ VV - Vw]dx,
Q

11 V||H,
(£2) =(/[VV | V v|2]dx)i/2.

Q

We also define

Ho(Q)={veH1(Q): V=0 on T},

where T is the boundary of Q and we equip Hj(Q) with the same scalar product
and norm as H!(Q).

The boundary value problem

(1.31)
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VveHg(Q),
Vv6V(u0),

(V ) Find ueV(uo) such that a(u,v)=(f ,v)
(M) Find ueV(uo) such that F(u)^F(v)

where

(1.35) <u — Uh, v>=0 VveVh,

ie the error u-Uh is orthogonal to Vh with respect to <. , .>. We may also
express this fact as follows: The finite element solution Uh is the projection
with respect to of the exact solution u on Vh, i e, Uh is the element in
Vh closest to u with respect to the H1(Q)-norm || • ||HI (Q) , or in other words

VveVh.

V(uo)={veH1(Q): v=uo on T}.

Then formulate a finite element method for (1.31) and prove an error
estimate. U-UhllH'fQ^llu-vIlH^Q)(1.36)

This situation is symbolically illustrated in Fig 1.13 where HQ(Q) is repre-
sented by the whole plane while the straight line through the origin represents
vh.

1.6 A geometric interpretation of FEM
We shall now give an interpretation of the finite element method in geometric
terms in the function space Hj(fi). We recall that two elements v and w in
a linear space with scalar product <. , .> are said to be orthogonal if
<v, w>=0.

Let us for simplicity consider the following variant of our previous problem
(1.16):

-Au +u=f
u=0

in Q,
on r,

(cf Problem 2.5 below). The corresponding variational problem reads: Find
ueHj(Q) such that

(1.32)

Fig 1.13

VveHg(Q)JVu - Vvdx+ Juv dx=(f , v) According to (1.36), Uh is the best approximation of the exact solution u, in
the sense that for no other function veVh, is the error u-v smaller when
measured in the H!(Q)-norm. We have seen that Uh can be found by solving
a linear system of equations with right hand side depending on the given
function f. Thus, we can compute a best approximation Uh of u, without
knowing u itself , knowing only that -Au+u=f in Q and u=0 on T. This
remarkable fact reflects the ellipticity of the boundary value problem (1.32).

Q Q

or

VveH^(Q),(1.33)

using the notation

<u, v> =(f , v)

<u, v> = J[ Vu - Vv + uv]dx.
Q

Note that <. , .> is in fact the scalar product in the space Hj(Q).
Let Vh be a finite-dimensional subspace of HQ(Q), e g the space of piecewise

linear functions of Section 1.4, and consider the following finite element
method for (1.32): Find UheVh such that

(1.34)

Since VhCiHo(Q) we may choose veVh in (1.33) and on substraction from
(1.34), we obtain

Problem
1.15 Prove that (1.35) and (1.36) are equivalent (cf the proof of Theorem

1.1).

<uh, v> — (f , v) VveVh.
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Let us now also motivate why a solution ueFF(Q) of the variational problem
(1.38) also should satisfy (1.37). Using Green’s formula again we find from
(1.38) that if u is sufficiently regular, then

1.7 A Neumann problem. Natural and essential
boundary conditions

(f , v)+<g, v>=a(u, v)= J — v dx + J( — Au+u)v dx,
r 3n

We shall now consider a problem with another type of boundary condition,
namely the following Neumann problem (D): Q

so that, rearranging terms,
(1.37a) -Au+ u=f in Q

J(-Au -fu — f)v dx+ J(—-g)v ds=0
r 3n

Now, as (1.39) holds in particular for all v in HQ(Q) and for these functions
the boundary term vanishes, we conclude that (1.37a) holds, ie,

— Au -fu — f =0 in Q.

Thus (1.39) is reduced to

VveH^Q).(1.39)3u(1.37b) on r, Q
3n

3where again Q is a bounded domain with boundary T and —3n
outward normal derivative to T. The boundary condition is a Neumann
condition while the boundary condition u=uo on T considered previously is
said to be a Dirichlet condition. In mechanics or physics the Neumann
condition (1.37b) corresponds to a given force or flow g on T.

We can give the problem (1.37) the following variational formulation (V ):
Find ueH1(Q) such that

a(u, v)=(f, v)+<g, v>

denotes the

pan
But varying now v over H^Q), which means that v will vary freely on T, we
finally get

VveH^Q).g)v ds=0

(1.38) VveH^Q),

where 3u on r,g=0
3na(u, v) = J[ Vu - Vv+ uv]dx, (f, v)= J fv dx, <g, v>= J gv ds.

Q Q r and (1.37b) follows.
We note that the Neumann condition (1.37b) does not appear explicitly in

the variational formulation (V )\ the solution u of (U) is only required to belong
to H^Q) and is not explicitly required to satisfy (1.37b). This boundary
condition is instead implicitly contained in (1.38); by first varying v “inside”
Q we obtain (1.37a) and then (1.37b) by varying v on the boundary T. Such
a boundary condition, that does not have to be explicitly imposed in the
variational formulation, is said to be a natural boundary condition. This is in
contrast to a so-called essential boundary condition, like the Dirichlet
condition u=0 on T in eg (1.32), that has to be explicitly satisfied in a
variational formulation of the form (1.33).

Let us now formulate a finite element method for the Neumann problem
(1.37). Let then Th be a triangulation of Q as in Section 1.4 and define

Vh= {v: v is continuous on Q, V|K is linear VKeTh} .

As parameters to describe the functions in Vh we of course choose the values
at the nodes, now including also the nodes on the boundary T . Note that the

This is equivalent to the following minimization formulation (M ): Find
ueH^Q) such that F(u)^F(v), VveH^Q), where

1f (v)=2
a(v’ v)-<g’ v> *

Tosee that (1.38) follows from (1.37) we multiply (1.37a) with the test function
veH^Q) and integrate over Q. According to Green’s formula (1.18) , we then

. . 3uget, since =g on r,3n

(f, v)= J(-Au + u)v dx =-J — v. dx -f J V u - Vvdx-f Juv dx =
r 3n

=-<g, v>+ J[ V u - Vv+uv]dx=a(u, v)-<g, v>,

Q Q Q

Q

which proves (1.38).
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Let Q be a bounded domain in the plane and let the boundary T of
Q be divided into two parts Ti and r2. Give a variational formulation
of the following problem:

in Q,

in n,

functions in Vh are not required to satisfy any boundary condition and that
VhcrH^Q). By starting from (1.38) we now have the following finite element
method for (1.37): Find UheVh such that

a(uh, v)=(f, v)+<g, v>
As in Section 1.4 we see that this problem has a unique solution Uh that
be determined by solving a symmetric, positive definite linear system of
equations. We also have the following error estimate

VveVh,

1.18

(1.40) Au=fVveVh.

u =u0can
3u on r2,=g
3n

U-Uh||H'(Q)^||u VIIH'(Q) where f , uo and g are given functions. Then formulate a finite element
method for this problem. Also give an interpretation of this problem
in mechanics or physics.

Consider the finite element method (1.2) for the model problem
(1.29). Let GjeHj(I) satisfy

(1.41) (v\ Gi)=v(Xi)

where xj is a given node, i=l, . . . , M. Prove that G; is given by

(l-Xi)x for 0=£x^x;,
Xj(l-x) for Xj^xsSl .

Note that G; is the Green’s function for (1.29) associated with a
delta function 8(x;) at node X; (G; satisfies — Gj"=5(xi) on I,
Gi(0)=G;(l )=0). Further, note that it so happens that GieVh. Now,
by choosing v=e=u — Uh in (1.41), show that

„ M.

Thus, uh is in fact exactly equal to u at the node points Xj. This some-
what surprising fact is a true one-dimensional effect due to the fact that
the Green’s function GieVh, and does not exist in higher dimensions.
The technique of working with a Green’s function in this way is
however useful in proving for instance pointwise error estimates
(maximum norm estimates) in higher dimensions.

and hence as above

llu — uh||H‘(Q)^Ch,

if u is regular enough. The function Uh will satisfy the Neumann condition
(1.37b) approximatly, ie, —— will be an approximation to g on r (cf Problem
1.16). 3n

1.19

VveHj(I),

Remark When formulating a difference method for (1.37) one meets severe
difficulties due to the boundary condition (1.37b) unless Q has a very simple
shape such as a rectangle. On the other hand, in the finite element formula-
tion, the same boundary condition does not cause any complication.

Gi(x)=

e(x;)=(e', Gj)=0,Problems
1.16 Show that the problem

-u"=f
u(0)=u'(l)=0,

can be given the following variational formulation: Find ueV such that

VveV,

where V={veH1(I): v(0)=0). Formulate a finite element method for
this problem using piecewise linear functions. Determine the
sponding linear system of equations in the case of a uniform partition
and study in particular how the boundary condition u'(l)=0 is
approximated by the method.
Show that the problems (M) and (V) of this section are equivalent.

on I=(0, 1),

(«', v ')=(f ,v)

corre-
1.8 Remarks on programming
Let us briefly discuss some of the essential features of a typical computer
program implementing a finite element method. To be concrete we consider
the Neumann problem of the previous section. Thus, let Th={K} be a1.17
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A triangulation process of this type leads to quasi-uniform meshes where the
triangles have essentially the same size in all parts of Q. If the boundary of
Q is curved, this technique has to be modified close to the boundary.

As discussed below, it is often desirable to be able to construct triangu-
lations where the size of the triangles varies considerably in different parts
of Q. In fact one would need smaller triangles in regions where the exact
solution varies quickly or where certain derivatives of the exact solution are
large, see Fig 1.16 where the triangles get smaller in the area where the
solution has a quick variation (cf Example 1.3) . A possible refinement strategy
is indicated in Fig 1.15. Here, different coarse grid triangles are refined
differently. Notice also the dotted lines introduced to complete the triangu-
lation in the transition zone between regions with elements of different size.
Recently, methods which automatically refine triangulations where needed,
so-called adaptive methods, have been introduced, cf Section 4.6 below.

triangulation of the domain QczR2 with boundary T and let Vh be the
corresponding space of continuous piecewise linear functions. Let Nj,
i —1, • • M, denote the nodes of Th and cpi , . . . , cpM the natural base for Vh,
ie, cpi(Nj)=6ij. We want to find the solution ^eRM of the linear system of
equations

(1.42) A^= b,

where A=(ajj), b=(bx, . . bM) ,

aij= 2 a*}, bj= 2 bf ,
KeTh KeTh

aij = J{ Vcpi - VCpj+ (p;Cpj]dx ,
K.

bf = Jfcpidx + J gcpjds.
Knr

The computer program is naturally divided into subroutines carrying out the
following tasks:
(a) Input of data f, g, Q and coefficients of the equation.
(b) Construction and representation of the triangulation Th.
(c) Computation of the element stiffness matrices aK and element loads bK.
(d) Assembly of the global stiffness matrix A and load vector b.
(e) Solution of the system of equations A§= b.
(f) Presentation of result.
Let us now consider the steps (b)-(e) in more detail.

(1.43)

K
!

Fig 1.15

To represent a given triangulation Th one may proceed as follows: Let Nj,
i=l , . . . , M, and Kn, n= l, . . . , N be enumerations of the nodes and triangles
of Th, respectively. Then Th may be specified using the two arrays Z(2, M)
and T(3, N), where Z( j, i), j=l, 2, are the coordinates of node Nj and
T( j, n), j=l, 2, 3, are the number of the vertices of triangle Kn. As an example
let us consider the following triangulation where the numbers of the triangles
are indicated by a circle:

(b) Construction and representation of the triangulation Th
A program for automatic triangulation of a given domain may be based
the idea of successive refinement of an initial coarse triangulation; for
example, we may refine each triangle by connecting the midpoints of each side
(see Fig 1.14).

on

Fig 1.14
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In this case we have (d) Assembly of global stiffness matrix

To assemble the global stiffness A=(ajj) we just loop over all elements Kn
and successively add in the contributions from different Kn as follows (here
A(M, M) and b(M) are arrays where the matrix A and right hand side b will
be stored):

1 1 2 3 4 5 3 3 8 7 7
3 4 4 8 8 8 6 7 7 6 1 0
4 2 5 4 5 9 7 8 9 1 0 9

T=

If we want to use Gaussian elimination to solve the system of equations A§=b
(see Chapter 6), it is important that the nodes are enumerated in a suitable
way. For instance, if we intend to store the stiffness matrix A as a band matrix,
then we want the band width of A to be (nearly) minimal.

Writing a general program for triangulation, including refinement and node
enumeration (if needed) , is a complicated task that we will not comment on
further. Let us just note that if the geometry of Q is simple and we are satisfied
with a quasi-uniform triangulation, then it is rather easy to write a subroutine
for triangulation in each individual case.

We now assume that in some way we have obtained a triangulation Th and
that Th is represented by the arrays Z and T as above.

Set A(i, j)=0,

For n =1, . . ., N, fetch A(n)=(a£p) and b(n)= (b£) from scratch file
and set

A(T(a, n), T(|3, n)) =A(T(a, n) , T(|3, n))+a£p,

b(T(a, n))= b(T(a, n))+ b"

b(i)=0, i, j= l, . . M.

a, (3=1, 2, 3.

(e) Solution of the linear system A%=b

To solve A^=b we may use various variants of Gaussian elimination or
iterative methods. This is discussed in more detail in Chapters 6 and 7.

Remark In practice we do not use an array A(M, M) for the stiffness matrix
A; since A is sparse this would not be economical and would require storage
of a large number of zero elements. Instead A is stored eg as a band matrix
if Gaussian elimination is to be used to solve A^= b, or if an iterative method
is used, then only the nonzero elements of A are stored (see Chapters 6 and
7 below).

(c) Computation of the element stiffness matrices

The next step is to compute the element stiffness matrices with elements a-
given by (1.43). We know that a^O only if both Nj and Nj are nodes of K.
Let now KneTh. Then T(a, n), a=l, 2, 3, are the numbers of the vertices of
Kn, and the Xj-coordinates, i=l, 2, for these vertices are given by Z(i, T(a,
n)), a=l, 2, 3. Knowing the vertices of Kn we can now compute the element
stiffness matrix A69=(a£p) , a, (3=1, 2, 3, for element Kn Remark In a certain variant of Gaussian elimination (the frontal method) the

assembly and elimination is carried out in parallel which may save storage (cf
Section 6.5 below).= J [ V \J)a - V%+ \M)p]dx,

where is the linear function on Kn that takes the following values: Remark Once the stiffness matrix A for the Neumann problem (1.37) has
been determined, for which the functions in Vh do not satisfy any boundary
conditions, we may directly derive the systems of equations A^=b correspond-
ing to other boundary conditions. If on a part T\ of the boundary F we

Qreplace the Neumann condition —=g with the Dirichlet boundary condition
3n

u= uo on F\, then we obtain the corresponding system A^=b by simply
deleting the rows in A corresponding to the nodes on F\ and by entering the
values of ^ given by the Dirichlet boundary condition.

1 if a= p
0 if a |̂3 a, (3=1, 2, 3.IMNT(P , n)) =

We can also compute

b"= Jfyadx+ J g^a, ds,
rnKn

Thus, what we need is a subroutine that computes the element stiffness matrix
A(n)= (a^p) and right hand side b(n) =(b£) for a given triangle Kn. We then
loop over all elements Kn and store the result on a scratch file.

a= l , 2, 3.
Kn
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1.9 Remarks on finite element software
Writing a finite element program for a general class of problems with general
geometry and variable coefficients (cf Example 2.7 below) is very time
consuming and requires expert knowledge. Therefore, much effort may be
saved by using, at least in part , existing software. There are several general
purpose finite element codes available for academic or commercial use. In
particular let us mention the codes with which we have some experience,
namely CLUB MODULEF based at INRIA in France [CM] which is an
extensive general purpose library of finite element routines, FIDAP (Fluid
Dynamics Analysis Package) by M.S. Engelman [Fi] for problems in fluid
mechanics, the adaptive multigrid code for elliptic and parabolic problems
PLTMG (Piecewise Linear Triangular Multi Grid) by R. Bank [Ba], the
smaller LSD/FEM package by M. Bercovier [Be] and the MACFEM program
for the Macintosh personal computer by O. Pironneau [Pi]. These codes have
a modular structure, clear documentation, give access to the source code and
thus are suitable for research, development and educational purposes.

Problem
1.20 Write a computer program implementing the ideas of Section 1.8.

Assume first simple geometry, eg Q a square, and a uniform
triangulation. Use a standard routine to solve A^ =b with Gaussian
elimination and A stored as a band matrix.

Example 1.3 Consider the Poisson equation (1.16) in a disc with radius 1
centered at the origin and with the load f = —1 in a small disc with radius 0.25
centered at (0.5, 0.5), and f equal to zero elsewhere. In Fig 1.16 we give the
finite element mesh together with the level curves and the graph of the
corresponding finite element solution obtained by applying a modification of
the adaptive PLTMG-code [Ba] to this problem, see [EJ2], [E]. PLTMG uses
piecewise linears on triangles, and thus corresponds to (1.20) , and also
automatically refines the finite element mesh in order to control the error in
a chosen norm. We notice that the elements are smaller in the area where the
solution has a quick variation, cf Section 4.6 below.

For more information on adaptive methods, see Section 4.6. Note that also
the triangulation on the cover was generated by the modification of PLTMG
applied to the Laplace equation with Dirichlet boundary conditions in a case
where the exact solution has a singularity at the origin , and where accordingly
the finite element mesh is refined. More precisely, in this case the exact
solution is given in polar coordinates (r , 0) by

u(r, 0)=r^sin(ye), y=~ .
Fig 1.16 Solution graph (a ) , level curves (b) and triangulation (c) for finite element
method for Dirichlet problem.

7
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where2. Abstract formulation of the
finite element method for elliptic
problems

lF(v)=- a(v,v)-L(v),

and consider also the following abstract variational problem ( V): Find ueV
such that

(2.5) a(u,v)=L(v) VveV.
Let us now first prove:

Theorem 2.1 The problems (2.4) and (2.5) are equivalent, ie, ueV satisfies
(2.4) if and only if u satisfies (2.5). Moreover, there exists a unique solution
ueV of these problems and the following stability estimate holds

2.1 Introduction. The continuous problem (2.6)
a

We shall now give an abstract formulation of the finite element method for
elliptic problems of the type that we have studied in Chapter 1. This is not
a goal in itself , but makes it possible to give a unified treatment of many
problems in mechanics and physics so that we do not have to repeat in principle
the same argument in different concrete cases. Further the abstract formu-
lation is very easy to grasp and helps us to understand the basic structure of
the finite element method.

Proof Existence of a solution follows from the Lax-Milgram theorem which
is variant of the Riesz’ representation theorem in Hilbert space theory (see
eg [Ne], [Ci], cf also Theorem 13.1 below). The reader unfamiliar with these
concepts may simply bypass this remark . To prove that (2.4) and (2.5) are
equivalent, we argue exactly as in Section 1.1. We first show that if ueV
satisfies (2.4) , then also (2.5) holds, and we leave the proof of the
implication to the reader. Thus, let veV and eeR be arbitrary. Then
(u -f ev)eV so that since u is a minimum,

F(u)^F(uTev)

Using the notation g(e) =F(u+ ev), eeR, we thus have

g(0)^g(e)

so that g has a minimum at e=0. Hence g'(0) =0 if the derivative g'(e) exists
at e=0. But

reverse
Thus, let V be a Hilbert space with scalar product ( . , .)v and corresponding

• ||v (the V-norm). Suppose that (cf Section 1.5) a(. , .) is a bilinearnorm
form on VxV and L a linear form on V such that VeeR.

(i) (a. , .) is symmetric,

(ii) a(. , .) is continuous, ie, there is a constant y>0 such that

Vv, weV,

(iii) a(. , .) is V-elliptic, ie, there is a constant a>0 such that

(2.2) a(v, v)>a||v||v
(iv) L is continuous, ie, there is a constant A>0 such that

VveV.

VeeR,

(2.1) |a(v, W)|=SYI|V||VI |W||V

1g(e)=- a(u + ev, u+ ev)-L(u+ ev)

1 2
= 2

a(u’ u)+ §a(u > v)+\a(v > u)+ ya(v’ v)-L(u)— eL(v)

=|a(u, u)-L(u) + £a(u , v)-£L(v)+ -^a(v, v),

VveV.

(2.3) |L(v)^A||v||v

Let us now consider the following abstract minimization problem (M): Find
ueV such that

(2.4) F(u) =Min F(v) ,
veV

where we used the symmetry of a(. , . ). It follows that
0=g'(0) =a( u , v )-L(v ) ,
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which proves (2.5). To prove the stability result we choose v= u in (2.5) and
use (2.2) and (2.3) to obtain

As in Section 1.2 we see that (2.9) is equivalent to

a(uh, cpj)=L((pj), j= l, . . M.
Using the representationv^a(u, u)=L(u)^A||u||v,

which proves (2.6) upon division by ||u ||v^0. Finally, the uniqueness follows
from the stability estimate (2.6) since if ui and U2 are two solutions so that
UjeV and

a u

M
(2.10) uh= I £ieR ,

i =1

(2.9) can be written asVve V, i = l, 2,a(ui?v)=L(v)

then by subtraction we see that ui — U2 GV satisfies

a(ui-u2,v) =0

Applying the stability estimate to this situation (with L=0, ie, A=0) we
conclude that ||ui — U2 I |v=0, ie, ui= U2 -

M
2 a( qpi ,cpj)§i =L(cpj), j=l, . . . , M,

1=1
VveV. or, in matrix form,

(2.11) A§= b,

where §=(|i)eRM, b=(bi)eRM with bi=L(qpj) , and A=(aij) is an MxM
matrix with elements ajj=a(cpj,cpj). From the representation (2.7), we haveRemark 2.1 Even without the symmetry condition (i) and with only (ii)-(iv)

satisfied , one can prove that there exists a unique ueV such that

a(u,v)=L(v)

and the stability estimate (2.6) of course holds (cf Example 2.6 below). In this
case there is however no associated minimization problem.

M M M
a(v,v)-a( 2 qj(pj, 2 qj(pj)= 2 qja((pj,cpj)qj=q • Aq,

1=1 j= i i, j= i

M M
L(v)=L( 2 qj(pj)= 2 qjL(cpj)= b - q,

VveV,

J = I J = I

where the dot denotes the usual scalar product in RM:
M

£ - q = . 2 ?iqi.
1=1

It follows that (2.8) may be formulated as
(2.12)

2.2 Discretization. An error estimate \1' A£-b - ^=Min q Aq-b • T]].
^ r]eRM 2Now let Vh be a finite-dimensional subspace of V of dimension M. Let

{qpi , . . . ,CPM} be a basis for Vh, so that cpjeVh and any veVh has the unique
representation

We also have, recalling (2.2),

q • Aq =a(v,v)^a||v||y>0,
if v^O, ie, if q ^O. Since also a(tpj,(pj)=a(cpj,(pj), this proves the following
result.

M
v= 2 qjcpj, where qieR.(2.7)

i =l

We can now formulate the following discrete analogues of the problems (M)
and (V): Find UheVh such that

(2.8) F(uh) =SF(v)
Theorem 2.2 The stiffness matrix A is symmetric and positive definite.

We can now prove the following basic result where the equivalence follows
as above.

VveVh,

or equivalently: Find UheVh such that

a(uh, v)=L(v) VveVh.(2.9)
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From the abstract qualitative estimate of Theorem 2.4 we may obtain a
quantitative estimate by choosing a suitable function veVh and estimating
| u v 11 v. Usually one then chooses v= 77hu where flhueVh is a suitable
interpolant of u (e g 7ThU may be the piecewise linear interpolant Uh of Section
1.3). In Chapter 4 we give estimates for the interpolation error
a variety of situations.

Theorem 2.3 There exists a unique solution ^GRM to the equivalent problems
(2.11) and (2.12) , ie, there exists a unique solution uheVh to the equivalent
problems (2.8) and (2.9). Further, the following stability estimate holds:

scA(2.13) U-7ThU||v inUhllv a

Proof Since A is positive definite, A is non-singular, which proves existence
and uniqueness. The stability estimate follows by choosing v= uh in (2.9) which
gives, using (2.2) and (2.3),

a||uh||v^a(uh,uh)=L(uh)^A||uh||v,

from which (2.13) follows upon division by HuhHv^O.

2.3 The energy norm
By (2.1) and (2.2) it follows that we may introduce a new norm || • ||a on V
defined by

11v|la=a(v, v), veV.

This norm is equivalent to the norm || • ||y, ie, there are positive constants c
and C such that

Remark The stability estimate (2.13) for the finite element solution , which
analogue of the stability estimate (2.6) for the continuous problem,is an

reflects a very important property of the finite element method. In a certain
sense it can be viewed as the theoretical basis for the success of the

c||v||v«|M|a«C||v| |V(2.15)

More precisely, we may choose c= V^a and C= . The scalar product (. , .)a
corresponding to || • ||a is given by

(v,w)a= a(v,w).

The norm || •||a is referred to as the energy norm. The error equation (2.14)
may now be written

(u-uh, v)a =0

from which follows as in Section 1.3 or by the proof of Theorem 2.4, that

VveVh,
or equivalently that Uh is the projection of u onto Vh with respect to the scalar
product (. , .)a (cf Section 1.6). Clearly (2.16) shows that Uh is a best
approximation of u in the energy norm.

VveV.method.

Let us now prove the following error estimate:

Theorem 2.4 Let ueV be the solution of (2.5) and uheVh that of (2.9) where
Vhc= V. Then

U-Uh||v^ ^ ||u-v||v VveVh.
VveVh,

Proof Since VhczV we have from (2.5) in particular

a(u,w)=L(w)

so that after subtracting (2.9),

a(u-Uh,w)=0

(2.16)VweVh,

VweVh -(2.14)

For an arbitrary veVh, define w= Uh ~v. Then weVh, v= Uh ~w and by (2.2)
and (2.14), we have

a||u-uh||v^a(uh , u-uh)=a(u-uh, u-uh)+a(u-uh, w)

=a(u-uh, u — uh +w)=a(u-uh, u ~ v) =̂ y| lu ~ uh| Iv||u — v| | v,

where the last inequality follows from (2.1). Dividing by ||u — Uh| | v we obtain
the desired estimate.

2.4 Some examples
Let us now consider some concrete examples of the form (2.5). In Chapter
5 further examples from mechanics and physics will be presented. Let Q be
a bounded domain in R2 or R3 with boundary T. The coordinates in R2 and
R3 are denoted by x =(xi , X2) and x=(xj, X2, X3).
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so that by Cauchy’s inequalityExample 2.1 Let V=H1(Q), Qc=R2,

a(v, w)= J[ Vv • Vw+vw]dx,
Q

L(v)= Jfvdx,

l l l l
|v(x)|^J|v'|dy^(J dy)1/2(J(v')2dy) l /2= (J(v')2dy)1/2.

o o 0 0

Squaring this inequality and then integrating over I we obtain (2.18). We note
that the inequality (2.18) does not hold for v(x)=l, in which case the left hand
side is 1 and the right hand side 0. Thus we need eg a boundary condition
of the form v(0) =0 for (2.18) to hold in order to control the norm of the
function v by the norm of the derivative v', ie, we need a “fixed point” to
start from.

If we choose Vh to consist of piecewise linear functions on I as in Section
1.2, we obtain in this case

||u — UhllH ^Q^Ch,

if u is smooth enough.

Q

where f eL2(Q) in which case (2.5) is a variational formulation of the Neumann
problem (1.37) with g=0. Let us verify that the conditions (i)-(iv) above are
satisfied. Clearly a(. , .) is a symmetric bilinear form on VxV and L is a linear
form. Further,

and by Cauchy’s inequality

a(v,w)^a(v,v)1/2a(w,w) V | |H1(^) IIWIIH1(Q),

which proves (2.1) and (2.2) with a=y=l. Finally

|L(V)MJ fv dx | s= | |f | | L2( £2) | |v|| L2(Q) .

1/2-

Example 2.3 Let V= HQ(Q), QCR2,

a(v,w)= jVv - Vw dx, L(v)= Jfvdx ,
Q

which proves (2.3) with A=||f | | L2(Q) -
Example 2.2 Let V=Hj(I) , (1= 0, 1),

a(v, w)= JVw'dx, L(v)= Jfv dx,

Q Q

where f GL2(Q), in which case (2.5) is a variational formulation of the Dirichlet
problem (1.16) for the Poisson equation. We directly see that (i), (ii) and (iv)
are satisfied in this case. Thus, only the V-ellipticity, ie, the inequality

(2.19)
i i

J | Vv|2dx=a(v,v)^a||v|| H1(Q)=a( J (v2+| Vv|2)dx)
Q Q

where feL2(I) is given, which corresponds to our introductory boundary value
problem (1.30). To verify that (i)-(iv) are satisfied, we first note that a(. , .)
is obviously symmetric and bilinear and L is linear and since requires comment. To prove (2.19), it is sufficient to prove that there is a

constant C such that

(2.20) Jv2dx^C/|Vvpdx VV HQ(Q),we have that a(. , .) is continuous. The continuity of L follows as in Example
2.1 and it thus remains to prove the V-ellipticity (2.2) , ie, the inequality

VveHj(I),

Q Q

1since then (2.19) follows with a= . The proof of (2.20) is analogous to
C+l

the proof of (2.18) (cf Problem 2.1 below). With the Vh of Section 1.4 we
obtain the error estimate

J(v')2dx^a(Jv2dx+ J(v')2dx)(2.17)
i i i

for some positive constant a. We shall prove that

Jv2dx^J(v')2dx
i i

1
from which (2.17) follows with a=-. Since v(0) =0 for VGHQ(I), we have

X X

v(x)=v(0)+ /v'(y)dy= JV(y)dy,

|u — UhllH'CQJ^Ch,

if u is sufficiently smooth.
VveHo(I) ,(2.18)

Example 2.4 Consider the following boundary value problem
d4u for xel= ((), 1) ,(2.21a) = f
dx40 0
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(2.21b) u(0)=u'(0)=u(l)=u'(l)=0,

where feL2(I) (cf Problem 1.5). We introduce the space

H2(I)={veL2(I): v', v"eL2(I)},

with norm

IM|HKQ)=( 2 J|D“v|2dx)1/2.
|a|^k Q

Thus the space Hk(Q) consists of all functions v on Q that, together with the
partial derivatives Dav of order |a| at most k, belong to L2(Q). The space
Hk(Q) is a Hilbert space with the indicated norm and corresponding scalar
product. The spaces Hk(Q) are examples of so called Sobolev spaces named
after the Russian mathematician S. L. Sobolev 1908-, cf [Ad].

with norm

v||H2(i)= (J[v2+ (v')2-f (v")2]dx)1/2,
I

and the space

Ho(I)={veH2(I): v(0) =v'(0)=v(l)=v'(l)=0}

with the same norm. The problem (2.21) can now be given the variational
formulation: Find ueV such that

Example 2.5 Let us now consider a fourth-order problem in a two-dimensio-
nal domain Q, namely the biharmonic problem:

(2.22a) AAu=f in Q,

9y=o
a(u,v) =L(v) VveV,

(2.22b) on r,u =
where V=HQ(Q), 3n

a(v ,w) = Jv"w"dx, L(v) = Jfvdx. where — denotes differentiation in the outward normal direction to the
3n

boundary T . This problem gives a formulation of the Stokes equations in fluid
mechanics (cf Problem 5.3) and also models the displacement of a thin elastic
plate, clamped at its boundary, under a transversal load (cf Problem 5.4). To
give a variational formulation of (2.22), we introduce the space

H^(Q) ={veH2(Q): v=g
Now we multiply (2.22a) with veHg(Q) and integrate over Q. By Green’s

=0 on T, we have

i i

We see that the conditions (i) , (ii) and (iv) are satisfied. By (2.18) we have
for veHo(I)

Jv2dx^J(v')2dx^J(v")2dx,
i i i

since v(0)=v'(0) =0, which proves that =0 on T}.

IM|2
H2(I)« 3 j(v")2dx = 3 a(v, v) ,

3v1 formula as v=and (iii) holds with a=-.

We now introduce some notation that will be used below. We define

3laly
3x?i 3x?’’

where here a=(ai, 012), a; is a non-negative natural number and |a|=ai +a2.
As an example, a partial derivative of order 2 can then be written as Dav with
a=(2, 0), a=(l , 1) or a=(0, 2), which are the a with |a|=2. We now define
for k = l, 2, . .

3n

Jfvdx= / A Au v dx=
Q Q

Dav=
= J — ( Au)v ds- J V( Au) • Vu dx=

r 3n

= — J V ( Au) Vvdx= — J Au — ds-f J Au Avdx = J Au Av dx.

Q

3n Q QrQ

We are thus led to the following variational formulation of the biharmonic
problem (2.22): Find ueV such that

a(u, v) =L(v)

• 5

Hk(Q)={veL2(Q): D“veL2(Q), |a|«k},
VveV,
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where v=H^(Q) and Existence of a unique weak solution of (2.23) now follows from Remark 2.1.
Starting from (2.24) we may formulate the following finite element method
for (2.23): Find UheVh such that

a(u, v)= / Au Av dx, L(v)=Jfv dx.
Q Q

Again we see directly that (i) , (ii) and (iv) are satisfied in this case and theV-ellipticity (iii) can easily be proved using the hints of Problem 2.2 below.In Chapter 3 below we shall construct finite element spaces VhcHo(Q).

(2.25) a(uh, v) = L(v) VveVh ,

where Vh is a finite-dimensional subspace of V. If {cpi , . . CPM} is a basis
for Vh we have as above that (2.25) is equivalent to the linear system Ai;=b
where A=(ajj) , ajj=a( cpi , (pj) , and b= (bj) , bj=(f , cpj) . Note that in this case the
matrix A is not symmetric.

By the V-ellipticity it follows that solutions of (2.25) are unique and thus
A is non-singular so that A^= b admits a unique solution , ie , there exists a
unique solution Uh of (2.25) . By the same argument as in the proof of Theorem
2.3, we also have the error estimate (here a= l ):

||u — uh||H'(Q)̂ YI|u— v||H (Q) VveVh.

Example 2.6 Consider the following problem in a domain QcR2:

-MAu+ (31 #i!- + p2
3u(2.23a) + u=f in Q,3xi 0X2

(2.23b)

where p and the Pi are constants with p>0. This is an example of a stationaryconvection-diffusion problem; the Laplace term corresponds to diffusion withdiffusion coefficient p and the first order derivatives correspond to convectionin the direction P=(Pi , P2) . Let us here assume that p= l and that the sizeof |p| is moderate (for convection-diffusion problems with |(3|//x large, seeChapter 9) . By multiplying (2.23a) by a test function v V=H(
l,(Q), integratingover Q and using Green’s formula for the Laplace-term as usual , we are ledto the following variational formulation of (2.23): Find ueV such that

(2.24)

where

u =0 on T,

Example 2.7 Let u be the temperature in a heat conducting body occupying
the domain QcR3. We have in the stationary case the following relations:

3u in Q , i= l , 2, 3, (Fourier’s law) ,(2.26a) -qi= ki(x)
3xja(u, v) = L(v) VveV,

(2.26b) in Q (conservation of energy) ,div q=f

where the qj denotes the heat flow in the Xj-direction, kj(x) is the heat
conductivity at x in the Xj-direction and f(x) is the heat production at x . If
kj(x)= l , xeQ, i= l , 2, 3, ie , if the heat conductivity is constant and equal in
all directions , then eliminating q in (2.26), we obtain Poisson’s equation
- Au=f in Q . With the kj non-constant , (2.26) is an example of a partial
differential equation with variable coefficients . However, the coefficients kj
are not assumed to depend on the solution u . If this was the case and the heat
conductivities kj depended on the temperature u , then (2.26) would be an
example of a non-linear partial differential equation , see Chapter 13 below.

Let us now give a variational formulation of (2.26) which in the usual way
can be used to formulate a finite element method for (2.26) . This shows that
the presence of the variable coefficients kj do not introduce any difficulties.

We complement (2.26a, b) with the following boundary conditions:

on Ti ,

on f 2.

a(v, w)= J( Vv • Vw+(Pi - + P2
3v bv)w)dx , L(v)= /fv dx .3Xj 3X212 Q

It is clear that a( . , . ) is V-elliptic since if veV, we have by Green’s formula:

zip, 3v 3v
V +|32 v)dx= Jv2(pin, + p2n2)ds-

r

)dx=- J(Pi

Q 3x 3X21

3v 3v 3v- J(v Pi 3vf v p2 v+ p2 v)dx ,3xi 3X2Q 3xi 3x2Q

ie ,

3v 3v/( Pi + p2 )v dx=0,
Q 9xi 9X2

so that
(2.26c)

(2.26d )

u=0
a(v ^ v)= J[| Vv|2+v2]dx=||v||^Q H l (Q ) - -q - n =g
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where r=riUT2 is a partition of the boundary T and n denotes the outward
unit normal to T. The condition (2.26d) corresponds to a situation where the
heat flow is given on 1*

2.
We introduce the space

V={veH1(Q): v=0 on T\} ,

multiply (2.26b) by veV and integrate over Q. By Green’s formula we then

2.2 Let Q be a square with boundary T. Show that there is a constant C
such that

IMlH2(Q)^CJ( Av)2dx
HB

VveHg(Q),

3vby using the boundary conditions v=
Green’s formula,

=0 on T and the fact that by
3n

get 32V 32V

Q 3x| 3x2

3v 3Note that if v=0 on T, then also —=0 on T, where —3s
differentiation in a tangental direction to T.

Give a variational formulation of the problem

32V VveH(j( C2).J ( )2dx = J 2 dxJfv dx= Jv div q dx= Jvq • n ds — Jq • Vv dx=
Q Q r Q

= j2i =i kj(x)

Q 3xi3X2

3u 3v dx- J gv ds, 3s3xi 3xiQ

where the last equality follows from (2.26a) , (2.26d) and the fact that v=0
on Ti. Thus we are led to the following variational formulation of (2.26): Find
ueV such that

2.3

d4u =f for 0<x<l ,
dx4a(u,v)=L(v)(2.27) VvE V,
u(0)= u"(0) = u'( l )= u"'( l )=0,

where
and show that the conditions (i)-(iv) are satisfied. Which boundary
conditions are essential and which are natural? What is the interpre-
tation of the boundary conditions if u represents the deflection of an
elastic beam?

Let Q be a square with boundary T. Show that there is a constant C
such that

3 3v 3w
3xj 3xi

a(v, w)=J 2 kj(x)
Q i= i

L(v)= Jfv dx+ Jgv ds.

dx,

Q r2 2.4
We easily verify that the conditions (i)-(iv) are satisfied under the following
hypothesis: There are positive constants c and C such that

c^kj(x)^C, XEQ, i= l, 2, 3,

feL2(Q), geL2(r2), and the area of Ti is positive.
Starting from (2.27) we may now formulate a finite element method for

(2.26) by replacing V by a finite element space Vh <= V. This leads to a linear
system A^=b with stiffness matrix A=(ajj) with elements ajj= a( cpi ,cpj) where
{qpi, . . . , qpM} is a basis for Vh * To find the ajj we have to compute integrals
involving the variable coefficients kj(x) . In practice we may for this purpose
want to use numerical quadrature, cf Chapter 12.

(Jv2ds)1/2^C||v||H1(Q) VVEH!(Q).
r

Using this result show that the linear functional L:!!1^) —> R defined
by

L(V)= J gv ds
r

is continuous if geL2(T) , ie, if J g2ds< o°.
r

2.5 Give a variational formulation of the inhomogeneous Neumann
problem

Problems
-Au+ u=f in Q ,

on T,
Let Q be a square with side 1. Show that2.1

3u
VveH^(Q).(Jv2dx)1/2^(J|Vv|2dx)1/2

Q Q
=g

3n
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and check if the conditions (i) — (iv) of Section 2.1 are satisfied . Give
an example of a problem in mechanics that takes this form.

Give a variational formulation of the problem

in Q,

on r,

Notice that (2.28d) represents a balance of heat flowing between Q\
and Q2. Observe that this relation is “automatically built in” in the
variational formulation (2.27).

Show (formally) that u is the solution of the variational problem
2.6

2.8-Au=f
13u Min [- Jk(x)(v')2dx-J v dx],

veH0(I) Z 1

where I= (0, 1), and

(2.29)yu 4 =g
3n 1

where y is a constant. When are conditions (i)-(iv) satisfied? Give an
interpretation of the boundary condition (which is sometimes referred
to as a Robin (or third type) boundary condition).

Consider the variational problem (2.27) with variable coefficients.
Suppose that Q is composed of two parts Qi and Q2 with common
boundary S (see Fig 2.1) and suppose the coefficients kj(x) are defined

11 if xeli= (0, -),

if xel2=(|, 1),
k(x)=2.7 1

2

if and only if u satisfiesby
xi forxeQi,
x2 forxeQ2,

where the xj are positive constants.

-k(x)u"(x)= l in Ii and I2,

d u i _ d u2
dx dx

k;(x)=
1(2.30) ui = U2, 2 for x=-
2’

u(0)=u(l)=0,

where Ui=u|i _ , i=l, 2. Then formulate a finite element method for
(2.30) using piecewise linear functions. Determine the corresponding
linear system in the case of a uniform partition and give an interpre-
tation of this system as a difference method for (2.30).
Show that if u is the solution of the Dirichlet problem

in Q,
on T,

where feL2(Q) and Qc= R2, then p= Vu is the solution of the
minimization problem

n
k 2

* 1 S fi2°1
2.9

Fig 2.1
-Au=f(2.31) u=0In this case (2.27) models stationary heat conduction in an isotropic

body composed of two materials with heat conductivity coefficients xt
and X2 occupying the regions Qi and Q2. Show (formally) that ueV
satisfies (2.27) if and only if

— xjAu =f
u= 0

1(2.32) Min - J|q|2dx,
qeHf Z Q

in £2j , j= l , 2,

on r,,
on r2,

(2.28a)

(2.28b)
(2.28c)

where
q * n= g Hf ={qeH: div q+f =0 in Q},

H ={q=(qt > q2): qi L2(Q)}.
The minimization problem (2.32) corresponds to the Principle of
minimum complementary energy in mechanics. Starting from (2.32),
replacing Hf by a finite-dimensional subspace, one may construct finite

3U23U I(2.28d) on S,= x2Xl 3n3n

where —^ denotes the derivative of U j=u|o in a direction n normal
f c 3n J
to S.
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element methods of so-called equilibrium type (for such a method the
equilibrium condition div q+f =0 will be satisfied exactly in the discrete
model). Methods of this type may in certain cases have advantages as
compared to the conventional finite element methods, so-called
displacement methods, that we have studied above (in a displacement
method for (2.26) the compatibility relation (2.26a) is satisfied
exactly). Hint: First show that peHf is a solution of (2.32) if and only

3. Some finite element spaces

if

J p q dx=o VqeHo,
Q 3.1 Introduction. Regularity requirements

where Ho={qeH, div q =0 in Q}.

2.10 Solve Problem 2.3 with the following alternative boundary conditions:

U(0)=-U"(0)+ YU'(0)=0, u(l)=u"(l)+yu'(l )=0,

where y is a positive constant. Also give a mechanical interpretation
of the boundary conditions.

2.11 Consider the Neumann problem

We shall now present some commonly used finite element spaces Vh. These
spaces will consist of piecewise polynomial functions on subdivisions or
“triangulations” Th^ jK} of a bounded domain Qc= Rd, d=l , 2, 3, into
elements K. For d = l , the elements K will be intervals, for d=2, triangles or
quadrilaterals and for d=3 tetrahedrons for instance.

We will need to satisfy either VhczH^Q) or Vhc= H2(Q), corresponding to
second order or fourth order boundary value problems, respectively. Since
the space Vh consists of piecewise polynomials, we have

VhczH^Q) O Vh <=C°(Q),
VhcH2(Q) <=> VhcC^Q),

(2.33a) -Au =f in Q,
(3.1)

3u (3.2)(2.33b) =g on r,
3n

where Q= QDF and
(2.33c) J udx =0.

C°(Q)={v:v is a continuous function defined on Q},

C1(Q)={veC°(Q): D«veC°(Q),

Thus, VhczH^Q) if and only if the functions veVh are continuous, and
Vh <=H2(Q) if an only if the functions veVh and their first derivatives are
continuous. The equivalence (3.1) depends on the fact that the functions v
in Vh are polynomials on each element K so that if v is continuous across the
common boundary of adjoining elements, then the first derivatives Dav,
|a|= l , exist and are piecewise continuous so that veH^Q). On the other
hand , if v is not continuous across a certain inter-element boundary, ie
v£C°(Q), then the derivatives Dav, |a|= l , do not exist as functions in L2(Q)
and thus v $H](Q) (if v is discontinuous across an element side S, then Dav,
|a|= l , would be a 6-function supported by S which is not a square-integrable
function) . In a similar way we realize that (3.2) holds.

To define a finite element space Vh we will have to specify:

(a ) the triangulation Th = { K } of the domain Q,

Q

Note that if u satisfies (2.33a, b) , then so does u+c for any constant
c, and that the condition (2.33c) is added to give uniqueness. Give a
variational formulation of (2.33) using the space

V={veH1(Q): J vdx=0},

a|=l}.

Q

and prove that the conditions (i)-(iv) are satisfied.
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ie, Vh is the space of continuous piecewise linear functions that we have met
in Section 1.7. As parameters, or global degrees of freedom, to describe the
functions in Vh, we choose

the values at the node points of Th,

(including the node points on T). Let us now convince ourselves that this is
a legitimate choice and show that a function veVh is uniquely determined by
the values (3.4). This is of course intuitively quite obvious but let us anyway
carry out the argument in detail here, since it will be a model to be used in
more complicated situations below. We then first notice that if KeTh is a
triangle with vertices a1, i=l , 2, 3, then the degrees of freedom for K
corresponding to (3.4), ie, the element degrees of freedom, are

the values at the vertices a1, i=l, 2, 3.
To show that a function veVh is uniquely determined by the degrees of
freedom (3.4) it is sufficient to show:

(b) the nature of the functions v in Vh on each element K (eg linear,
quadratic, cubic, etc) ,

(c) the parameters to be used to describe the functions in Vh.
(3.4)

3.2 Some examples of finite elements
Let us now consider some examples. We first consider the case when Q is a
domain in the plane R2 with polygonal boundary T. Let Th ={K} be a given
triangulation of Q according to Section 1.4 into triangles K. We shall use the
following notation for r=0, 1, 2, . .

Pr(K)={v:v is a polynomial of degree^r on K}.

Thus, Pi(K) is the space of linear functions defined on K, i e, functions of the
form

(3.5)
• >

Theorem 3.1 Let KeTh be a triangle with vertices aJ = (aj, a ^) , i=l, 2, 3. A
function vePi(K) is uniquely determined by the degrees of freedom (3.5), ie,
given the values otj, i=1, 2, 3, there is a uniquely determined function vePi(K)
such that

v(x)=aoo+aioxi+aoiX2, xeK,

where the ajjeR. We see that {%, ^3}, where

%(x)=l, ^2(x)=xi , 3^3(X)= X2,

is a basis for Pi(K), and that dim Pi(K)=3, where dim W denotes the
dimension of the linear space W.

Further, P2(K) is the space of quadratic functions on K, i e, functions of the
form

(3.6) v(aJ)=ai

Proof Since v(x)=cixi +C2X2+c3 for some constants qeR, (3.6) is equivalent
to the linear system of equations

cia {+c2a 2+c3= cxi ,

in the unknowns q. This system has a unique solution for given a\ if and only
if the determinant detB of the coefficient matrix

i —1> 2, 3.

(3.7) i=l, 2, 3,

2 2v(x)=aoo+aioXi + aoiX2+a2oXi +anXiX2+ ao2X2, xeK,

where the ajjeR. We see that {1, xj, x2, x^, xix2, x^} is a basis for P2(K) and
that dim P2(K)=6. In general we have

Pr(K)={v : v(x)= 2 ajjxjxi for xeK, where a^ eR},
0=Si + j^r

a! 1 1a21

a? a2a2B= 1i

a? a3a2 11

and is different from zero. However by basic linear algebra

detB/2=area of K,

and thus detB^O. Hence B is non-singular, which proves the desired result .
Since this argument will be used below, we also give a somewhat different
version of this proof . We notice first that

(r+1) (r+2) (3.8)dim Pr(K)= 2

Example 3.1 Let
Vh={veC°(Q): v|KePt(K), VKeTh},(3.3)
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where the constant y is chosen so that ^i(a1)= l. In the same way we may
determine X 2 and X3. If the triangle K has vertices at (1, 0) , (0, 1) and (0, 0),
then Xi=xi, ^2=^2 and X3= l — X1-X2. The notation X y , X 2 and X3 for the nodal
basis functions for Pi(K) will be kept below.

Given the choice of global degrees of freedom in (3.4), it is natural to
describe the space Vh given by (3.3) alternatively as

Vh={v: V|K £ PI(K), VKeTh, and v is continuous at the nodes}.

We then view a function ve Vh as a piecewise linear function taking on certain
values at the nodes of Th. Let us be careful and check that (3.11) defines the
same space as (3.3) above. We need to check if a function veVh according
to (3.11) is continuous, ie, if veC°(Q). Clearly, it is sufficient to check that
v is continuous across all interelement sides. Thus, let Ki and K2 be two
triangles in Th having the common side S with the end points N\ and N2, say.
Suppose now veVh according to (3.11) and let Vj=v|K, ePi(Kj) , i= l, 2, be the
restrictions of v to the K [ . Then the function w=vi — V2 defined on S vanishes
at the end points N y and N2 and since w is linear on S it follows that in fact
w vanishes on S. Hence, v is continuous across S and we obtain the desired
conclusion that veC°(Q).

dim Pi(K) = number of degrees of freedom (=3),

i e, (3.7) has the same number of unknowns as equations. In this case it follows,
again by basic linear algebra, that detB^O if and only if solutions of (3.7) are
unique, or in other words if the only solution of (3.7) with a\=0, i=l, 2, 3,
is given by q=0, i=l, 2, 3, or formally:

If vePi(K) and v(a*)=0, i=l, 2, 3, then v=0.(3.9)
(3.11)

In fact it is easy to prove (3.9) directly without using (3.8), which shows that
we do not have to be able to compute detB in order to prove that detB^O.
As we shall see below, this latter method of proof makes it possible to easily
prove analogues of Theorem 3.1 for higher order polynomials in which case
a direct computation of the determinant of the corresponding coefficient
matrix could be very complicated .

We can now determine the (nodal) basis functions for Pi(K) associated with
the degrees of freedom (3.5), ie, the functions ^ePi(K), i=l, 2, 3, such that
(see Fig 3.1):

1 if i= j
0 ifi*j

A function v(x) ePi(K) then has the representation

ki(aJ)=6ij= i, j=l, 2, 3.

3
Example 3.2 Let us now show how to construct a space Vh using piecewise
quadratic functions v, ie, V|K 6P2(K). Let us first specify the element degrees
of freedom. Let KeTh be a triangle with vertices a1, i= l, 2, 3, and denote the
midpoints of the sides of K by a*i , i< j, i, j=l, 2, 3, see Fig 3.2.

(3.10) v(x)= 2 v(aj)Xi(x) xeK.
i = l

To determine the basis functions ^ j, we have to solve the system of equations
(3.7) for three special choices of right hand side, namely, (1, 0, 0), (0, 1, 0)
and (0, 0, 1).

X 3X 2
Fig 3.1

The basis function Xy , say, can also be determined as follows. Let

dixi +d2x2+d3=0,
be the equation for the straight line through the vertices a2 and a3. Then

A.i(x) =v(dlxl+ d2X2+d3),

Fig 3.2

We shall prove
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Theorem 3.2 A function veP2(K) is uniquely determined by the following
degrees of freedom:

v(ai), i= l , 2, 3,
i< j, i , j = l , 2, 3.(3.12) v(a*i),

Fig 3.3 Different basis functions for P2( K )
Proof Since dim P2(K) is equal to the number of degrees of freedom (=6),
it is (see the proof of Theorem 3.1) sufficient to prove that if veP2(K) and

v(aO=0, v(aii)=0, i< j, i, j=l , 2, 3,

then v=0. To this end, consider the side a2a3. Along this side the function
v has a quadratic variation and v vanishes at the three distinct points a2, a23

and a3. Thus, (cf Problem 3.1) v vanishes identically on a23 which means (cf
Problem 3.3) that we can “factor out” the function and write

xeK,

where wiePi(K) and i=l, 2, 3, are the basis functions for Pi(K) according
to Example 3.1. In the same way we see that v also vanishes along the side
a*a3 which means that we may also factor out the function X2, so that

XGK,

where now wo has degree zero, ie, wo=y=constant . If we now finally take
x=a12, we see that

Let us also show that if VjeP2(Kj) , i= l , 2, where Ki and K2 are two triangles
with the common side S, and vi and V2 take the same values at the end points
and the mid point of S, then vi and V2 agree on S. But this follows immediately
from the fact that w=vi — V2 varies quadratically along S and w vanishes at
three distinct points on S so that w=0 on S.

Defining now

(3.13)

Vh={veC°(Q): v|KeP2(K), VKeTh},

we have seen that the global degrees of freedom of the functions veVh can
be chosen as follows:

v(x)= X.i(x)wi(x) ,

the values of v at the nodes of Th,
the values of v at the mid points of all the sides of the triangles
in Th.

The corresponding global basis functions have the following form:

(i)
(ii)v(x)=Xi(x)X2(x)w0,

0=v(a12)=YXi(a12)>,2(a12)= Y\
so that y=0 and hence v=0 and the proof is complete.

A function veP2(K) has the representation

3 3
v= 2 v(ai)Xi(2Xi —1)+ 2 v^HUj.

i=l ij= l
(3.14)

Fig 3.41<J

To see this, by Theorem 3.2 it is sufficient to check that the right hand side,
RH, and left hand side, LH, of (3.14) take the same values at the node points
a1 and a* j, since the difference LH-RHeP2(K). From (3.14) it is clear what
the nodal basis functions for P2(K) corresponding to the degrees of freedom
(3.12) are: the basis function corresponding to a particular degree of freedom,
the value at the vertex a1 for instance, is of course the function r|) eP2(K) such
that ^(a1)=l and vanishes at the other five points a^ , a*J (see Fig 3.3),

Example 3.3 We now define a space Vh using piecewise cubic functions, i e,
functions v such that V|KGP3(K), VKeTh. Let K be a triangle with vertices
a1, i=l, 2, 3, and define (see Fig 3.5):

a*^ —1- (2a*+ai), i, j = 1, 2, 3, i^ j ,

i (a*+a2+a3).a123=
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Fig 3.6
Fig 3.5

We can now introduce the space

Vh={veC°(Q): v|KeP3(K), VKeTh},

with the following degrees of freedom:

the values of v at the nodes of Th.
the values of v at the points ani on the sides of Th,
the values of v at the center of gravity for all KeTh.

We have

Theorem 3.3 A function veP3(K) is uniquely determined by the following
degrees of freedom: (i)

(ii)
v(a'), v(a''i), i , j=l , 2, 3, i# j,
v(a123).

(iii)

Example 3.4 There is another way of choosing the degrees of freedom for
P3(K), where K is a triangle with vertices a\ i=l , 2, 3, and center of gravity
a123. We have

(3.15)

Proof Since dim P3(K) is equal to the number of degrees of freedom (=10),
it is sufficient to show that if veP3(K) and

v(ai)=v(aiil)=v(a123)=0, i, j=l , 2, 3, i*j,

then v=0. Observe that if v has a cubic variation along the side a2a3 then v=0
on a2a3. In the same way it follows that v vanishes on the sides a!a3 and a]a2

and hence

(3.16) Theorem 3.4 A function veP3(K) is uniquely determined by the following
degrees of freedom:

v(a'), i=l, 2, 3,

3v (a1), i=l , 2, 3, j=l , 2,(3.17)v(x)=yXi(x)X2(x)X3(x),

where y is a constant. If we now choose x= a123, we get from (3.16)
3x;J

v(a123).
0=v(a“)-v||J, Proof Since again dim P3(K) is equal to the number of degrees of freedom,

it suffices to prove that if veP3(K) and

, 3vv(a )=
so that y=0 and thus v=0.

Now let Vi 6P3(K0, i= l, 2, where Ki and K2 are two triangles with common
side S and suppose that vi and V2 take the same values at the end points and
the two points anJ of S. Since V1-V2 varies cubically on S it follows that vi= V2
on S (see Fig 3.6).

(ai)=v(a123)=0, i= l, 2, 3, j=l, 2,(3.18)
3xi1

then v=0. It follows from (3.18) that

3v3v (a')s2=0, i=l , 2, 3,(a‘)si + 0X23xi3s
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3v to (3.19) are zero, then v =0. To see this, we first note that if s denotes the
direction of the side a2a3, then

where — is the derivative in a direction s=(si , S2) . In particular we then have
s-7 O

?V)=|V> =0, 32V , :(3.20) v(a')= — (a;)=3s 3s (al)=0 i=2, 3.
3s23swhere s is the direction from a2 to a3. Together with the fact that v(a2)=v(a3)

this shows that v vanishes along the side a2a3 since v varies as a cubic
polynomial along this side. In the same way see that v vanishes on a!a2 and
a*a3 and the argument is then completed as in the proof of Theorem 3.3.

We further note that if VieP3(Kj) , i=l, 2, where Ki and K2 are two triangles
with the common side S with endpoints Nj=l, 2, and v\ and v2 agree together

(Nj), i , j= l , 2, then vi =v2 on S.

The corresponding finite element space Vhc=C°(Q) is given by

Vh={ v: V|K 6P3(K), VKeTh, and v and

i= l , 2, are continuous at the nodes},

Since v is a polynomial on the side a2a3 of degree at most 5, it follows that
3vv vanishes on a2a3. Further, — is a polynomial of degree at most 4 on a2a3
3n

and

i=2, 3,(3.21)3vi 3V2 3nwith the first derivatives (Nj) and
3xj 3xj 3vwhich is only possible if — =0 on a2a3. Thus, both v and

3n
which means that we may factor (Xj(x))2 out of v(x) (check this in the special
case when a2a3 lies on the x2-axis). Therefore

vanish on a2a3
3n

3v
3xj ’

with the following degrees of freedom:
v(x)= (X1(x))2p3(x) , xeK,

where p3eP3(K).. In the same way we see that we may also factor out (Xj(x))2,
i=2, 3, and thus3v(i) the values of v and i=l, 2, at the nodes of Th ,3xj’

the values of v at the center of gravity of each KeTh. v= Y î
where yeR. But vePs(K) and the only possibility then is that y=0 so that v =0
on K.

(ii)

Example 3.5 Let us now consider a finite element space Vh satisfying the
condition Vhc=Cl(Q). We will then work with functions that are polynomials
of degree five on each triangle; with polynomials of lower degree, special
constructions are required to satisfy the Cl-condition.

Now let vjeP5(Kj) , i= l , 2, where Ki and K2 are two triangles with common
side S and suppose that

Davi= Dav2 at the endpoints of S, |a|^2,

3vi _ 3V2
3n 3n

'y

— denotes differentiation in the normal direction to S. Then we have
3n

the relations (3.20) and (3.21) for the difference w=vi-V2 and it follows that

Theorem 3.5 Let K be a triangle with vertices a', i= l , 2, 3 and let a‘) be the
midpoint on the side a‘ai , i, j=l, 2, 3, i<j (see Fig 3.2). A function veP5(K)
is uniquely determined by the following degrees of freedom:

D“v(a‘), i= l, 2, 3, |a|s=2,

l^ (aij) , i , j= l, 2, 3, i<j,

3where — denotes differentiation in the outward normal direction to the3n
boundary of K.

Proof Since dim Ps(K) is equal to the number of degrees of freedom (=21) ,
it is sufficient as usual to prove that if all the degrees of freedom according

at the midpoint of S,

where
(3.19)

3w =0 on S.(3.22) w= 3n

But if w=0 on S we also have that

3w=0 on S,(3.23)
3s
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where — denotes differentiation in the direction tangential to S. By (3.22)
3s

and (3.23) we see the function v defined by V|K = Vj varies continuously across
S as do its first derivatives.

We may now define the space VhcC^Q) as follows

Vh ={v: V|KGP5(K), VKeTh, Dav is continuous at the nodes for

|a|^2 and — is continuous at the mid points of each side},
3n

with the degrees of freedom of (3.19).

Example 3.6 Let us now construct a three-dimensional finite element. We
then assume that Q is the union of a collection Th={K} of non-overlapping
tetrahedrons K such that no vertex of one tetrahedron lies on a side of another
tetrahedron. As above, for r=l, 2,. . . , and KeTh, we define

Pr(K)={v: v is a polynomial to degree ^r on K, i e v has the form
v(x) = 2 ajjmx /xjx1^, aijmeR}.

i+ j+ m ^r

For r= l a function vePi(K) is uniquely determined by the values v(aJ),
i=1, . . . , 4, where the a‘ are the vertices of K. We can then introduce thespace

Vh={veC°(Q): v|KePt (K), VKeTh},

and as global degress of freedom we may take the values at the nodes of Th
points.

We can also use polynomials of higher degree on each rectangle. For
example we may choose

Vh ={veC°(Q): v|KeQ2(K), VKeTh},

where Ch(K) is the set of biquadratic functions on K, ie,
2

Ch(K)={v: v(x)= 2 ayXjxj, xeK, where the ajjeR},
i » J =0

and use as global degrees of freedom

the values at the nodes of Th ,
the values at the midpoints of the sides of Th,
the values at the midpoint of each rectangle KeTh.

Since the use of rectangular elements requires very special geometry of Q it
is of interest to also consider more general quadrilateral elements. The
simplest such element is presented in Problem 12.3 below in connection with
so-called isoparametric finite elements.

(i)
(ii)
(hi)

3.3 Summary
We have not yet given a formal definition of what we mean by a “finite
element”. To fill this gap define a finite element to mean a triple (K, PK, 2) ,
where

Example 3.7 Let us also consider some rectangular finite elements that can
be used for example if QcR2 is a square. Let then K be a rectangle with

. ., 4, and with sides parallel to the coordinate axis in R2.vertices a1, i=l, .
Define

K is a geometric object , for example a triangle,
PK is a finite-dimensional linear space of functions defined on K,
2 is a set of degrees of freedom,

such that a function VGPK is uniquely determined by the degrees of freedom
2. From Example 3.1 we have that (K, PK, 2), where

K is a triangle,
PK=PI(K),
2 is the values at the vertices of K,

is a finite element. In Fig 3.7 below we have collected some of the most
common finite elements (cf [Ci]) . The various degrees of freedom are denoted
as follows:

Qi(K)={v: v is bilinear on K, ie, v(x)=aoo+aioxi+aolx2+anxix2 >

xeK, where the aijeR}.

It is easy to see (prove this!) that a function veQi(K) is uniquely determined
by the values v(a’), i=l , . . ., 4. Further, if Ki and K2 are two rectangles with
the common side S and the functions VjeQi(Ki) agree at the endpoints of S
then Vj-V2=0 on S since vi — V2 varies linearly on S. We may now define

Vh={veC°(Q): v|KeQi(K), VKeTh}

assuming that Th={K} is a subdivision of Q into non-overlapping rectangles
such that no vertex of any rectangle lies on a side of another rectangle. The
values at the nodes may be used as global degrees of freedom.
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function values
o values of the first derivatives,
O values of the second derivatives,
/ value of the normal derivative,

/ value of the mixed derivative

C116 Cfe(K)

32v C°2 Pi ( K)
3XI3X2

Finally , Fig 3.8 indicates in the case of two dimensions the support of certain
basis function veVh, ie, the points x such that v(x) =£0. The different cases
correspond to a value at a node, the midpoint of a side or a point in the interior
of an element. Clearly the support is always small and if cp and \p are two basis
functions associated with the nodes N\ and N2, then the supports of the
functions cp and \p overlap only if N\ and N2 belong to the same element.

3 C°P2(K)

> 4 C1& P3(K)

c1Ps(K)Degree of continuity
of corresponding
FEM-space Vh

Degrees of freedom 2
Geometry Function space PK

C1Ps'(K)
(see Problem 3.7)C°Pi (K)3

C°4 Pl(K)
C°P2(K)6

C°P2(K)
(See Problem 3.4)C°Pa(K)10

Fig 3 .7 Some common finite elements.

C°P3(K)

c°Q1(K)4

c°1 9 Q2(K)
Fig 3.8 The support of different basis functions.
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Problems i \ 3vv(a') (a1) , i=l, 2, 3, j=l , 2,

v(a'j), i, j=l, 2, 3, i<j, v(a123>.
Also show that the functions in the corresponding finite element Vhare continuous.

3xiShow that if vePr(I) ={v: v(x)= 2 ape1, xel, where ajeR}, the set of
i=0

polynomials of degree at most r on the interval I, and if v vanishes at
r +1 distinct points on I, then v=0. Recall that if vePr(I) and v(b)= ()

for some bel, then v(x)=(x — b)w(x) where wePr-i(I).

Prove that if vePr(K) where K is a triangle, then vePr(S) for any side
S of K.
Let K be a triangle with vertices a1, i=l, 2, 3. Suppose that vePr(K)
and that v vanishes on the side a2a3. Prove that v has the form

v(x)= Xi(x)wr _ i(x), xeK,

where wr _ iePr_ i(K) and X\ is defined in Example 3.1.

Let K be a tetrahedron with vertices a1, i= l , . . . , 4, and let a' j denote
the midpoint on the straight line a‘ai , i< j. Show that a function
veP2(K) is uniquely determined by the degrees of freedom: v(a‘),
v(a!j) , i , j= l , . . . , 4, i< j. Show that the corresponding finite element
space Vh satisfies Vh <=C°(Q).

Determine the stiffness matrix corresponding to the Poisson equation
(1.16) when Q is a square with side 1 and we use the bilinear element

of Example 3.7 with h=^.

Let K be a triangle with vertices a1 and let a’ j, i< j, denote the midpoints
of the sides of K. Show that a function vePi(K) is uniquely determined
by the degrees of freedom v(a’j), i< j. Consider the corresponding
finite element space Vh. Is it true that VhciH^Q)? Can we apply the
theory of Chapter 2 in this case?

0VShow that a function veP 5(K)={veP5(K): — is a polynomial of de-
3n

gree at most 3 on each side of K} is uniquely determined by the degrees
of freedom D^a1), |a|^2, i=l, 2, 3, where the a1 are the vertices of
the triangle K.

Let K be the triangle of Problem 3.6 and let a123 denote the center of
gravity of K. Prove that veP^K) is uniquely determined by the
following degrees of freedom

J3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8
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parameter h . We shall below assume that there is a positive constant (3
independent of the triangulation The{Th}, ie, independent of h, such that4. Approximation theory for

FEM. Error estimates for
elliptic problems

(4.1) P VKeTh.

This condition means that the triangles KeTh are not allowed to be arbitrarily
thin, or equivalently, the angles of the triangles K are not allowed to be
arbitrarily small; the constant (3 is a measure of the smallest angle in any KeTh
for any The{Th}.

Let Nj, i =1, . ,

interpolant JihueVh by

Jihu(Ni)=u(Ni)
Thus JihU is the piecewise linear function agreeing with u at the nodes of Th.
We will start by estimating the interpolation error u-JthU on each triangle K.
We have the following result.

Theorem 4.1 Let KeTh be a triangle with vertices a1, i =1, 2, 3. Given veC°(K)
let the interpolant JtvePi(K) be defined by

Jtv(a1)=v(a1), i= l , 2, 3.

hK

. ., M, be the nodes of Th. Given ueC^(Q) we define the4.1 Introduction
For a typical elliptic problem satisfying the conditions (i)-(iv) of Section 2.1,
we have by Theorem 2.4

i = l, • • M.

VveVh.-v vl |U-Uhl |v a

Choosing v=JihueVh to be a suitable interpolant of u and estimating the

interpolation error ||u — Jihu||y we obtain an estimate of the error ||u — Uhl Iv -
in this chapter we study the problem of estimating the interpolation error

11 u — JthU 11 y. The interpolant JihueVh is usually chosen so that the degrees of
freedom for Vh agree for u and JthU. In this case the problem of estimating
||u-Jihu||y is reduced to the problem of estimating u-JthU individually on each
element KeTh.

(4.2)

Then
(4.3) L„(K)«2h^ max ||Dav||Lx(K ) ,

|ct|=2

max ||Da(v — jtv)||Loo(K)ss6 —
a =l P K

V-JIV

(4.4) - max I |Dav| I
PK |a|=2

L„(K),

where
4.2 Interpolation with piecewise linear functions in

two dimensions
v U(K) = max |v(x)|.

We shall first consider the case where V=H1(Q) and Vh ={veV: V|K PI(K),

VKeTh} where Th ={K} is a triangulation of QcR2, ie, Vh is the standard
finite element space of piecewise linear functions on triangles K (cf Section
1.7) . For KeTh we define (see Fig 4.1)

hx=the diameter of K=the longest side of K,
QK=the diameter of the circle inscribed in K,
h= max hK -

KeTh

To be more precise, we will subsequently be concerned with not only one
triangulation Th but a family of triangulations {Th} that are indexed by the Fig 4.1
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we have the following estimate of the remainder term Rj(x):

Ri(x)=£2h ^ max ||Dav||MK), i=l, 2,3.
|a|=2

Now (4.5) and (4.6) combine to give

Before giving a proof of Theorem 4.1 let us comment on the estimates (4.3)
and (4.4). We note that the size of the errors V-JTV and Da(v-Jtv) depend
on the second partial derivatives of v; the larger these derivatives are, the more
“curved” is the surface representing the function v and thus the larger is the
deviation V-JTV from the plane representing JTV (see Fig 4.1). Also note that
the assumption (4.1) will be used in the estimate (4.4) to bound the quantity
hK/QK -

(4.7)

3 3 3
(4.8) JTV(X)=V(X) 2 X,i(x) + 2 pi(x)Xi(x) + 2 Rj(x)A.j(x) xeK.

i= l i = l i = 1

We now need the following lemma whose simple proof is given below.
Proof of Theorem 4.1 Let A*, i= l, 2, 3, be the basis functions for Pi(K)
described in Example 3.1. A general function wePj(K) then has the
representation

Lemma 4.1 For j=l, 2 and xeK we have
3

(4.9) 2 A*(x)=l ,3
w(x)= 2 w(a%(x), xeK, i = l

i = l 3
(4.10) 2 pi(x)Xj(x)=0,

i = l

3 3 3 3
2 —^(x)=f 2 M x)=0,

1=1 3xi 3xi i = i

so that in particular
3

JTV(X)= 2 v(a')Ai(x) , xeK,(4.5) (4.11)
i = l

J J

since by (4.2) Jiv(ai)= v(aI). We now derive representation formulas for the
errors V-JTV and Da(v-irv) , |a|= l, using the following Taylor expansion at
xeK:

3 3Xj 3v(4.12) 2 Pi(x) (X)= (x).
3x; 3x;i = l J J

2 _3v
j= i 3xj

W (yrxj)+ R(x > y) .v(y) =v(x) + 2 By (4.9), (4.10) and (4.8) we have
3

where JTV(X)=V(X) + 2 Ri(x)Xi(x) ,
1=1

32v- 2_ i, j= i 3xj3xj
(?) (yi — xi) (yj-xj) ,R(x, y)=2

which gives us the following representation of the interpolation error:
3

is the remainder term of order 2 and £ is a point on the line segment between
x and y. In particular by choosing y=a\ we have

v(ai) =v(x) +pi(x)+ Ri(x),

v(x) JTV(X) = 2 Ri(x)X.i(x).
i= i

Since 0^Xj(x)^l , if xeK, i=1, 2, 3, we can use the previous estimate (4.7)
of the remainder term R[ to get(4.6)

where 3
|V(X)-JCV(X)|« 2 |Rj(x)| |Xi(x)|1 _3v

j= i 3xj

Ri(x)=R(x, a').

(x) (aj-xj), a'=(aj, a'2 ) , i= lPi(x)= 2
3

^ max |Rj(x)| 2 >,i(x) ^ 2h^ max ||Dav||MK),
i i= l |a|=2

xeK,

which proves (4.3).
To prove (4.4) we differentiate (4.5) with respect to xi to get

Since

|aj-Xj|^hK, i= l, 2, 3, j= l, 2,
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pi(x)=di(a 11-xi)+d2(a ^-x2),

and Rj^O so that by (4.8)

33JTV (x),(x)= 2 v(a’) 3xi3xi i= l

which together with (4.6) shows that

l _3^i
i= l 3xi

3
v(x) =v(x)+ I [di(ai-xi)+d2(a ^-x2)]Xi(x), xeK.

i =1333JIV (x)+ 2 Pi(x) (x)+ 2 Ri(x) (x).(4.13) (x)=v(x) 2 and so for all dieR we have3xi3xi3xi i=1i=1

3Hence, by (4.11) and (4.12) we have

3JIV(X) , . 3v
2 [di(ai — xi) H-d2(a 2 — x2)] Xj(x)=0 xeK.

i=l3 3Xi(x)= (x)+ 2 Ri(x) 00 > 3v3xi 3xi 3xi (x), i=l, 2. Finally , (4.12) follows inThis proves (4.10) by choosing dj=
a similar way by choosing v=dixi +d2x2 in (4.13). This finishes the proof of
the lemma and the proof of Theorem 4.1 is complete.

i = l
3xj

3v _ 3JIV,

3XI 3xi
’which gives the following representation of the error

3 3Xi3v 3JIV Since Theorem 4.1 states estimates of the interpolation error using the
Loo(K)-norm, it is not ideally suited to give estimates for ||u — JIHUIIH^Q)
involving the L2-norm. For this purpose we will use instead the following
analogue of Theorem 4.1. Here we use the following notation for r=(), 1,
2 , . .

oo- (x)=- 2 Rj(x) (x) , xeK.
3xi3xi 3xi i= l

It is now easy to see (cf Problem 4.2) that

3Xi 1(4.14) max — (x) ,
xeK oxi QK

which together with (4.7) finally gives

3v , . 3JCV

• ?

|v|Hr(Q) =( 2 J |D“v| 2dx)1/2.
|a|= r Q

h 2— max||Dav||L“(K) - Note that |v|nr(Q) measures the L2(Q)-norm of the partial derivatives of v of
order exactly equal to r , whereas derivatives of order less than r are not
included. We say that | • |nr(Q) is a seminorm. Since we may have |v|Hr(Q)=0
even if v^Q (eg if v=l and r^l), it is not a norm.

(x) « 6(x)
3xi3xi QK |ct|=2

3v _ 3JIV

3X2 3X2
the theorem is now complete once the lemma is established.

and thus (4.4) follows. The proof ofIn the same way we estimate

Theorem 4.2 Under the assumptions of Theorem 4.1 there is an absolute
constant C such thatProof of Lemma 4.1 The proof is based on the following observation:

JIV= V if vePi(K),

which of course follows from the fact there is a unique function vePi(K)
assuming given values at the vertices of K. If we now choose v(x)=l in (4.8),
in which case clearly v= jtv, we get

(4.15) llv-JtvIlLjOO^Ch^IvlH^K),

|v-Jtv|H> (K)^C -^|V|H2(K).

We see that Theorem 4.1 and 4.2 have exactly the same structure, the only
difference being the norm involved , either the Loo or the L2-norm. For
simplicity we have chosen to present a proof in the Loo-case since we then avoid
some technical complications (for a proof of Theorem 4.2, see [DS]).

Let us now apply Theorem 4.2 to estimate the global interpolation errors
||u — jThu|| i 2(Q) and |u — jthu|H'(Q). We have by summing over KeTh,

3
1= 2 Xi(x) , xeK,

i= l

since in this case pi=Ri =0. This proves (4.9) and (4.11) follows directly.
To prove (4.10) we choose v(x)=dixi +d2x2 in (4.8) with djeR. Again V = JIV

and further
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l|u-Jthu||£(Q)= 2 ||u —Jthu||^2(K)^ 2 C2HKIUIH2(K)
KeT„ KeTh

=C2h4|u|H2fQv

hK < 1
0K

|U-JIU|H'(Q)^ 2 C2 -|
KeT* 0K

on the constant |3 in (4.1) and the degree r, but not on the mesh parameter
h or the function u.

=̂ C2h4 Z |U|H2(K)
KeTh Remark 4.1 If u does not have the regularity required in (4.19) or (4.20), we

get the corresponding reduction in the power of h: For 1^ s ^ r+l , we have

11 u-Jihu 11L2(Q)^ChsI u I HS(Q) ,

||u-Jlhu||H1(Q)^Chs-1|u|Hs(Q).

Example 4.1 Let {Th} be a family of triangulations Th ={K} of Qc= R2

satisfying (4.1) and let Vh={veC°(Q): V|K £P2(K), VKeTh}. For the finite
element of Example 3.2 we may for veC°(Q) define the interpolant JthveVh

and similarly using (4.1) , ie,
P’ (4.22)

(4.23)C2h 29L
U| H2(K)*S 2 2.2(4.16) u| H (K)

KeTh p2

C2h2 , | 2^
_
7rr'lulH2(Q)(32

byso that

JthV=v at the nodes of Th,
3ThV=v at the midpoints of the sides of Th -

In this case (4.19) and (4.20) hold with r=2.

Ch— |u|H2(Q) =Ch|u|H2(Q),(4.17) p
if the constant (3 is included in the constant C, and

U-JIhu||L2(Q)^Ch2|u|H2(Q).(4.18) Example 4.2 With Th={K} as in Example 4.1 define Vh={v6C1(Q):
V|K6P5(K), VKeTh} and for veC2(Q) specify the interpolant JihveVh by

DaJihV=Dav at the nodes of Th, |a|^2,

3v3— JihV= — at the midpoints of each side S of Th ,
3n3n4.3 Interpolation with polynomials of higher

degree
The estimates (4.17) and (4.18) are typical examples of estimates for the
interpolation error u- jthU, in this case for interpolation with piecewise linear
functions. If we work with piecewise polynomials of degree r^l on triangu-
lations Th satisfying (4.1), we have in the typical case the following estimates:

l|u-Jlhu||L2(Q)^Chr+1|u|H,+1(Q),

|u-JThu|H1( Q)^Chr|u|Hr +1(£2),

where the constant (3 is absorbed in the constant C in (4.20). If VhdH2(Q),
then we also have

(4.21)

where denotes differentiation in the normal direction to S. In this case
3n

(4.19) — (4.21) hold with r=5.

(4.19)

(4.20) 4.4 Error estimates for FEM for elliptic problems
Recalling again the typical abstract error estimate for an elliptic problem

||u — uh||v=SC||u — v||v VveVh,

and choosing here v= JihU with jihueVh and interpolant of u , we have

u-Uhllv^CHu- jihul lv VveVh.

|u-Jthu|H2(Q)^Chr-l |u|Hr+1(Q) -
Note that for each derivative of the error u — JihU, the power of h on the right
hand side drops by one. Note that the constant C in (4.19)—(4.21) only depends (4.24)
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Using estimates for the interpolation error ||u — jChuj|y we then obtain
estimates for the finite element error ||u — UH||v- Using the interpolation
estimates of Sections 4.2 and 4.3 we have for example the following error
estimates:

where Q is bounded domain in R2 with boundary T and f is a given function.
Let us first assume that T is smooth, ie, T is a smooth curve in particular
without corners or cups. In this case there is for s=(), 1, . . a constant C
independent of f such that

u||Hs+ 2(Q)^C| | f ||Hs(Q),

ie, if feHs(Q) then ueHs+2(Q), or loosely speaking, we “gain two deriva-
tives” in (4.26).

If T is not smooth, then (4.27) may not hold, not even for s=(). If T has
a corner, then the solution u or derivatives of u will in general have
singularities at the corner even if f is very smooth (feHs(Q) for s large). More
precisely, the solution u of (4.26) with f smooth basically has the following
form close to a corner with angle co (cf Problem 4.6):

(4.27)Example 4.3 With V=HQ(Q) and (cf Examples 3.1-3.3)

Vh={veV: v|KePr(K), VKeTh}, r= l, 2, 3,

we obtain from (4.20) and (4.24)

||u-Uh||H1(Q)^Chr! u|H

for the finite element method for the Dirichlet problem (1.16). We obtain a
similar result for the Neumann problem (1.36).

r + l (Q)

u(r,0)=rYa(0)+|3(r ,0) , y=(4.28)Example 4.4 With Vh as in Example 4.2 we have for the biharmonic problem
of Example 2.5 the following estimate

11 u“uh11H2(Q) =̂ CH4|u|H6(Q) "

where a and (3 are smooth functions (here we use polar coordinates (r , 0) with
the pole at the corner). It is easy to see that if cu> jt then a function u of the
form (4.28) does not belong to H2(Q) if a^O. On the other hand, one can
show that (4.27) holds with s=() if Q is a convex polygonal domain (in which
case the corner angles satisfy OOCJT).

For the biharmonic problem (2.22) we have if the boundary T is smooth,
for s=0, 1, . .

Remark 4.2 It is possible to prove analogues of (4.24) in norms other than
that given by the space V. For example one can prove for the finite element
method of Section 1.4 that (see [RS])

II Vu-Vuh||u(Q)^C||Vu-Vjthu|L(Q),
which together with Theorem 4.1 gives

||Vu-Vuh||L„(Q)sSC max [hK max ||Dau||MK)] -K iat = 2

• ?

||u||Hs+ 4(Q)^C||f ||Hs(Q).

If T has corners there are results analogous to those just stated for the Poisson
equation (4.26).

(4.25)

Example 4.5 For a solution u of the form (4.28) we have formally that
ueHS(Q) Oderivatives Dsu of order s belong to L2(Q) 4=>

R
J |Dsupdx ~ C J* [r^ s]2rdr < °o.4.5 On the regularity of the exact solution

We have seen that the regularity of the exact solution u is involved in
estimating the error ||u — Uh|!v in the finite element method. Let us now give
a typical result that shows how the regularity of the exact solution u depends
on the regularity of the given data . Let us then consider the Poisson equation:

in Q,
on r,

oQ

Hence ueHs(Q) if and only if s<y+ l . By Remark 4.1 we thus have for the
standard finite element method of Section 1.4 for the Poisson equation in a
polygonal domain that for any e>0

U-Uh||H1(Q):SChY-E||u||HT+ 1-£(£2)=ChY-E,

where y= JT/CO and co is the maximal angle of a corner of T. For example if y= 2/3,
which corresponds to a concave corner of angle 3JT/2 , then

(4.29)
-A u =f(4.26) u =0
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2

l |u=uh||HI(Q)^Ch Relying on the error estimate (4.30) we see that (4.33) will be satisfied if the
corresponding finite element mesh Th={K} is chosen so that

2 (hK|u|H2(K))2 ~ (-pr)2-
KeTh C

To determine a mesh satisfying (4.34) we may proceed as follows: Choose a
first mesh Th={K} and compute a corresponding finite element solution Uh.
Using Uh compute approximations to |U|H2(K) denoted by |uh|H2(K) for KeTh -
The quantity |UH|H2(K) may be obtained using difference quotients based on
the values of Vuh at the centers of gravity of K and neighbouring triangles
in ?h. Next, construct a new mesh Th ={K} by subdividing into four equal
triangles each KeTh for which

We see that in this case we do not obtain the full rate of convergence which
is 0(h). (4.34)

4.6 Adaptive methods
If the exact solution u has eg a corner singularity, then it is natural to refine
the triangulation close to the corner to increase the accuracy. Recalling that
for the method of Section 1.4 (cf (4.16))

lu-UhlH^^^ ju-JThulH^QJ^C^hKlujH^K))2]1̂ ,

it is clear that we somehow would like to balance the size of hx with that of
|U|H2(K) and in particular choose hi< small where |U|H2(K) is large. If u has the
form (4.28) with 0<y<l, then one possible refinement is given by (cf Problem
4.4.)

(4.31)

if liK^dx, where dj< is the distance from K to the corner and h is the mesh
size away from the corner. With this refinement we have, disregarding the

(4.30) 62(hK|uh|H2(K))2 >
NC2’

where N is the number of triangles in 1),. Next, compute the finite element
solution Uh on the new mesh Th and repeat the process until

2 (hK|uh|H2(K))2 ^(|r)2-
Note that by the construction if follows (if 6 is small enough) that for the final
mesh Th satisfying (4.35), all the terms in the sum will be approximately equal.
Note also that after refinement of certain triangles, the resulting mesh is
completed into a triangulation as in Fig 1.15.

It is also possible to control the error in other norms than the H1(Q)-norm
used in (4.33), for instance we may want to control the gradient error in the
maximum norm. In this case we base the adaptive method on the error
estimate (4.25) and seek to find a mesh Th={K} such that

ChKmax||Dauh|L(K) ~ 6 VKeTh,
|a|=2

where as above ||lI>aUh||L00(K) is a computed approximation of ||Dau||Loc(K) -
Again the final mesh satisfying (4.36) is constructed through a sequence of
successively refined meshes where triangles K for which the left hand side of
(4.36) is larger than 6 are refined. In Fig. 4.2 we give the sequence of meshes
(with a zoom at the origin for the final mesh) obtained by applying an adaptive
method of this form with 5=0.1 and C=1 to the problem

Au=0 in Q,
U = UQ on T,

(4.35)hK=Chdjc
_

Y,

e,

l u-U h l H^Q^C h.

Notice that the total number of elements with a refinement of the form (4.31)
is of the order 0(h~2), i.e., the same as with a uniform mesh of size h. Thus,
in this case the refinement does not increase the total number of unknowns
significantly but significantly increases the precision (from (4.29) to (4.32)).

In general the nature of the exact solution u is not known beforehand and
then it is not clear how to locally refine the finite element mesh. Recently
methods for automatic mesh refinement, so-called adaptive methods, have
been developed which do not require the user to supply information on the
smoothness of the exact solution. In these methods this information is instead
obtained through a sequence of computed solutions on successively refined
meshes.

To very briefly describe some of the basic ideas underlying adaptive
methods, suppose S>0 is a given tolerance and suppose we want to obtain a
finite element approximation Uh such that

|u-uh|H1(Q) < 6 *

(4.32)

(4.36)

(4.33)
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where Q={x= r(cos 0, sin 0): 0<r<l, O<0< 377/4} with exact solution
u(r , 0)=r^sin(Y0), y=4/3. In Fig. 4.3 we give the actual gradient error |Ve(x)|
as a function of the distance |x| to the origin along the radius 0=7T/2. We
observe that the gradient error is roughly equal to the tolerance and thus we

that the adaptive method is able to find a good mesh in this case. This
example is taken from [EJ2], where theoretical and computational results for
adaptive methods of the indicated type are given, see also [E].

For adaptive methods for parabolic problems we refer to Section 8.4.4. For
another approach to adaptivity, see [BR], [BM].

4.7 An error estimate in the L2(Q)-norm
We have seen that if we apply the finite element method with the space
Vh={veHo(Q): V|K £PI(K), VKeTh) to the Poisson equation (1.16) with Q
a polygonal domain , then we have the following estimate for the error u-uh
in the H'(Q)-norm:

(4.37)

see

u-UhllH'^sSChluln^Q).
This trivially gives the following L2(Q)-estimate:

llu _
uh||L2(£2):^Ch|u|H2(Q).

On the other hand by (4.18) the interpolation error, u-JThU, satisfies the
second order estimate:

(4.38)

! ! u _
Jthu||L2(Q)^Ch2|ujH2(Q).

We shall now prove that we have a similar estimate for ||U-UJ,||L2(Q) SO that
this quantity in fact converges at the optimal rate. We shall then assume that
the polygonal domain Q is convex (if Q has a smooth boundary, then convexity
is not required).

Theorem 4.3. If £2 is a convex polygonal domain and uh is the finite element
solution of the Poisson equation (1.16) with piecewise linear functions, ie U[,
satisfies (1.20), then there is a constant independent of u and h such that

11 U Uh 11L2( £2) ^=Ch21 U|H2(S2) -

Proof . Subtracting (1.19) and (1.20) we obtain the error equation
(4.39)

where e=u-uh and the notation of (1.19) is used. We shall now estimate
(e, e)=||e||L2(£2) using a so-called duality argument which is often used in finite
element analysis (see also Chapter 8). Let cp be the solution of the following
auxiliary dual problem:

-Aqp=e in Q,
qp =0 on T.

Since Q is convex we have from (4.27) with s=0,

I icp!|H2( £2) =SC||e||L2(£2),

Fig 4.2 Sequence of meshes obtained by adaptive FEM

a(e, v)=0 VveVh,

T
R 0, 08 . .U T
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N 002..
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0 125 0250 0375 0500 0825 0750 0875 1.000

RADIUS VECTOR
O 0R

0
(4.40)R

Fig 4.3 Gradient error
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and since we take sup over a larger set , we clearly have that | | • ||L2( Q) is a
stronger norm than

where the constant C does not depend on e. Using Green’s formula and the
fact that e=0 on T, * IIH-1(^) > ie,

l |f||H'1(Q)^||f ||L2(Q).
By (4.42) and (4.43) it follows that the basic stability inequality (4.41) may
be written as

(e, e) =-(e, Acp)=a(e, <p)=a(e, cp-Jih <p) ,

where the last inequality follows from (4.39) since jihcpeVh so that
a(e , jthqp)=0. Applying now the interpolation estimate (4.18) to qp and using
also (4.40), we find

H ](Q),l |U||Hi(Q)^-

which formally corresponds to (4.27) with s= —1.
llellL2(Q)^HellH1(«) ll (P

_:l:hCp||H'(Q)«C||e||H' (Q)h|qp|H2(S2)

=̂ Ch||e||H (£2) I lel|L2(£2) -
Dividing by ||e||Lj(Q) and recalling (4.37) we finally get

llell̂ nĵ ChllellH'tQĵ C l̂ulH^Q)

and the proof is complete.

Problems
4.1 Let I=[0, h] and let JtvePi(I) be the linear interpolant that agrees with

veC°(I) at the end points of I. Using the technique of the proof of
Theorem 4.1 prove estimates for ||v-jiv||L=c(i) and ||V'-(JIV)'||L (I) , cf
(1.12) and (1.13).

Prove (4.14).

Estimate the error ||u — uh||H2(I) for Problem 1.5 and Example 2.4.

Prove that the total number of elements with a corner refinement of
the form (4.31) is 0(h-2).

Determine a suitable refinement in case the exact solution has a
singularity of the form (4.28) with l<y<2 and we want to control
||Vu-Vuh||L„(Q) via the estimate (4.25) , cf [EJ2],

Using polar coordinates (r , 0) , let Q={(r , 0): 0<r<l, O<0<co} be
a pie-shaped domain of angle co. Prove that the function u(r, 0)
=rYsin (y0) , Y=—, satisfies: Au =0 in Q, u=0 on the straight parts
of the boundary of Q.

Prove, by modifying the proof of Theorem 4.3, the following L2-
estimate for the standard finite element method of Section 1.4 for
Poisson’s equation on an L-shaped domain (cf Example 4.5):

l |u-uh||L2(fi)«Ch4/3-E.
Let Vh be a finite element space on a triangulation Th of the domain
£2 <= Rd satisfying (4.19). Given ueL2(Q) let uheVh be the L2(Q )-pro-
jection of u onto Vh, ie,

Remark 4.3 The basic stability inequality (2.6) for (4.26) states that

II , < A
4.2

4.3(4.41)

4.4where A is any constant such that

VveHo(Q).|L(v)|=|(f , V)|S£A||V||H (Q) 4.5
The smallest possible choice of A is given by

l (f , v)|
(4.42) A= sup

veHj(Q)
v^O

Clearly the quantity A defined by (4.42) measures the size of f in a certain
sense and in fact we may define a norm

4.6VI |H'(Q)

! IH (Q ) by

! (f , v)| 4.7I|f|lt-T'(Q)=(4.43) SUp .“j—Tj

veHo(Q)
v =̂0

This is the norm in the so-called dual space H-1(^) of HQ(Q). Note that
4.8l (f , v)|I|f||l^(£2) sup vllutQ)’veL2(Q)

\4-0
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VveVh,

where (. , .) is the scalar product in L2(Q). Prove the error estimate

||u-uh||L,(Q) =Sinf ||u-v||L2(Q)<Chr+1|u|Hr+1(Q),
veVh

(4.44) (uh, v)= (u , v) 5. Some applications to elliptic

and that

||uh||4(Q)^||u||L2(Q).

This chapter presents applications of the finite element method to some basic
problems in continuum mechanics of elliptic type. We first give suitable
variational formulations of the continuous problems.

5.1 The elasticity problem
Consider a homogenous isotropic elastic body B occupying the bounded
domain Qc= R3 with boundary T decomposed into two parts T\ and Y 2 with
the area of T2 being positive. Let B be acted upon by a volume load f =
(fi, h, f3) and a boundary load g=(gi , g2, g3) on T\ , where the fj and gj are
the components in the Xi-direction. Further, let us assume that B is fixed along
T 2 (see Fig 5.1).

Fig 5.1

We want to determine the displacement u=(ui, U2, U3) and the symmetric
stress tensor a=(ajj) , Ojj= Ojj , i, j= l, 2, 3, under the loads f and g. Here u* is
the displacement in the Xj-direction, o^is the normal stress in the Xj-direction,
and the Ojj , i^ j, are the shear stresses. Further, e(u)= (eij(u)), where
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-Oij , j= fi in Q , i=l, 2, 3.

We will now give a variational formulation of the elasticity problem (5.1).
Let us then first note the following Green’s formula:

J OijEjj(v)dx= J OjjnjVjds-J ojjj Vjdx ,

1 , 3uj 3ui

2 V 3xi

J£ij(u)= ~ ( ) , i, j=l, 2, 3,
3xjJ

is the deformation (tensor) associate with the displacement u . Assuming that
B is linearly elastic and that the displacements are small, we have the following
relation between stresses and deformations, or constitutive relation (Hooke's
law):

(5.1a)

(5.2)
QQ r

where the summation convention is applied in all terms, ie, we sum over i

and j from 1 to 3. To show (5.2) observe that since Oij= Oji and eij(v)=^ (vjj
+vj,i), we have

Ojj= X div u 6jj + peij(u),

where X and p, are positive constants,
11 -(Oijvi >j+ OijVi > j)= OjjViJ .°ijeij(v)= -( UjjVi. j I (JjiVj.i )-

Hence, by Green’s formula (1.17) we get

Io;jejj(v)dx= JOijVj jdx= JOjjnjVjds-Joij; jVjdx ,

2 9ui
i = l 3Xi ’

1if i= j >

0 if i^j.

div u=

Q Q r Q

which proves (5.2). Let us next choose a test function v=(vi, V2, V3)6[H!(Q)]3
(ie each component vjeH^Q)) such that v=0 on T2, multiply (5.1b) by vj,
sum over i from 1 to 3 and integrate over Q. By Green’s formula (5.2) , we
then have

We also have the equilibrium equations

|23i(5.1b) =fi in Q, i= l, 2, 3,
3x;j= i J

together with the boundary conditions

u=0 on T2,
JfiVjdx=-JOjj, jvjdx= JOjjBjj(v)dx-JOjjn jvjds,
Q Q Q r(5.1c)

where the boundary integral over T2 vanishes since v=0 on T2. Using also
(5.Id) we thus have

3
(5 - ld) on T1, i= l, 2, 3,Z Oijnj=gi

j= i

Joijeij(v)dx= JfiVidxT JgjVjds.where n=(n,) is the outward unit normal to T.
Q Q r

Remark The constants p and v in (5.1a) can be expressed as Finally, we eliminate Ojj by using (5.1a) to get

J[A. div u div v+ M.eij(u)Ei](v)]dx= Jf;Vidx + JgjVjds ,E EvX =b= - ,
1+ V (1+v) (1— 2v) ’

where E is the modulus of elasticity (Young modulus) and v is the contraction
ratio (Poisson ratio) of the elastic material of B.

In the remainder of this chapter the following notation for partial derivatives
will be used

Q Q r
since

div u 6ijEij(v)=div u div v.

We are thus led to the following variational formulation of the elasticity
problem (5.1): Find ueV such that

a(u, v)=L(v)3v (5.3) VveV,j=l, 2, 3.
3xi ’

.1 where
We shall also use the summation convention that repeated indices indicate
summation from 1 to 3. With this convention we may write the equilibrium
equations (5.1b) as follows

a(u, v)= J[X div u div v+ pejj(u)ejj(v)]dx, L(v)= JfiVjdx+ JgjVids,
Q Q L

V={ve[H1(Q)]3: v=0 on T2}.
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Let us now check if the assumptions (i)-(iv) of Section 2.1 are satisfied in
this case. We can routinely verify (i) , (ii) and (iv) and thus it only remains
to prove the V-ellipticity, ie, to prove that there is a positive constant a such
that

only (no transversal loads). Assuming “plane stresses” (ie, 0)3=0,
i=l, 2, 3) prove that in this case (5.1) is reduced to:

U j= l , 2,°ij=X(£ii(u)+ E22(u))6ij+ p £ij(u) ,

_ i i£iia(v, v)>a||v||y(5.4) VveV, i , j= l , 2,=fi in Q,3xij=i J
where

i= l , 2,ui = u2=0 on Ti,

I |V||H'(Q)=( 2 ||vi|| &1(Q))1/2. 2V||v= i= l , 2,2 Oijnj= Fi on r2,i= i

This inequality follows directly from Korns inequality: There is a positive
constant c such that E , Ti and r2 is a decomposition of the

1+v
boundary of Q and fj and Fj are given forces. Give a variational
formulation of this problem and formulate a corresponding finite
element method. Determine the stiffness matrix in a problem with
simple triangulation and piecewise linear displacements. In Fig 5.2
below we give the computed displacements using bilinear elements on
the indicated triangulation for the above problem corresponding to a
thin plate fixed at both ends and subjects to a distributed load as
indicated. The Young modulus E is here different in the upper and
lower halfs of the plate denoted by I and II , with E being larger in II.

Evwhere X=
1 2 ’ ^=
1— Vz

JEij(v)Eij(v)dx^c||v||v=c(|v| ^ +IIVIIL2(^)^(5.5) 1H (Q)
Q

We notice in particular that (5.5) amounts to proving that the L2-norm of any
partial derivative VJJ can be estimated by the L2-norms of the deformations
8ij(v) involving only certain combinations of the VJJ. Since (5.5) involves also
the L2-norm on the right hand side, we need T2 to have positive measure (cf
Example 2.7). For a proof of Korn’s inequality we refer to [Ni] (the proof is
easy in the case T2=r, cf Problem 5.2).

Now we are able to formulate a finite element method for our elasticity
problem. Let then Th={K} be a “triangulation” of Q into tetrahedrons K as
described in Example 3.6 and define

Vh={veV: V|K 6[PI(K)]3, VKeTh}.

Each component v* of a function veVh is thus a piecewise linear function
vanishing on T2. We now formulate the following finite element method for
(5.1): Finu UheVh such that

a(uh, v)=L(v)

» . ftmT “ "IT " iT T

r r
k

1 rl i

VveVh.

According to the general theory of Chapter 2 this problem has a unique
solution and by the interpolation results of Chapter 4 we have the following
error estimate:

L t-1

1 i

II
-rr

-‘

U-Uh||H1(Q)^Ch|u|H2(Q). Fig 5.2

Problems
5.2. Prove Korn’s inequality in the case r2=r. Hint: Prove that

JvijVjfidx = Jvi,ivjjdx.
5.1 Consider the elasticity problem (5.1) in a three-dimensional domain

Q= QX (-B, e) with Qc= R2, e small and F3=f3=0. This corresponds
to a thin elastic plate with middle surface Q subject to in-plane loads QQ
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We can easily check that the conditions (i)-(iv) of Section 2.1 are satisfied.
Note that in the formulation (5.7) the pressure p has “disappeared”, which
comes from the fact that we are working with a space V for the velocities where
the incompressibility condition div v=0 is satisfied.

To formulate a finite element method for (5.6) based on the variational
formulation (5.7) we need to construct a finite-dimensional subspace Vh of
V. It turns out that this is not altogether easy since we have to satisfy the
condition div v=0 exactly. For simplicity, let us consider the analogue of (5.7)
in two dimensions, in which case

5.2 Stokes problem
The stationary Stokes equations for an incompressible Newtonian fluid with
viscosity p, enclosed in the domain QczR3, and acted upon by the volume load
f , read in the notation of Section 5.1:

Oij =2n.eij(u)-p 6jj

div u =0
u =0

in Q,
in Q,
in Q,
on S, r*

i, j=l, 2, 3,
i=l, 2, 3,

3vi + 3V2
3XI 3x2

where Qc= R2. By a standard result in advanced calculus it follows that if Q

is simply connected, ie, if Q does not contain any “holes”, then div v =0 in
Q if and only if

V={v =(v1, v2)e[H^(Q)]2: div v=> =0 in ft},where o=(ojj) is the stress, p the pressure and u=(uj) the velocity. Eliminating
Ojj we obtain the following equivalent formulation:

-pAui+p,i = fi
div u =0

U j=0

(5.6a)
(5.6b)
(5.6c)

i=l, 2, 3,in Q,
in Q,
on T, i=l , 2, 3.

3cp _ 3<p
3x2 ’ 3x i /

for some function cp. More precisely (cf Problem 5.1), one has

veV <^v=rot cp, cpeHo(Q).

The function cp is the stream function connected with the velocity field v.
Let now Wh be a finite-dimensional subspace of HQ(Q) e g constructed using

the (^-element of Example 3.5 and define

Vh={v: v= rot cp, cpeWh}.

Then Vh <=V and formulating a finite element method in the usual way by
replacing V by Vh in (5.7) we obtain a discrete solution Uh satisfying the
following error estimate:

I lu ~ uh||„i( Q)^Ch4|u|H5(Q) -
Chapter 11 gives other finite element methods (so-called mixed methods)

for the two dimensional analogue of the Stokes problem (5.6) not requiring
the velocity space Vh to satisfy the incompressibility condition exactly.

v = rot cp=
We now seek a variational formulation of (5.6). Let VG[HQ(Q)]3 be a test
function satisfying the incompressibility condition div v=0 in Q, multiply
(5.6a) by Vj, integrate over Q and use Green’s formula. Then summing over
i, we get (5.8)

JfjVjdx=-pJ AujVidx+ Jp,iVidx
Q Q Q

3u*

=-/ —Lvids+ p/ Vui - Vvjdx+ JpnjVjds — Jpvi
;idxr 3n

= pjVuj • Vvjdx,

Q r Q

Q

since V j=0 on T and div v=v j
5 i =0 in Q. Thus we are led to the following

variational formulation of the Stokes problem (5.6): Find ueV such that

VveV,(5.7) a(u, v)=L(v)

where

a(v, w)= p J V v j * Vwidx,
Q

L(v)= JfjVidx,
Q

V={ve[Ho(Q)]3: div v=0 in Q}.
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3u (tangential derivative),-u it ;
at J 15.3 A plate problem

Consider a thin elastic plate P with middle surface given by the domain QcR2 Oi
with boundary T and acted upon by the transversal load f , see Fig 5.3.

(normal moment),

(twisting moment) ,
^nn —

n̂t — îjHitj

3ontR(°)=0ij, jni +

Now let the boundary V be partitioned into three parts Tj, i=l, 2, 3, and
consider the following boundary conditions:

(transversal force).

(5.11a) on fj (clamped),u =3n

(5.11b)

(5.11c)

on T2 (freely supported),

on V?, (free boundary).

Let us now give a variational formulation of the plate problem (5.9)—(5.11).
Let veH2(Q) be a test function satisfying the essential boundary conditions

U = Onn =0

ann =R(o)=0

Fig 5.3
9L0 on n,v=3n

We seek the transversal deflection u together with the moments o\j, i, j= l ,
2, under the load f. Here on is the bending moment in the x* - direction and
012=021 the twisting moment. Assuming small deflections and a linearly elastic
material, we have the following constitutive relation (cf Hooke’s law):

Ojj= XAu 6ij+ pxij(u),

where\ and p are positive constants, and

(5.12) v=0 on T2.

If we now multiply the equilibrium equation (5.10) by v and integrate over
Q , then repeated use of Green’s formula gives

Jfv dx= jaij,ijv dx= JojjjniV ds-Jay jvjdx(5.13)(5.9) i= l, 2,
Q Q r Q

= JOijjniV ds-1OijnjV,ids+ JOijXij(v)dx.
32U r r Q

îj(u)=u,ij= 3xj3xj ’

defines the curvature tensor. Further we have the following equilibrium
equation:

Since
3v . 3v . . . nv ;= — n; + — t;, 1=1, 2,

’ 3n 3t

(5.10) Oij,ij= f in Q,

where again the summation convention is used.
To define the boundary conditions let n =(ni, n2) be the outward unit

normal to T, t=(ti , t2)=(n2, — ni) the tangent to T and define

we have
3v 3v 3v 3v

°ijnjv ,i — Oijnjnj 0n +Oijnjti ~ Onn T Ont —3t ’3t 3n

so that (5.13) can be written
3u (normal derivative) , 3v= U ;n;an - J J JoijXij(v)dx = Jfv dx- fo,, |HjV ds+ Jonn — ds+ /ont — ds.(5.14)

3n 3tQ Q r r r
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If the boundary T is smooth, partial integration along T gives Problems
5.2 Prove (5.8).

Show that the analogue of Stokes equations (5.6) in a two-dimensional
simply connected domain Q can be formulated as the biharmonic
problem (2.22) by introducing the stream function as unknown.
Show that the plate problem (5.9)—(5.11) takes the form (2.22) if
ri=r.

3o3v —v ds.Jont — ds=-J 5.3r 3t

in which case (5.14) can be written

3tr

JoijXij(v)dx= Jfv dx + Jann|^ ds- jR(a)v ds. 5.4
r rQ Q

If we now use the boundary conditions (5.11) and (5.12), we see that the
boundary integrals disappear and on eliminating ay also, by using (5.9), we
finally get

J[XAuAv+ pxjj(u)xij(v)]dx= J fvdx.
Q Q

Thus we are led to the following variational formulation of the plate problem
(5.9)—(5.11): Find ueV such that

a(u, v)=L(v) VveV,

where

a(u,v)= J[XAu Av+ pxy(u)xjj(v)]dx,
Q

L(v)= Jfvdx,
Q

V={veH2(Q): v — ^=0 on fi , v=0 on IA}.
3n

We immediately see that the conditions (i), (ii) and (iv) of Section 2.1 are
satisfied and it is possible to verify the V-ellipticity for example in the case
when the length of T\ is positive, ie, when P is clamped along a part the
boundary (cf Problem 2.2).

We can now in a routine way formulate a finite element method for the plate
problem using the (^-element of Example 3.5. We leave the details to the
reader.

Remark The constants X and p in (5.9) are given by

_ vEa3

12(l+v) ’ 12(l-v2)’

where E is the Young modulus and v the Poisson ratio of the elastic material
of the plate.

Ea3
X=
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6. Direct methods for solving
linear systems of equations

(6.3) A=LU,
where L=(lij) is a lower triangular MxM matrix (ie, ljj=0 if j>i), andU=(ujj)is an upper triangular matrix (ie, Ujj=0 if j<i), or diagrammatically:

X X X - . . . XX

0X X X x. • - - X

x \ ;L= , U=X X X

0X X X
X X X X

6.1 Introduction From the factorization (6.3) it is easy to solve the system Ai= =b by using
forward and backward substitution to solve the triangular systems!
(6.4a)
(6.4b)

We recall that U=A^) where the matrices A^), k =1, . . ., M, are successively
computed as follows:

Ad)=A,
Given A^k) of the form

' 00an . . .
0 .

We have seen in Chapters 1 and 2 that application of the finite element method
to a linear elliptic problem typically leads to a linear system of equations

A^= b,

where A=(ajj) is a symmetric, positive definite and sparse MxM matrix , and
beRM. We also know that the unique solution ^GRM of (6.1) can be
equivalently characterized as the solution of the quadratic minimization
problem

Lrj=b,
U§=r).(6.1)

(i)
(ii)

Min [- r\ • Aq-b • q].
T]eRM 2

a < k°)
' aln(6.2)

' • •? >g> . . .

° 4’ a«>
determine A< k +1)= (a[Jk +1)) as follows

a (.k +1)
> j

A«= a(k)
dknTo compute the solution 1= we can start either from (6.1) or (6.2). In this

chapter we shall study some direct methods, or methods based on Gaussian
elimination, for the solution of (6.1). In the next chapter we shall study some
minimization algorithms for the solution of (6.2) that may be viewed
equivalently as iterative methods for (6.1).

0

i= l, . . ., k, or
j= l , . • ., k-1,

00a i j’Remark Finite element methods for first order hyperbolic problems typically
lead to non-symmetric linear systems of equations, see Chapter 9 below. In
this case there is no associated minimization problems (unless a least-squares
formulation is used) and it is not yet clear how to construct efficient iterative
methods for general classes of non-symmetric problems. Thus, for such
problems Gaussian elimination (with pivoting, cf below) is often used.

(6.5)
a(k)aika(k+ l ) (k)aij ~ aij alk > i-k+1, . . ., M, andkja(k)akk

j=k, . . M,
under the assumption that aj^AO.

We also recall that L=(/jj), where

f /ii= 1, i= l , . . ., M,6.2 Gaussian elimination. Cholesky’s method
4k)

4= - i= k+l, . . . , M,We recall (cf any basic course in numerical analysis) that using Gaussian
elimination to solve (6.1), we obtain a LU- factorization of A of the form

k=l, . . ., M,a (k ) ’akk
/ik = 0, if i<k.
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One can show that if A is symmetric positive definite, then a^>0,
k= l , . . M. Thus, Gaussian elimination can be performed without pivoting.

In addition, under the same hypothesis it is not necessary to perform pivoting
to prevent numerical instability due to too small pivot elements a^. Thus,

may perform the Gaussian elimination in any desired order. We will see
below that different direct methods for (6.1) essentially differ in the choice
of the order of the elimination, ie, the enumeration of the nodes in case we
perform the elimination according to the ordering of the nodes.

Since A is symmetric positive definite we may alternatively factor A as

A=BBt,

with B= DL and where D is a diagonal matrix with diagonal elements

and L and a{£* are obtained through the Gaussian elimination given above.
Here BT denotes the transpose of the matrix B. The elements bjj of the matrix
B can alternatively be determined using Cholesky’s method as follows:

bn = Van,

u ailt>ii —

0

we

0

d

d

k=l, . . ., M,
To factor an MxM matrix with band width d one needs asymptotically Md2/2
operations (cf Problem 6.1), which is much less than the number M3/3 for a
dense matrix if d is much smaller than M.

In our applications when ajj=a(cpj, cpj), where a(. , .) is a bilinear form and
(qpi , . . ., (PM} is a basis for a finite element space Vh, we have that

d=max {|i-j|: cpj and cpj are associated with degrees of freedom
belonging to the same element}.

Clearly, the band width depends on the chosen enumeration of the nodes, and
thus if Gaussian elimination is to be used, then we want to enumerate the
nodes so as to make the band width (nearly) as small as possible.

Example 6.1 Let us consider the following enumeration giving minimal band
width

M,i =2, . .
bn

and for j =2, . . ., M,

bjj- ajj , ^. b^kk = l

j-1
bjj= (aij — 2 bjkbjk)/bjj , • • • >

k = l

6.3 Operation counts. Band matrices
The number of arithmetic operations to obtain an LU-factorization of a dense
MxM matrix (i e matrix with few zero elements) is asymptotically of the order
M3/3. If the matrix is sparse, then it is possible to greatly reduce the number
of operations by using the sparsity . This is particularly easy to do if the matrix
A is a band matrix, ie, there is a natural number d, the band width, such that

aij=0 if |i — j|>d.
A band matrix has the following form, where the shaded area indicates where
non-zero elements may occur (some elements in the band may be zero):

In this case we have d=5 (assuming one degree of freedom associated with
each node) . With a horizontal enumeration instead we would have d=10.
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Example 6.2 In a typical application with a uniform triangulation of the unit
square with mesh size h and node enumeration according to Example 6.1, we
have that M=0(h-2) and d =0(h

_
1), and thus the work estimate for Gaussian

elimination is in this case 0(h-4) or 0(M2).

Note that a band matrix A is stored as a vector with e g the columns in the
band in consecutive order. If A is also symmetric then only eg the upper
triangular part of A needs to be stored. Thus, if A=(aij) is a symmetric band
matrix with band width say 2, then A may be stored as a vector a= (ai) with
the elements aj corresponding to the matrix elements ajj as follows:

0 0 0 '

0 0
a6 ag aio 0

a9 an ai3

elements of A are zero. This is called fill-in. In the applications most of the
elements of A within the band are zero (see eg (1.25)) , while with usual
orderings such as in Example 6.1, most of the elements of the factors L and
U within the band are non-zero. Thus, the factors L and U contain many more
non-zero elements than A and we have a considerable fill-in. Different
enumerations of the nodes may give different degrees of fill-in, cf the nested
dissection method below. Notice that the density of the factors L and U
influence the cost of the backward and forward substitutions (6.4a, b). With
most of the elements non-zero within the band, as is typical with usual
orderings, this cost is 0(Md).

We will now briefly consider some common variants of Gaussian elimi-
nation , namely the frontal method (cf [I]) and nested dissection (cf [Ge]).

ai a2 a4
a3 a5 a7

A=
sym

a12

Remark It is sometimes convenient to allow the band width to vary from one
column to another. To store A in this case, we again store the columns of the
band consecutively in a vector a=(aj). We then also have to supply information
concerning the indices of the diagonal elements. As an example, a matrix A
with the following variable band structure

6.5 The frontal method
In this method the assembly of the stiffness matrix and the Gaussian
elimination are carried out in parallel. Moreover, it is not necessary to store
the entire matrices A^ obtained through the elimination process in the fast
memory, which may be difficult if M is large; instead it is sufficient at each
step of the elimination to store just a smaller part of A^O in the fast memory
and communicate with a secondary memory only at the beginning and end
of each step.

Let us give some more details of this procedure and to be specific let us
consider the same situation as in Section 1.8. That is, let A=(ajj) be the
stiffness matrix associated with the Neumann problem of Example 2.1 and
the standard finite element space of piecewise linear functions on a triangu-
lation Th={K} with basis {cpi , . . ., CPM}- Suppose further that the nodes are
enumerated so that A is a band matrix with band width d<M. The frontal
method is based on the following facts:

The matrices AW, k=l, . . . , M, obtained through the Gaussian
elimination, are all band matrices with band width d. To compute
A(k +1) with AW given, we need to change the elements a^ by
subtracting the quantities

0 0 0 0
aio 0 0

a6 a8 an 0 0
a9 an 0 0

an ai4 0
a15 a16

ai a2 a4
a3 a5 a7

A=
sym

an
can be stored as the vector (ai, . . ., an) together with the list of indices of
diagonal elements (1, 3, 6, 9, 13, 15, 17). This is referred to as a skyline method
of storage.

(i)

6.4 Fill-in
Using (6.5) it is easy to see that if A is a band matrix with band width d, then
so are the factors L and U in an LU-factorization of A. However, the matrices
L and U may have non-zero elements within the band at locations where the

a£>ik 00 for i=k +l, . . . , k +d , j = k , k +1, . . . , k +d.akia00akk
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In other words, to compute A(k +1) it is sufficient to work with the
(d+l) x (d + l ) matrix

f a (k)
akk

remaining triangles with not yet fully assembled contributions, is called the
front. The assembly activity takes place at the front and with a suitable
enumeration the front will sweep over the region Q in the combined
assembly-elimination. We now consider an example.a (k)

dk, k +d
Bk=

o (k)
d k + d , k +da k>k +d , k

occupying the following part of A^k) ;
Example 6.3 Consider the following triangulation of the region Q:

where the nodes have been numbered and the triangles are denoted by the
letters a-i. The corresponding stiffness matrix has the following structure
where x indicates non-zero elements.

active
area at
step 1

In the assembly

aij=2aK(qpi , <Pj) ,
K

we add the contributions aK(q>i, <Pj) from triangles K in which both
node i and node j are vertices. Now, to eliminate the variable
i e, to take the step from A^ k) to A^k +1) , we only need to have the
matrix elements in column and row k fully assembled, while the
matrix element a* j with i, j^k+1 may be modified at a later stage
by adding the contributions aK(cpi > <Pj) not Yet included.

From (i) and (ii) it follows that we may perform the assembly and elimination
in parallel. In step k with A^ given, we first assemble all remaining
contributions from triangles K with node k as vertex, and then we compute
A(k +1) in the usual way. In this case only the elements in B^, the so-called
active area, will be modified. At the end of step k we store row k of A^ k) (or
A( k +1)), which will be row k of the upper triangular factor U in the
factorization A=LU, in a secondary memory and then move the active area
one step in the south-east direction.

The line dividing the triangles with fully assembled contributions and the

(ii)

X X X X

X X X X

X X X X

X X X X i X X X X
X X X X

X X X X X

X X X X X

X X X X X

X X X X

Step 1. Assemble contributions from triangles with node 1 as vertex, ie, the
triangles a and b. Eliminate node 1 (variable £i) and store row 1.

Let xi denote the elements modified in Step 1. We have now obtained the
following situation (note the fill-in: the element at location 23 is now non-zero
corresponding to the fact that node 2 now is coupled to node 3 through the
eliminated node 1),
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active
area at
step 2

x x x x
X I j X I X i X I
X l j X l X i X l
X l | X l X l X l X [ X

X X I

<<( 'X

X X BA
; x X

X X X X X

X X X X X
I I<<X X X X X

c DX X X X

Step 2. Assemble the remaining contribution from triangles with node 2 as
a vertex, ie, the triangle c. Eliminate node 2, etc. We then eliminate the inner nodes in each substructure, i e the nodes

1 to 4.

Step 2. We now combine A and B into one structure AB, and C and D into
one structure DC:

6.6 Nested dissection
A BIn the nested dissection method one uses an enumeration of the nodes

radically different from the ones we have used above. We illustrate the method
in a simple example with the finite element method of the previous subsection
on the following triangulation of the unit square Q:

< '

C D

*

We then eliminate the inner nodes in AB and CD, and combine AB
och CD into one structure ABCD:

i

<

<i

and eliminate the inner nodes 7-9.Step 1. We first view the structure or triangulation of Q subdivided into four
substructures A-D as follows: Step 4. The nodes 10-25 are eliminated.
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Analogously, it is possible on more general triangulations to perform the
elimination by successively creating larger and larger substructures and
eliminating inner nodes. Suppose Q is the unit square with a uniform
triangulation with step length h/(P-l), where P=2P+1, p a natural number,
with M= P2 nodes. One can then show (cf Problem 6.2) that the nested
dessection method requires 0(M3/2) operations for LU-factorization of the
corresponding stiffness matrix A. This should be compared with the 0(M2)
operations needed using the usual enumeration and storing A as a band matrix
with band width M (cf Example 6.2).

The reason that the nested dissection method is more efficient in this case,
is the fact that it produces less fill-in . For general geometries, however, it may
be rather difficult to implement the nested dissection method.

7. Minimization algorithms.
Iterative methods

7.1 Introduction
In this chapter we consider iterative methods for the numerical solution of
minimization problems of the form

Min f(q),
TjeRM

where f: RM —> R is a quadratic function

Problems
(7.1)6.1 Show that the number of operations to factor a MxM matrix with band

width d, is of the order Md2/2.
Show that the operation count for the nested dissection method is
0(M3/2) in the example considered above.

6.2
1f Tl)=2 11 Al1“b * rl ,

with A a sparse symmetric positive definite MxM matrix and beRM. As we
have seen above, application of the finite element method to a linear elliptic
problem typically leads to a problem of the form (7.1). We know that (7.1)
admits a unique solution ^eRM equivalently characterized by the equation

A^= b.

Iterative methods for the solution of (7.1), or equivalently (7.3), play an
increasingly important role in finite element applications. A key fact making
iterative methods advantageous is the extreme sparsity of the matrix A in
standard applications. For a given type of finite element the number of
non-zero entries in each row of A is bounded independently of the mesh size.
This means that if only the non-zero entries of A are stored, then to compute
Ar] for a given qeRM takes 0(M) operations (compared to 0(M2) if A is full).
We emphasize that to achieve the operation count 0(M) we may not store A
as eg a band matrix; only the non-zero entries of A should be stored, (cf
Remark 7.3 below).

We will consider iterative methods or minimization algorithms for (7.1) of
the form: Given an- initial approximation ^°eRM of the exact solution find
successive approximations J;keRM, k= l, 2, . . ., of the form

g.k + i^k + d̂k , k =0, 1, . . . ,

(7.2)

(7.3)

(7.4)
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and if g'(£k)^0. In this case (7.4) corresponds to one step of the gradient
method or the steepest descent method for the minimization problem
min g(r|). To choose the step-length ak we may, for example, determine ak
T]GRM
so that

where dkeRM is a search direction and ak>0 is a step length (note that the
summation convention is not used in this chapter). Different methods differ
in the choice of the search direction dk and step length a^. We will consider
(a) the gradient method, and (b) the conjugate gradient method together with
so-called preconditioned variants of these methods.

We use the following notation. Given a smooth function g: RM-* R, denote
by g' or Vg the gradient of g=g(r]), ie,

3g _9g
3r\i 3r|2 ’ ’ 3T) M/

Further, define the Hessian of g to be the MxM matrix g"= (g,ij), ie,

g(^k + akdk) = min g(i|k +adk),
a$=0

in which case ak is said to be optimal. To determine ak we perform a
one-dimensional line-search to minimize g in the direction dk starting from

5k. If ak is optimal , then — g(^k +adk)=0 for a=ak so that (see Fig 7.2).

3gg'= Vg=

da

g’(^k +1) ‘ dk =0.32g (7.7)32g
3’ll 9T1I3I1M

g"=
32g 32g

3T1 M

For the quadratic function f of (7.2) , we have

qeRM,

3r]M3r]i

f '(r|)=Ar|-b,
and

T]6RM.

With ^k + 1 given by (7.4) , we have by Taylor’s formula

f "(r])=A,

alg(?k +1)=g(^k)+akg'(^k) * dk +-^ dk * g,,(rl)dk »

where r] lies on the line segment between ^k and J= k +1. If the elements in g"
are bounded in a neighborhood of i;k, we thus have

g(^k+1)=g(lk)+akg'(?k) ‘ dk+0(a£), as a-> 0.

It follows that if

g’(lk) - dk<0,

then g(^k+1)<g(^k) if ak is sufficiently small. With this motivation we say that
dk is a descent direction for g if (7.5) holds, because then g will decrease if
we move a Sinall distance from ^k in the direction dk. In particular, (7.5) holds
if we choose (see Fig 7.1)

dk=-g'(lk)

(7.5)

Fig 7.1

(7.6)
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In particular, if g is the function f given by (7.2), then by (7.7)

0=f '(J;k+akdk) • dk = (A(^k +akdk)-b) • dk
=(A^k-b) * dk+akdk • Adk,

so that in this case ak is given by the following simple formula:

(A^k-b) • dk
dk • Adk

1f 21
(1/ X 2 ) 2

1

(7.8) «k =
1

(1/ X.) 2
1Remark 7.1 Note that g '(^k) is orthogonal to a level curve for g through ^k

(a level curve for g is a curve y: [a, b]-» RM such that g(y(t))=constant for
te[a, b], see Fig 7.1).

We will be particularly interested in the rate of convergence of the different
methods to be studied, i e, we will be interested in estimating how many steps
or iterations of the form (7.4) will be needed to reduce the initial error
by a certain factor. We will then see that the rate of convergence depends on
the condition number x(A) of A defined by:

Fig 7.2

Fig 7.2. We see that as the condition number becomes larger and the level
curves more elongated, the sequence §°, I1, . . ., has a more pronounced
zig-zag and convergence becomes slower.

The above example shows that it is important to understand the behaviour
of the condition number x(A). We will see that in a typical case when A results
from application of the finite element method to a second order elliptic
problem (such as eg the Poisson equation (1.16)), then

x(A) =^L,

^min
(7.9)

where x(A)=0(h-2),(7.11)X = max X; ^min — min Xjmax J ’J J where as usual h is the mesh parameter. For a problem of order four such as
e g the biharmonic problem (2.22), one has x(A)=0(h-4). To be more precise,
these estimates hold if the finite element mesh is quasi-uniform, ie, all
elements have roughly the same size (cf (7.44a) below), and if the usual
minimum angle assumption (4.1) is valid.

We finally conclude our preparations by recalling that

and Xj, j= l, . . ., M, are the (positive) eigenvalues of A. We assume that the
eigenvalues are ordered so that Xi =^X2=^ . . . XM, in which case of course
Xmin ~ X] and Xmax ~ XM "

Example7.1 Consider the special case of (7.1) with A the 2 x2 diagonal matrix

Xi 0 , . r] • Ay]Xmin = min -7—^ ,
T) GRM

(7.12a)A=
^20

T] • At]where 0<Xi<X2 and b=0, ie, we consider the problem

Mini
T) G R2 2

with solution ^=0. The level curves of f are in this case ellipses with half-axis
proportional to Vl/Xi and VI/X2. The sequence ^°, i;1, . . . , obtained by
applying the gradient method with optimal step length to (7.10) is plotted in

(7.12b) X = max ,
TIGRM |T]|Zmax

rj^O
(7.10)

where • denotes the usual Euclidean norm
M

M = ( 2 T]?)1/2.
i= l
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so that (7.19) holds if and only if

l-cdj>-l, j=l, . . M,

since the X } are positive. We thus conclude that a has to be chosen so that
which is close to the best choice, we have

Further, defining the matrix norm

|BnlBl = max ,
T) RM M

T)*0 a X <2. Choosing now a=l / Xmax max ?

for the MxM matrix B, we have by definition

VT]GRM.

If B is symmetric with eigenvalues pi, . ., PM ? then we have (cf any basic course
in linear algebra):

(7.14)

ii — aA|= i — ~

X
imin =i-(7.13) |Bri|^|B| |r,| x(A)max

From (7.18) we thus have

|ek +1|^y|ek|
|B | =max |pj|.

1j with y= l and by inductionx(A)’

|ek| =Syk|e°|, k=l, . . • ?

7.2 The gradient method Let us now estimate the number of steps n required to reduce the initial error
|e°| by a certain given factor e>0. That is, we seek the smallest n such thatWe will now study the rate of convergence of the gradient method for (7.1)

with constant step length, ie, the method

^k +1=§k +adk,

dk = — f '(^k) =-(A£k — b).

Here a is a suitably chosen (sufficiently small) positive constant. The
appropriate size of a will become clear through the following analysis. Since
the exact solution satisfies A^=b, we have

(7.16)

which after subtraction with (7.15) gives the following relation for the error
ek=£-£k:

(7.17)

1 n
) « e,(7.20) (1

x(A)k =0, 1, . .(7.15) • ?

or equivalenty
1 1-n log (1- ) > log -.

x(A) E

Using the easily proved fact that -log (l-x)>x for x<l, we see that (7.20)
is satisfied if

S=S-a(Ag-b),
1(7.21) n^x(A)log -.
a

We conclude that the required number of iterations in the gradient method
(7.15), with a suitably chosen constant step a, is proportional to the condition
number x(A) and the number of decimals in the error reduction factor e. In
a typical FEM application involving a second order elliptic equation we have
that x(A) =0(h-2) and in this case we would have n =0(h“2), ie, a very large
number of iterations would have to be performed.

By using an eigenvector expansion, it is possible to see more clearly why
the gradient method is not efficient if x(A) is large. To this end , let %, . .
., be the orthonormal basis of eigenvectors corresponding to the
eigenvalues k\ , . . ., XM of A, ie,

ek+1 = (I — aA)ek, k =0, 1, . . .

Thus, by (7.13) we have

|ek +1|^|l — aA| |ek|.(7.18)

We would now like to be able to guarantee that

|l-aA|=y<l.

In this case the error would get reduced by the factor y at each step and the
smaller y is, the more rapid is the convergence. Now, by (7.14) we have

|l-aA|= max |l-aXj|,

(7.19)

j = l M.
J
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7.3 The conjugate gradient method
We will now describe a more efficient iterative method for (7.1) of the form
(7.4), namely the conjugate gradient method. In this method the step length
at is chosen to be optimal and the search directions dk are conjugate, ie,
(7.24)

Since A is positive definite, we may define a scalar product <. , .> on RM

Expanding the error ek in the basis \pi , . . . , we have

e j=ek - i l) j,
M L.ek = 2 e j \pj,

j=i J

and the relation (7.17) takes the form
d1 - AdJ =0, i^ j.

ek+1=(l j=l, • - , M,(7.22)
lmax

byThe relation (7.22) gives the error reduction for eachwith a=l/k
component ek of the error ek. As the kj are ordered in increasing order with
kmax=^M, we see from (7.22) that for j such that k5skmax/2 (ie for “big” j) ,
the corresponding component ek gets reduced by at least a factor 7: at each
step and a considerable reduction takes place. On the other hand, for “small"

to one and the reduction is small. Thus, error components e* for large j are
reduced quickly, while components ek for j small are only slowly reduced.
Another way of saying this is that highly oscillatory components of the error
are quickly reduced while more slowly varying components only get slowly
reduced. This is because the eigenvectors apj for large j are rapidly oscillating
and for small j the ijq vary “more smoothly” , cf Problem 8.1.

To sum up, we may say that the gradient method efficiently reduces highly
oscillatory components of the error while the smooth components only
become small very slowly, and thus as a whole the gradient method is
inefficient (cf Section 7.5 below on multi-grid methods where the gradient
method is put to very efficient use.)

max -
<£, *|>= £ - Ar),

and (7.24) can then be written

<d‘, di> =0,

" | |A corresponding to <. , .> is the energy norm:

qeRM.

The conjugate gradient method can now be stated as follows: Given ^°eRM
and d°=-r°, find £k and dk, k = l , 2, . . . , such that

|k+i=|k+ (Xkdkj

S, heRM,

is much smaller than 1, the error reduction factor (l-k;/kmax) is close
k

max The norm

lhlU=<Tl , q>1/2,

(7.25a)

rk • dk(7.25b) ak= -

<dk, dk> ’

d k + l =-r k + l +|3kdk,

<rk+1, dk>
<dk, dk> ’

(7.25c)

(7.25d) Pk =
Remark 7.2 The gradient method for (7.1) with the optimal step length of
(7.8) is given by:

(7.23a) s=k+ i= j= k _
ak(Ai;k-b),

rk • rk

where

rk =f '(§k)=A^k — b.
If we compare with (7.8) we see that (7.25b) means that ak is optimal. We
note that the new search direction dk +1 is a linear combination of the new
gradient rk +1 and the old search direction dk. Further, in view of (7.25c), the
condition <dk+1, dk>=0 is equivalent to

<-rk +1+|3kdk, dk>=0,

which is the same as (7.25d). We thus see directly that the new search direction
d k + 1 is conjugate with respect to the old direction dk. We now take an essential
step in the analysis of the method and prove that dk +1 is also conjugate with

(7.23b) ak = rk • Ark
The convergence properties of this method are similar to those of the gradient
method with constant steps just studied and in particular the required number
of iterations is proportional to x(A), cf Problem 7.2.
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respect to all other previous search directions df j =0, . . k (cf . [Lu]). We
will need the following lemma, where we use the notation

m
[r)°, . . rjm]={r]eRM:\)= 2 ap^, ajeR}

j=o

=linear space spanned by r)ieRM, j=0, . . m.

Lemma 7.1 For m=0, 1, . . we have [d°, . . dm]=[r°, . . rm]
=[r°, Ar°, . . Amr°].

sork+1 • dJ =0, j =0, . . k. Together with Lemma 7.1 this shows that rr+1 • ri=0
for j=0, . . k, which proves (7.29) for i, j^k+1. Finally, to show (7.28) for
i, j^k -Fl we note that since AdJ’ e[r°, . . . , rJ +1] by (7.26) , we have by (7.29)
that <rk +1, dj> =0, j=0, . . . , k-1. Together with (7.25c) and the induction
hypothesis this proves that

<dk +1, di>=<-rk +1, di>+ pk<dk , di> =0, j=0, . . . , k-1.
But we already know that <dk+1, dk>=0 and thus we have proved (7.28) for
i, j^k +l. The induction step is now complete and the lemma follows since
the statement is clearly true for i, j^l .

We can now prove that the conjugate gradient method gives the exact
solution after at most M steps:

Proof We use an induction argument. The stated equality clearly holds for
m =0. Suppose now that the equality holds for m =k. We first observe that
after multiplication by A, (7.25a) gives

rk+ i = rk +akAdk.(7.26)

By the induction assumption, we have dke[r°, Ar°, . . . , Akr°] so that Adke
[r°, Ar°, . . ., Ak+1r°] which shows that

Theorem 7.1 For some m^M, we have A^m = b.

Proof By (7.29) the gradients rf j =0, 1, . . . , are pairwise orthogonal and
since there are in RM at most M pairwise orthogonal non-zero vectors, it
follows that rm=AS;m-b=0 for some m^M.

By Theorem 7.1 the conjugate gradient method gives, in the absence of
round-off errors, the exact solution after at most M steps. In our applications,
however, we will view the conjugate gradient method as an iterative method
and the required number of iterations will be much smaller than M. To study
the convergence properties of the method, we first note that by (7.25a) we
have for k=0, 1, . . .,

[r°, . . . , rk +1]c[r°, Ar°, . . . , Ak+1r°].(7.27)

On the other hand, according to the induction hypothesis, we have Akr°e[d°,
., dk] so that Ak+1r°e[Ad°, . . . , Adk] which together with (7.26) shows

that Ak+1r°e[r°, . . . , rk+1]. Thus we have [r°, Ar°, . . . , Ak +1r°]c:[r0, . . . ,
rk +1] which by (7.27) shows that [r°, Ar°, . . . , Ak+1r°]=[r°, . . . , rk +1]. Finally,
from (7.25c) we clearly have that [r°, . . ., rk +1]=[d°, . . ., dk +1] and the
induction step is thereby complete.

We can now prove
k-l

^k _^0= 2 a.dj(7.30)Lemma 7.2 The search directions d [ are pairwise conjugate, ie,

i*j -
j=o

<d\ dJ> =0, By the orthogonality (7.28) it follows that

<^k, dk> =<^°, dk>,

(7.28)

Further, the gradients r1 are orthogonal, ie,

f • rJ =0,

k =0, 1, . . .
i^ j - Using also the fact that A^= b, we see that for k=0, 1, . . .,

— rk • dk =-(A^k-A^) • dk=<^-^k, dk> =<§-5°, dk>,

which shows that (7.25b) can be written

(7.29)

Proof Suppose the statement is true for i, j^k. Since [d°, . . . , d^ ] — [r°, . . . ,
ri], by Lemma 7.1 we have in particular rk • di=0 for j =0, . . ., k-1, so using
(7.26) <^-^°, dk>

j.k +1 . dk _ rk . (jj-hak<dk, dj>=0,

But ak is optimal and we also have

rk+ i . dk=f '(£k +akdk) • dk = -pf (|k +adk)
vlvA

k=0, 1, . .j-0, . . k-1. ak=
<dk, dk>

Thus, by (7.30) we have in particular

<^k-H°, di> =<^-H() , di>=0, j =0, 1 k-1.a= ak
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But this is the same as saying that i;k-^° is the projection of the initial error
with respect to <. , .> on the space

Wk =[d°, . . d1--1]
spanned by the first k search directions, and thus

(7.31)

Recalling Lemma 7.1 and the fact that r°=A^°-A^=-A(^-^0), we see that

Wk=[r°, Ax° , . . Ak _ 1r°]=[A(^ — ^°), . . . , Ak(^)].

Using (7.31) we thus have the following result :

x(A) in the case of the gradient method. Thus, for x(A) large, the conjugate
gradient method is much more efficient than the gradient method. In atypical
finite element application we have x(A)=0(h-2) , and thus in this case the
required number of iterations would be of the order 0(h

_ 1) for the conjugate
gradient method and 0(h-2) for the gradient method.

Remark The subspace Wk=[r°, Ar°, . . ., Ak-1r°]=[d°, . . . , dk _1] is called
the Krylov subspace related to the conjugate gradient method (7.25). By
(7.31) we have that ||^-^k||A is the norm of the difference between the initial
error and its projection on Wk.

Example 7.2 Let us recall the simple minimization problem of Example 7.1,

||S-Sk||A= !|?-^-(5k-^)||A^ I |^-^0-ri||A, VrieWk.

Theorem 7.2 For the conjugate gradient method (7.25),
Min i(\ntf + X2Ti2) ,
t)eR2 2

(7.33)VpkePk ,||^-£k||A =s||pk(A)(£-^°)||As:max |pk(kj)| ||S-SO||A,
J

with 0<AI<<^2- Applying the gradient method with optimal or constant step
length, we have that the required number of iterations is proportional to

Introducing the new variable £=(£i, £2) =( VXir|2, VX^rfe), the prob-
lem takes the form

Min
£eR2 2*

The condition number of the corresponding matrix is equal to 1, and the
gradient method with optimal step length for (7.34) finds the exact solution
£=0 in just one iteration. This shows that a suitable change of variables may
reduce the number of iterations significantly. We see that the very elongated
elliptical level curves of (7.33) are replaced by the circular level curves of
(7.34). The possibility of reducing the condition number for more general
problems by a suitable change of variables corresponding to so-called
preconditioning, will be discussed in Section 7.4 below.

k
where Pk is the set of polynomials pk(z) = 2 (3jzJ , (3jeR, of degree at most k
with Po= l. ^-0

To estimate the reduction of the initial error ||^-^°||A after k steps, it is
by Theorem 7.2 sufficient to construct a polynomial pk of degree at most k
such that pk(0)= l and pk is as small as possible on the interval [k\, >IM]
containing the eigenvalues of A, ie, so that the quantity

Yk= max |pk(z)|
zeRi » U

(7.34)

is as small as possible. The best polynomial is a Chebyshev polynomial well
known in approximation theory, and the corresponding value of yk is (see eg
[Ax]):

Vk(A)-l k

Vk(A)+l .
, k=0, 1, 2, . . .Yk=2

ProblemsThus, for a given s>0, to satisfy Show that |3k of (7.25d) can alternatively be computed as follows:

Pk=“

7.1
||^-?k||A ^ e||^-^||A, k +1 . rk + l

it is sufficient to choose n such that or by a simple computation, such
that

rk • rk
7.2 Prove for the gradient method with optimal step length (7.8) that

n>|Vx(A) log(7.32) l |^k+1lli<1-^j) ||?kl|i
We thus conclude that the required number of iterations for the conjugate
gradient method is proportional to Vx(A) which should be compared with

by proving

iiskiii-i^k +iiiA r k r k rk • rk
Il5kllx ,-k . Ark rk • A > rk 135134



7.4 Preconditioning the system Cd =e can be solved with few (0(M)) operations for
a given right hand side e.

Suppose that C=ETE is the Cholesky factorization of C, and hence E is upper
triangular. Then (7.39b) will be satisfied if E is essentially as sparse as A, i e,
if the number of non-zero entries in each row of E is bounded independently
of h. On the other hand, to satisfy (7.39a) the best choice would be C=A^E1E
with ETE the Cholesky factorization of A, in which case x(E

_TAE
_

1)= l.
However, with this choice the matrix E is not as sparse as desired (cf the
discussion of fill-in Section 6.4), and (7.39b) will be violated. With this
background we are led to try to construct C=ETE such that E is sparse and
EtE is an approximate Cholesky factorization of A. We may require E to have
a sparsity structure that is similar to that of A; for example we might allow
an element ey of E to be non-zero only if the corresponding element ajj of
A is non-zero. To obtain an approximate factorization ETE of A with this
structure, we may perform a modified Gaussian elimination where non-zero
elements appearing in the elimination process at “forbidden” locations are
simply replaced by zeros. Such modified elimination processes (so-called
incomplete factorizations ) only take 0(M) operations and result in approxi-
mate factorizations with corresponding considerable reduction of the condi-
tion number, (eg, x(E

_TAE
_

1)=0(h
_

1), see [Ax], [Me]).

(7.39b)

We recall our quadratic minimization problem (7.1)

Min f( r])= Min [ L • Ari-b • r|].
r|eRM TIER 2

Let now E be a non-singular MxM matrix and introduce the new variable
£=Er) so that r]= E-1^, and define

f(Q=f(r,)=f(E-^)=i (E-iy • A(E-^)-b • E-!£=

= I^E-TAE-^—E-Tb - i;=^- A£— b - £,

(7.35)

where
A=E ~TAE-\ b=E

_Tb,
and E-T=(E-1)t, where DT denotes the transpose of the matrix D. Thus we
can write the problem (7.35) using the new variable £ as

(7.36) Min [^Al;-b - i;].
£eRM Z.

The gradient method with constant steps a for this problem reads:

(7.37)
The rate of convergence of this method depends on the condition number
x(A). If x(A)<<x(A), then the gradient method for (7.36) will converge
much faster than the same method applied to the original problem (7.35).

Before discussing how to choose the matrix E note that setting ^=Eq and
multiplying by E-1 in (7.37), we get

T]k +i = T]k — a£— lE-^Aqk — b).
Thus, setting C=ETE so that C

_
1=E

_
1E

_
T, we see that (7.37) corresponds

to the following method for (7.35):

^k + i =Y^k _ac-i (y^k _ b)? k =0, 1 , . . , •

7.5 Multigrid methods
Recently a class of methods for our typical system of equations (7.3) have been
developed that are optimal in the sense that the required number of operations
is of the order 0(M), where M is the number of unknowns (clearly 0(M) is
optimal since this amount of work is required just to write down the solution).
These methods are the so-called multi-grid methods (see eg [BD], [Bra],
[Hac]). A multi-grid method is an iterative method where one uses a collection
of successively coarser finite element grids.

To give an idea of the basic features of the multi-grid method we consider
the standard finite element method of Section 1.4 on a triangulation Th
obtained by subdividing each triangle of a coarser triangulation T2h into four
triangles as in Fig 1.14. Let the correspongding finite element spaces be Vh
and V2h - Then the corresponding matrices Ah and A2h have dimension MxM
and (M/4)x (M/4), respectively. Assume that we want to solve the system
Ah^=b, and to start with assume that the system A2hh =d for a given d can
be solved in 0(M/4) operations. A step of the multigrid method leading from
a given approximation ^keRM to an improved approximation ^k + 1 eRM now

(7.38)
We say that this is a preconditioned version of the usual gradient method for
(7.35) with the matrix C being the preconditioner. To compute r)k+l from
(7.38) for a given r\k , we have to solve the system

Cd=(Ar]k-b),
(note that we would not explicitly form C-1).

We can now state the obviously desired properties of the matrix C=ETE
(recall that A=E-TAE-1):
(7.39a) X(E-TAE 1)«X(A),
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consists of two substeps: a smoothing step and a coarse grid correction. The
smoothing step consists of m usual gradient steps:

T1> +i=11i-a(Ahrii-b),

the following: In the smoothing step the high frequency components of the
error (corresponding to large eigenvalues) are significantly reduced. This fact
is easy to understand from the analysis of the gradient method in Section 7.2
above. Further, in the coarse grid correction the low and medium frequency
components of the error are also significantly reduced and thus in each
multigrid step all components of the error are reduced significantly.

(7.40) i=0, 1, . . ., m-1,

with a suitably chosen (cf Section 7.2), and r|°=^k. This step gives the

approximation
ik +i2=r) m. The coarse grid correction is obtained as follows:

Let 6eV2h be the solution of the problem
i 7.6 Work estimates for direct and iterative

methods
k+i

(7.41) a(S, v)= (f , v)-a(u 2, v) VveV2h,
- . k +l2 eVh is the finite element function with nodal values 2

M
Let 6 2eR 4 be the vector of nodal values of 6 and define

k+i k +f

^k + t =| 2 +8 2

1k +A
where u

l Here we collect the principal results presented above concerning the amount
of work required to solve our typical system of equations

(7.42)

by direct and iterative methods, where A is a sparse, symmetric and positive
definite M X M matrix. We then suppose that (7.42) is related to a second order
elliptic problem in Rd, d=2 or 3. In this case M=0(h“d) and the condition
number >c(A)=0(h“2). We further assume that in the preconditioned variants
of the conjugate gradient method the condition number is reduced to 0(h-1) -
Also, in the Cholesky factorization we assume that A is stored as a band matrix
with band width 0(h

_ d +1). With these assumptions we have an asymptotic
work estimate for the solution of (7.42) of the form 0(Ma), where the
exponents a are given by:

k +i

A^=b
k +J k +J M

where the components of 6 2eRM are given by the components of 6 2eR 4

k +-for the nodes of T2h, and the value of 6 2 at other nodes are obained by
linear interpolation from the values at the nodes of T2h. We note that the
correction step (7.41) corresponds to a problem of the form A2hri =d which
can be solved in 0(M/4) operations by assumption.

To sum up, a multigrid step leading from £k to £k +1 consists of a simple
smoothing step together with a coarse grid correction requiring few oper-
ations. Under suitable assumptions one can prove that there is a constant C
independent of % and k such that

dim 3dim 2l £-£k+i|^—H-£kl ,m
Method

2.332Band-Cholesky: factorization
back-substitution

Nested dissection: factorization
back-substitution

1.671.5which proves that for m sufficiently large each multigrid step reduces the
significantly.

The algorithm is now applied recursively so that to solve a problem of the
form A2hT]=d in the step described above, we invoke a coarser grid with
corresponding matrix A4h, assuming that T2h is obtained as above by
refinement of the corser grid T4h. This gives a procedure where we work on
a sequence Th, T2h, T4h, Tgh, . . of successively coarser grids ending with
a coarsest grid for which the corresponding linear system can be solved by
direct Gauss elimination with few operations. One can show that this
combined process will give a solution of the original matrix problem A\fe=b
in 0(M) operations.

The reason why the multigrid method is so efficient is, roughly speaking,

error
21.5
1.331

1.331.5Conjugate gradient

Preconditioned conjugate gradient

Multigrid

1.171.25

11

Fig 7.3

Clearly, the multigrid and preconditioned conjugate gradient method have
the most favourable exponents and for M large enough will be superior to
band-Cholesky and nested dissection. This holds particularly for d=3.
However, the multigrid method requires a rather complex program with
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considerable overhead to organize the computations while band-Cholesky
requires little overhead. Thus, for a given M it is not clear which method would
require the least total cost, and of course this cost also depends on the problem
and on the implementation of the particular method.

We also note that one sometimes wants to solve the system A^= b many
times with the same A but different right hand sides b. For example we may
want to compute the stress distribution in an elastic body under various loads.
In this case we may factorize the matrix A once and for all and then only a
back-substitution will be required for each new right hand side. In such cases
band-Cholesky becomes comparatively more competitive but still is asymp-
totically inferior to the preconditioned conjugate gradient and multigrid
methods.

To sum up we may say that, roughly speaking, band-Cholesky may be used
for coarse to medium fine discretizations in two dimensions whereas iterative
methods multigrid or preconditioned conjugate gradient type would be
advantageous for large three-dimensional problems and for very fine discre-
tizations in two dimentions. Let us remark that these conclusions should be
valid at least on well-structured problems with coefficients that are not varying
too much and using eg quasi-uniform finite element meshes. For problems
with highly variable coefficients and very complicated solutions it may be
difficult to find iterative methods with good convergence properties and in
such cases Gaussian elimination may be the only realistic alternative at
present.

Remark 7.3 To store only the nonzero elements of a sparse symmetric MxM
matrix A=(ajj) , one may use a vector a=(a(i)) containing the elements in the
lower triangular part of A ordered row by row, together with a vector
ac=(ac(i ) ) , with ac(i) the number of the column in A containing the element
a(i) , and the vector ad= (ad( j)) , with ad( j) = i where a(i)=ajj. As an example,

7.7 The condition number of the stiffness matrix
If A is the stiffness matrix related to an elliptic problem of order 2m, then
the condition number x(A) is under suitable conditions estimated by

(7.43)

Let us prove this result in the standard case m= l, A = (ajj), aij=a(cpi , cpj),

a(v, w)= J Vv • Vw dx,

x(A)=0(h
_

2m).

Q

with cpj , . . . , q)M, the usual basis for Vh={veHo(Q): V|K PI(K), KeTh},
where Qc= R2. This is the case studied in Section 1.4.

We shall assume that the family {Th} of triangulations Th ={K} satisfies the
following conditions: There are positive constant Pi and (?2 independent
of h=max hK such that for all KeTh, The{Th},

KeTh
(7.44a) hK ^ Pih ,

(7.44b) f^|32,
hK

where hK and QK are defined as in Section 4.2. The condition (7.44a) states
that all elements K of Th are of roughly the same size. Such triangulations
are said to be quasi-uniform.

We recall that the bilinear form a(. , .) is HQ(Q) - elliptic, ie, there is a
positive constant a such that

a(v, v) =scx||v||f,.(Q) VveH^Q).(7.45)

The estimate (7.43) with m = l will easily follow from the following result:

if Lemma 7.3 There are constants c and C only depending on the constants (3;
M

in (7.44) , such that for all v= £ pjcpjeVh
an
an a22 sym

i= tA= 0 a32 a33
Ch2|r||2 =S||v||2 ^ Ch2|ri|2,341 0 (7.46)

(7.47)

343 344
0 0351 353 355 a(v, v)= J|Vv|2dx =SCh 2||v||2,

athen we have
a — (an , ai2, a22, 332, a33, a4i, a43, 344, asi , as3, ass) ,
ac=(l , 1, 2, 2, 3, 1, 3, 4, 1, 3, 5),

ad=(l , 3, 5, 8, 11).

where | | V|HM|L2( Q) -
Remark The estimate (7.47) is a so-called inverse estimate; here we estimate
the 1.2-norm of the gradient of v in terms of the L2-norm of v itself . This isProblem

7.3 Determine the asymptotic work estimates corresponding to Fig 7.3 for
a fourth order elliptic problem. 141



A A

We first show that (7.50) and (7.51) hold when K = K where K is the reference
triangle with vertices at (0, 0), (1, 0) and (0, 1) in a (xj, x2) ~ plane (see Fig

A A

7.3). Let be the usual basis functions of Pi (K) and define

fi(n)=J! Vvpdx,

not possible for a general function v, but it is possible for the functions v in
Vh at the price of the factor h-1.

We postpone the proof of Lemma 7.3 and show how to prove (7.43) using
M

the lemma. We recall that if v= 2 qj(pj, then Ki= l

f2('n)= Jv2dx,
A
K

where rj=(rn , r|2, fj3) and

v(x)= 2 T|iXi(x),

a(v, v)= r| • At] ,
so that by (7.46) and (7.47)

*1 - A r) = a(V > V)
^Ch-2 Vr] eRM.(7.48) xeK.PI 2 hi 2 hi 2

i= l

On the other hand , we have by (7.45) and (7.46) since trivially ||V||HI(Q)^||V||.

VrjeRM.

We observe that fj and f2 are continuous functions of rjeR3. We now consider
the quotientr\ • Ar\ _ a(v, v)

^Cah2(7.49)
hi2 2 hi2 fi(r|) rjeR3, f|=̂ 0.f3(rj)=

h(X\ )’
We want to prove that there is a constant C such that

f3(f|)^C, qeR3, ri^O;

this inequality clearly corresponds to (7.51) in the case K=K since hK = V^T.
To prove (7.52) we first note that

f3(yf|)=f3(ri) , VyeR, y =£0,

i e, the function f3 is homogeneous of degree zero. It is thus sufficient to prove
that for some constant C

Together, (7.48) and (7.49) prove that there are constants c and C such that

-̂max^C, ^min^ch“,

which gives the desired result x(A)= ^^^Ch-2.
^min

(7.52)

Remark 7.4 Note that it is natural to scale the matrix A, by multiplying with
a constant of order 0(h ~ 2) , so that kmax=0( h~ 2 ) and Xmin =0(l) (cf (1.25)).
With this scaling A will be a discrete counterpart of the Laplace operator with
eigenvalues ranging from 0(1) to 0(h ~ 2) (recall that the eigenvalues of the
Laplace operator on a bounded domain lie in the unbounded interval (A, co)
for some positive A.

Let us give

heB,

where B={r]eR3: |f ) |= l}. But f3 is continuous on B (note in particular that
f2(^)^0 f°r h ^ B) and B is a closed and bounded set in R3, and thus f3 has
a maximum on B. This proves (7.53) and thus (7.52) and (7.51) follow in the

/V

case K= K. In the same way we can prove (7.50) in this case.
It now remains to prove (7.50) and (7.51) for an arbitrary triangle KeTh.

For simplicity assume that K is a triangle with vertices at (0, 0) , (h, 0) and
(0, h) so that hK = V2h and let the mapping F: K —> K be defined by (see
Fig 7.3)

(7.53) f3(r,)^C

Proof of Lemma 7.3 It is sufficient to show that for each triangle KeTh with
vertices a1 and vePi(K), we have

3
Ch 2 2 |v(a‘)|2 =£ ||V||LL2(K) ^ Ch^2jv(a‘)|2,(7.50)

i= l

J| Vv|2dxs= ChK2J|v|2dx,(7.51)
K K x=F(x)=(hxi, hx2) , xeK.

with c and C independent of K and v. From these estimates the desired
estimates (7.46) and (7.47) directly follow by summation over KeTh.
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A

?2X9t stiffness matrix of the reference element K. This is important since the direct
computation of a stiffness matrix may require a not-negligible amount of work
and the element stiffness matrices of all elements KeTh have to be
determined.

(0,1)

( 0,h )F Problemsx
7.4 Complete the proof of Lemma 7.3.

The condition (7.44a) stating that all elements have the
be relaxed. Prove without using (7.44a) that the estimate x(A)=0(h“2)
may be replaced by

«(A)=0(h “?n) where hmin= min hK.
KeTh

Let Uh 6Vh <=L2(Q) be the L2(Q)-projection of ueL2(Q) defined by (cf
Problem 4.8),

(Uh , v)=(u, v)

In matrix form with the basis {cpi , . . ., CPM} for Vh, this problem takes
the form B^= b, where B=(bij), bjj=(cpi, cpj), b=(bi) , bj=(u, cpi). Prove
that B is positive definite. When Vh is piecewise polynomial on a
quasi-uniform triangulation in R2, show that x(B)=0(l ). The matrix
B is called the mass matrix and will occur in Chapters 8 and 9.

- xi 7.5'X1 same size can(h,0)(1 , 0 )

Fig 7.3

Given vePj(K) we now define

v(x)=v(x)=v(F(x)), xeK.

7.6

(7.54)

Clearly we then have vePi(K). By the chain rule VveVh.

3v 3x2 _ 3v
3x2 3xj

3v _ 3v 3xi
A ^ 'N A9xj 3x\ uXj

and so Vv= hVv. Since dx = h2dx, this gives

J| Vv|2dx=|h
_2| Vv|2dx= J| Vv|2dx

K K K

C|v2dx =Cjv2h
_

2dx=Ch
_ 2Jv2dx,

i=l, 2,

<
KKK

where we used that (7.51) holds if K=K. This proves (7.51) if K has vertices

at (0, 0) , (h , 0) , (0, h) , and in a similar way (7.50) can be shown in this case.
Finally, if K is an arbitrary triangle, then we introduce the linear mapping

F: K —> K that maps K onto K:

x=F(x)=a1+(a2-a1)xi +(a3-a1)x2,

where a1 are the vertices of K. Arguing now as in the above special case and
using the facts that |a!— a 11^ChK , i=2, 3, and dx=Ch ^dx by (7.44) , we now

(cf Problem 7.4) and the proofobtain (7.50) and (7.51) in the general case
is complete .

Remark The technique of working with a reference element K and linear

mappings F: K-» K that map K onto the triangles KeTh, is very important
also from a practical point of view. In this way it is often possible to use a simple
transformation to obtain the stiffness matrix of a general element K from the
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tization (the notion of an initial value problem for a stiff system of ordinary
differential equations will be explained in Section 8.3 below). For the
time-discretization we shall first consider two classical methods for stiff
problems: the backward Euler method and the Crank -Nicolson method. We
shall then consider a recent method, the so-called discontinuous Galerkin
method, based on using a finite element formulation in time with piecewise
polynomials of degree q. In simple cases (eg X= p= l and f =0 in (8.1)) the
discontinuous Galerkin method gives time-discretization methods which
coincide with classical methods based on the so-called sub-diagonal Pade
approximations. In particular, with q =0 one obtains the backward Euler
method. The advantage of the discontinuous Galerkin method is that eg
variable coefficients and non-zero right hand sides (and even non-linearities)
present no complications in principle. Further, the fact that the method has
a variational formulation is very useful in the analysis of the time-discretization
error. In fact, one can derive precise error estimates for the discontinuous
Galerkin method which make it possible to construct (for the first time)
rational efficient methods for automatic time-step control which are of
particular importance for stiff problems. We comment briefly on this topic
in Section 8.4. The new possibilities offered by the discontinuous Galerkin
method have been discovered only recently and are still under exploration,
see [EJT], [J3], [EJ1], [JNT], [EJL]. For more information on finite element
methods for parabolic problems, see also [Th], [LR] and the references
therein.

8. FEM for parabolic problems

8.1 Introduction
In this chapter we give an introduction to finite element methods for linear

parabolic problems. A typical such problem, modelling heat conduction in an

isotropic body with heat capacity X and conductivity \x and occupying a region
Qc= Rd, reads as follows:

yu-div(pVu) =f

u =0

in Qxl ,

on T ] xl,(8.1)

^=0 on r2xl ,
an

u(x, 0) = u°(x) xeQ.

Here u(x, t) is the temperature at xeQ at time tel= (0, T) , where T is a given
time, u° is a given initial temperature, f is a given heat production, T\ and

r2 is a subdivision of the boundary T of Q and u =3u/3t. For simplicity we
shall consider the following special case of (8.1) with X= p=l, QczR2 and

n=r:

(8.2a)
(8.2b)
(8.2c)

Essential parts of the presentation based on (8.2) that follows, may directly

be extended to the more general problem (8.1), (cf Example 2.7)
We will first consider a so-called semi-discrete analogue of (8.2) where we

have discretized in space using the finite element method. To obtain a fully

discrete problem we will then discretize time also. We shall see that the
semi-discrete problem is an initial value problem for a system of ordinary
differential equations. This will be a stiff system which will pose extra
requirements on the stability of the methods to be used for the time-discre-

8.2 A one-dimensional model problem
Before going into the discussion of the numerical methods for (8.2) we shall
briefly indicate some of the main properties of the exact solution u of (8.2).
For simplicity we will then consider the following one-dimensional model
problem modelling heat conduction in a bar (cf (1.3)):

3u _ 32u
3t 3x2

u(0,t )= u( ji ,t )=0

u(x,0)= u°(x)

In the case f=0, we have by separation of variables that the solution of (8.3)
is given by

in Qxl,
on Txl,

u-Au =f
u =0

u( • , 0)= u°.
(8.3a) =f 0<X<JT, t>0,

(8.3b)

(8.3c)
t>0,

0<X<JT.

u(x,t )= 2 u^e j2t sin( jx ),(S.4)
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where For the problem (8.3) these estimates follow directly from (8.4) using
Parseval’s formula together with the facts that 0=Se“ss= l and Os£se

_ss;C for
s5=0. It is also possible to prove (8.5) and (8.6) using “energy methods”
without relying on an explicit solution based on separation of variables (cf
Problem 8.6 below). Note that (8.6) states that if u°eL2(Q), then
||u(t) j |=0(t-1) as t —> 0.

Let us now turn to the discussion of numerical methods for (8.2).

u?= V2^F J u°(x)sin ( jx)dx, j= l , 2, . .
o

the Fourier coefficients of the initial data u° with respect to the ortho-
normal system {V2/Ssin( jx)}JL1 in L2(0,JT). By (8.4) we see that u( x,t) is a
linear combination of sine waves sin ( jx) with frequencies j and amplitudes
u° exp(-j2t) . We may say that each component sin ( jx) lives on a time scale
of order 0(j ”2) since exp(-j2t) is very small for j2t moderately large. In
particular we have that high frequency components quickly get damped. Thus,
the solution u(x,t) will become smoother as t increases. This of course fits with
the intuitive idea of the nature of a diffusion process such as heat conduction.

However, in general u(x,t ) will not be smooth for t small , and we may have
oo as t -̂ > 0, where jj • || denotes the L?(0, jr )-norm.

More precisely, the size of the derivates of u (with respect to t or x ) for t small
will depend on how quickly the Fourier coefficients u -' decay with increasing
j: For example, if U°(X) = JT X for 0< X < JT , then u^ = C/ j, in which case
| ju(t)| j — Ct —“ with a = 3/4 as t-> 0, and if u°(x) is the “hat function”
u°(x) = min(x.Jt-x) for 0 < X < JT , then u -’ = C/ j2 in which case ||u(t )||~Ct-a

with a =1/4 as t^ O (cf Problem 8.1). If Uj* decays faster than j~2 -5 as j-» °° ,
then | j u(t) j | will be bounded as t —> 0, but higher derivatives may still be
unbounded. In principle , the “smoother” the initial function u° is, the more
rapidly u -1 decays as j
satisfy in particular the boundary conditions (8.3b).

An initial phase for t small where certain derivatives of u are large, is called
initial transient. Thus the exact solution of a parabolic problem in general

will have an initial transient where certain derivatives are large, but the
solution will become smoother as t increases. This fact is of importance when
solving a parabolic problem numerically, since it is advantageous to vary the
mesh size (in time and space) according to the smoothness of the exact solution
u and thus use a fine mesh where u is non-smooth and increase the mesh size

becomes smoother. Note that transients may also occur for t>0 if for

are

8.3 Semi-discretization in space
The semi-discrete analogue of (8.2) will be based on a variational formulation
of (8.2) which we now describe. Letting V=H^(Q), multiplying (8.2a) for a
given t by veV, integrating over Q and using in the usual way Green’sformula,
we get with the notation of Section 1.4:

that ||u(t)||=||u( - ,t)||

(u(t),v)+a(u(t) ,v)=(f(t),v).
Thus, we are led to the following variational formulation of (8.2): Find
u(t) eV, tel, such that

(8.7a)

(8.7b)

oo . Note that here a “smooth” initial function has to (u(t),v)+a(u(t),v)=(f(t),v)

u(0)=u°.

Now, let Vh be a finite-dimensional subspace of V with basis {cpi , . . cpM}.
For definiteness we shall assume that Q is a polygonal convex domain and
that Vh consists of piecewise linear functions on a quasi-uniform triangulation
of Q with mesh size h and satisfying the minimum angle condition (4.1).
Replacing V by the finite-dimensional subspace Vh we get the following
semi-discrete analogue of (8.7): Find uh(t) eVh, tel, such that
(8.8a)

(8.8b)

Let us rewrite (8.8) using the representation
M

uh(t ,x)= 2 ^(t)cpi(x) ,

VveV, tel.

an

as u
example the right hand side f (or the boundary conditions) in (8.1)—(8.3) vary
abruptly in time.

The basic stability estimates in our context for the problems (8.2) and (8.3)

(uh(t ) ,v)+a(uh(t) ,v)=(f(t),v)
( uh(0) ,v)= (u0,v)

VveVh, tel,

VveVh.

are in the case f =0:
(8.9) tel,u(t)|| tel,(8.5) < i= l

with the time-dependent coefficients £j(t ) eR. Using (8.9) and taking v=q> j ,
j =T , • , M, in (8.8) , we get

*= — Hu°u(t) ll tel.(8.6) t
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\ clt HUh(t) ! l 2+ a(uh(t) , uh(t))=0,MM .
tel,^ ii(t) (q)i, cpj)+ 2 ?i(t)a(cpi,(]pj) = (f(t) ,cpj) , j=l , . . M,

i = li= l
so that recalling also (8.8b) ,

M
2|i(0) ( cpi ,cpj)=(u(l ,cpj) j = l , . . M,

uh(t)||2+2Ja(uh(s), uh(s) )ds=||uh(0)||2«||u°||2,i= l
0or in matrix form

and thus in particular,

(8.13)

This estimate is clearly analogous to the estimate (8.5) for the continuous
problem. Note that (8.5) may also be proved in the same way as (8.13).

For the semi-discrete problem (8.8) one can prove the following almost
optimal error estimate. Recall that we are assuming, for simplicity, that Q
is a convex polygonal domain and that Vh consists of piecewise linear functions
on a quasi-uniform triangulation of Q with mesh size h.

B|(t)+A?(t)=F(t), tel ,

B^(0)=U°,

(8.10a)

(8.10b)

where B=(bjj) , A=(ajj) , F= (F;), £=(&), U°=(U°),

IK(t)||ss||uh(0)|| =s||u0||, tel.

bij= (cpi,cpj)= Jcpitpjdx,
Q

aij=a(cpi ,cpj)= J Vcpi - V tpj dx,
Q

Fi(t)=(f(t) ,cpO , U?=(u°,<pi).
Recall that both the mass matrix B and the stiffness matrix A are symmetric
and positive definite. Further x(B)=0(l) and x(A) =0(h~ 2) as h —> 0 (see
Problem 7.6). Introducing the Cholesky decomposition B=ETE and the new
variable ri =E£, the problem (8.10) takes the slightly simpler form

Theorem 8.1 There is a constant C such that if u is the solution of (8.2) and
uh satisfies (8.8), then

max 11 u(t)-uh(t)11 sSC f 1+ | log T )
tel \ h2 /

(8.14) h2||u(t)||H2( £2 ).max
t e l

f](t) + Ari(t)=g(t) , tel,
r](0)= ri0,

where A=E~TAE-1 is a positive definite symmetric matrix with
x(A)=0(h-2) , g=E“TF, TI°=E ~TU° and E“T=(E~1)T=(ET)-1. The solution
of (8.11) is given by the following formula (see any book on ordinary
differential equations):

Proof The proof is based on a duality argument involving the following
auxiliary problem: Given tel let <ph: (0, t)-> Vh satisfy

-(Th(s),v)+a(cph(s) ,v) = 0

qph(t) = eh(t) ,

where eh(s)=Uh(s)-Uh(s) and Uh(s) eVh satisfies

a(u(s)-uh(s),v)=0

Now, taking v=eh(s) in (8.15a), using (8.7) , (8.8) , (8.16), writing
8(s)= u(s)-uh(s), and integrating by parts in time we have

(8.11)

(8.15a)

(8.15b)

VveVh , se(0, t),

t (8.16) VveVh, se(0, T).r)(t) =e~Atr]0+ Je A ^1 S)g(s)ds, tel.(8.12)
o

The problem (8.11) (and (8.10)) is an example of a stiff initial value problem,
the stiffness being related to the fact that the eigenvalues of A are positive
and vary considerably in size corresponding to x(A) being large.

Let us now return to our semi-discrete problem in the formulation (8.8).
A basic stability inequality for this problem, with for simplicity f =0, is
obtained as follows: Taking v= Uh(t) in (8.8a) , we get

(uh(t), uh(t))+a(uh(t) , uh(t))=0, tel,

* I I L2(Q),

lleh(t)||2= J[-(Th(s), eh(s))+a(cph(s), eh(s))]ds+ ((ph(t) , eh(t))
o

J[(eh, cph)+a(eh, qph)]dsH-(qph(0), eh(0))
o

J[(6, Th) + a(0, cph)]ds+ (0(O), cph(0))
or with as above 11 • o
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=-J(6, q>h )ds+(0(t), qph(t)). solution Tj(t) of this stiff initial value problem is (of course) similar to that of
the exact solution u of (8.2) as discussed in Section 8.2. In particular we have
the following representation for the solution of (8.11) in the case g=0 (cf

o
Thus, we have the following simple error representation formula

(8.4)):
MIleh(t)112= J (0(s), qph(s))ds+ (0(t) , cph(t)).(8.17) r](t) = 2 (r}° , xj)e MXj,(8.20)0 j= l

Now, (8.15) is equivalent to the ordinary differential equation (cf (8.10))

se (0, t),
are the orthonormal (in RM) eigenvectors of A with corre-where

sponding eigenvalues . .^PM satisfying pi =0(l) and pM=0(h-2). Here
the large eigenvalues pj correspond to rapidly ’’oscillating” eigenvectors x*
while smaller eigenvalues correspond to ’’smoother” eigenvectors (cf Problem
8.1). By (8.20) we see that q(t) has components that live on time scales in the
wide range from 0(h-2) to 0(1) , that high frequency components of q(t) are
quickly damped and that q(t ) in general will have an initial transient . Note
that the stiffness of (8.11) is reflected by the fact that the solution q(t) contains
components with vastly different time scales.

As indicated, stiff problems like (8.11) put special demands on the methods
to be used for time discretization. First , for stability reasons one has, in order
to avoid excessively small time steps, to use so called implicit methods, ie,
methods requiring the solution of a system equations at each time step.
Secondly, one would like to use methods which automatically adapt the size
of the time steps according to the smoothness of q(t) and thus automatically
take smaller time steps in a transient and larger steps when q(t) becomes

-Bfc(s)+A«s) = 0,

m= °̂.

Using the explicit solution of this problem corresponding to (8.12) (or (8.20)
below) and using also Lemma 7.3, we easily find that there is a constant C
independent of eh(t) and t, such that (cf Problem 8.2)

0 =Ss i= t ,ll <Ph(s)||«||eh(t)|| ,

l||qph(s)||ds « C(l+ |log ^|)||eh(t)||,

(8.18)

(8.19)
h20

which combined with (8.17) proves that

tMoiissca+ jiog -^ i ) l | 0(s)|| .; max
h2 se((), t)

smoother.
We will first briefly consider two classical methods for time-discretization

of (8.8) or equivalently (8.10) and then the more recent discontinuous
Galerkin method together with methods for automatic time step control. Let
0=to<ti<. . .<tN=T denote a subdivision of I and write In=(tn-i > In) and
let kn=tn-tn — i be the local time step.

Note that the estimates (8.18) and (8.19) correspond to the estimates (8.5)
and (8.6) for the continuous problem. To complete the proof we now just note
that u — Uh=u — Uh+Uh — Uh = 0 — eh, and we then obtain the desired estimate
(8.14) using the L2 - estimate for 0(s)=u(s)-uh(s) of Theorem 4.3.

Remark Note that the constant C in (8.14) is in particular independent of
T.

8.4.2 The backward Euler and Crank-Nicolson methods
In the classical backward Euler method for the semi-discrete problem (8.8)
we seek approximations UheVh of u(. , tn) , n =0, . . . , N, satisfying

8.4 Discretization in space and time
8.4.1 Background
We shall now consider some methods for time-discretization of the semi-
discrete problem (8.8) resulting in fully discrete analogues of (8.7). Let US then
first consider the related problem (8.11). The qualitative behaviour of the

H n n n —1uh uh , vj +a(u£,v) = (f(tn), v)

(Uh,v) = (u°,v)

Clearly, (8.21a) has been obtained from (8.8a) by replacing the derivative
Uh(tn ) by the difference quotient (ujJ-u[J _ 1 )/kn with discretization error 0(kn).

VveVh, n=l, 2, . . . , N,(8.21a)
kn

VveVh -(8.21b)
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For a given u£ 1 we have that (8.21a) corresponds to the following positive
definite symmetric system of equations for the unknown uJJ:

(B+knA)^=B^-l+knF(tn) ,

By taking v=(u^+ uJ]'1)/2 in (8.24a) we easily obtain again the stability
inequality (8.23) in case f =0.

For the problem (8.11) in matrix form the backward Euler and
Crank-Nicolson method read: Find qneRM, n=l, 2, . . ., N such that for
n =l, . • N

(8.22)

where
M<= z ifcpi. «^+ Ar1n =g(tn) ,

kn

+^A(r1n + Tl̂ 1 )= i(g(tn)+g(tn-l)) .
kn 2 2

(8.26)i = l

A basic stability estimate for (8.21), with f =0 for simplicity, is obtained by
taking v= u(J in (8.21a) to yield

lluhll2-K,uK-1)+a(u[;,uj])kn=0.

Using here the fact that

K.Uh-1)

(8.27)

In the case g=0, (8.26) leads to the following matrix equation for qn:

(8.28) (I+knA)qn=rin ~ 1 .

With the notation of Chapter 7, we have

(8.29) | (I + knA)

1 +|iw-'ii2,n||2< - Uu
2 h

we conclude that for n= l, . . N, 1-II — < 1,max ;—;
j=l M l+kn|Xj

since the eigenvalues |ij of A are positive. From (8.28) and (8.29), we have
that

1 1nll2 _!l|uMI2+a(uS,uB)kn^0,2 Ub

so that by summation
|r)n|^|rin . . =s|r)°|, n= l , • - , N,(8.30)

which is another way of stating (8.23). Similarly we have for the Crank-
Nicolson method

lluhll 2+2 2 a(uM)km^|K||2«||u0||2,
m = l

and in particular

u° 1(8.23) 1for n= l, . . ., N,< (1+- knA) r]n =(I- ^ knA) r) n ~ * ,(8.31)
which is clearly analogous to (8.13).

The other classical time-discretization method for (8.8) is the Crank -Nicol-
son method: Find u£ eVh, n =0, . . ., N such that

n , n-1Uh -hllh

and

|l
|(I+|knA)-i(I-|knA)|=Uh-Uh 1 <1,f(tn) + f(t„ — l ) max(8.24a) , v) + a ( , v) = ( 1, v) j 1+ 2 knbj2 2

VveVh, n= l , . . ., N, which again implies (8.30).
Not all time-discretization methods for (8.11) (or (8.10)) satisfy stability

estimates of the form (8.30) (or (8.23)) regardless of the size of the time steps
kn. As an example, let us consider the so-called forward Euler method for
(8.11):

(Uh > v)= (u°,v) VveVh.
Here, the difference quotient (uf^ — Uh

_1)/kn replaces ( u(tn) + u(tn-i ))/2 and
the corresponding discretization error is 0( k 2). This time we obtain the
following system of equations on each time level:

(8.24b)

n —1r]n — r) n — 1( B + T A M =g(tn- l ) ,(8.32)
~~ A|̂ n

_
1+ kn(F(tn)+F(tn _

]))/2.
f Arj

(8.25) B - kn
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8.4.3 The discontinuous Galerkin methodor, with g=0,

(8.33) We shall now consider the discontinuous Galerkin method for (8.8) which is
based on using a finite element formulation to discretize in the time variable.
To formulate this method we introduce for a given non-negative integer q the
space

rjn=(I-knA)r}n 1.
Here

|l-knA|= max | l-kn (ij|=|l-knpM|^l
Whk ={v: I —> Vh: v|inePq(In ) , n= l, . . N},J

only if knpM^2, or, kn^2/|iM =0(h2) since |iM =0(h-2). This means that for
the forward Euler method (8.32) we can only guarantee the stability inequality
|qn +1|^|r]n| if the time step kn is sufficiently small , or more precisely if

(8.34) kn^Ch2.

In other words, the forward Euler method (8.32) is conditionally stable under
the condition (8.34). If |I — knA|^a>l with a independent of n , then the
forward Euler will be unstable and useless for computational purposes and
thus the method can only be used under the condition (8.34) . This condition
is very restrictive requiring very small time steps kn if h is only moderately
small .

One way of phrasing the stability condition (8.34) for the Euler forward
method for (8.32) is to say that kn has always to be chosen so small that the
fastest time scale is resolved. Of course this is a natural condition in the initial
phase of a transient where the “fastest’’ solution components play a role, but
not so outside this phase. In contrast to the forward Euler method , the
backward Euler and Crank-Nicolson methods are both stable regardless of
the size of the time steps kn , i e, these methods are unconditionally stable. This
is a very desirable property of a time-discretization method for a parabolic
problem.

In the backward Euler and Crank-Nicolson method we need to solve a
system of equations at each time step (see (8.22), (8.25), (8.28) , (8.31)), ie ,
these methods are implicit , whereas for the forward Euler method the solution
r]n + 1 is directly given by qn without solving any system, (see (8.33)), ie, this
method is explicit. Clearly an implicit method requires more work per time
step as compared with an explicit method. Thus, on the one hand we have
unconditionally stable implicit methods and on the other hand conditionally
stable explicit methods. The more efficient methods for parabolic problems
belong to the first class; the extra cost involved at each step for an implicit
method is more than compensated for by the fact that larger time steps may
be taken (outside very fast transients, where accuracy requires very small time
steps).

where
q

Vh: v(t)= 2 Vjt1 with VieVh},Pq(In )-{v: In
i =()

ie, Whk is the space of functions on I with values in Vh that on each time
interval In vary as polynomials of degree at most q. Notice that the functions
v in Whk may be discontinuous in time at the discrete time levels tn. To account
for this we introduce the notation

v + = lim v(t„+s) , v " = lim v(t„ +s),
oo

[vn]=v + v ,

where [vn] is the jump of v at tn.
The discontinuous Galerkin method for (8.8) can now be formulated as

follows: Find UeWhk such that

VveWhk ,(8.35) A(U , v)= L(v)

where
N

A(w, v)= 2 J ((w, v)+a(w, v))dt
n = l In

+ 2 ([w""1] ,
n =2

L(v)= J (f , v)dt+(u°, v (j).

)+ (w + , v +)-1

I

Since veWhk varies independently on each subinterval In , we may alterna-
tively formulate (8.35) as follows: For n = l , . . ., N, given U "
U=U|inePq(In) such that

J (( U , v) +a(U , v) )dt + (ur‘, vr') =

-1, find

(8.36)
I n

j (f , v)dt+ (ur1, vr1) , VvePq(In),
I n

where U ( ) = u°.
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For q =0, using the notation Un=U " =U!J. 1 , (8.36) reduces to the
following problem: For n = l , . . N, find UneVh such that

(Un — Un
_

1, v) + kna(Un, v)= J (f , v)dt VveVh, n =l , . . N,

Absorbing the “almost bounded” logarithmic quantity in the constant C, and
using the trivial fact that

(8.37) |||u(s)| ids ^ kn ! |u|| oc , In,I n In
where U " = u°. This is a simple modification of the backward Euler scheme
(8.21) where the right hand side involves an average of f over In rather than
the value of f at tn.

For q = l we have that (8.36) is equivalent to the following system with

with U(t)= U0 + —kn

=sup 11v(s)||, we can write (8.41) alternatively as followswhere ||v|| 00 , J
seJ

n + max h2 j |u(t)||H2(Q)) -||u(t)-U(t)||ss= C (max kn| ju(8.42) max oo , i
n^N teltel

Here of course the first term on the right hand side bounds the time
discretization error and the second term the space discretization error.

Suppose now 6>0 is a given tolerance and that we want the time
discretization error in (8.37) to be bounded by 6 for all tel (cf Problem 8.7).
By (8.42) we see that this will be the case if

« 4, n=l , . . N,

Ui , teln, UjeVh,

1(Uo,v)+kna(U0,v)+(Ui,v)+ - kna(Ui ,v)

= (U"
_

1,v)+ J (f(s),v)ds, VveVh,
kn||u(8.43) oo T» 4 n c’

(8.38)
with C the constant in (8.42). This gives a rule for choosing the local time step
kn according to the size of ||u||oo , in. Of course, || u||oo , in is not known in
advance, but it seems plausible that one would have

1 1 1
2 kna(U0,v) + - (Ui ,v) + - kna(Ui ,v)

T~ 5 (s-'n-l) (f(s) ,v)ds,
kn I„

VveVh. ~ ||Un-Un-1||,kn||u(8.44) 00 . In

and thus we are led to the following criterion for correct choice of time steps
for (8.37) involving only the computed solution U:

-Hl
_ 68.4.4 Error estimates for fully discrete approximations and

automatic time and space step control
We now give an error estimate for the discontinuous Galerkin method (8.35)
in the case q =0, ie, the backward Euler scheme (8.37) with, as above, Vh
piecewise linear on a quasiuniform triangulation satisfying (4.1). The proof
is given in Remark 8.1 below.

(8.45) ||Un-Un
C

One may satisfy this criterion at each time step e g by trial and error as follows:
With Un

_1 given , a first guess of the next time step kn is made (eg kn= kn-i )
and a corresponding Un is computed. If ||Un — Un
6/C, then Un is accepted and otherwise kn is decreased or increased to make
||Un — Un — 111 —6/C. Variants of this procedure are possible. For example , as
initial guess for kn one may choose 6kn-i/(C ||Un- 1-Un-2||).

Under reasonable assumptions one can show that (8.44) is correct (except
possibly for a few initial steps) and thus one can prove that if the computation-
ally verifiable criterion (8.45) is satisfied, then the time discretization error
in (8.37) will be bounded by 6. A typical behaviour of || u(t)|| for t moderately
small, is given by ||u(t)||~Ct-a, where 0<a<l (cf Section 8.2). In such a case
the method based on (8.45) will thus automatically choose the correct time
step sequence kn =6t (

n7C (cf Example 8.1 below).

-l is sufficiently close to

Theorem 8.2 Suppose there is a constant y such that the time steps kn satisfy
n =2, . . . , N and let Un be the solution of (8.37). Then there is

a constant C depending only on y and the constant (3 in (4.1) such that for
n =l , . . ., N,

kn- i^yk n ?

I |u ( tn ) Un|| =£ C(l+log4)1/2( maxJ ||u(s)||ds
kn m^n Im

+ max h2||u(t)||H2(Q)).

(8.41)

t^tn
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In this section we have briefly indicated some important aspects of the
problem of time discretization of parabolic problems. Of particular interest
here is the discontinuous Galerkin method for which almost optimal error
estimates can be obtained. These may be used as a basis for the design of
rational methods for automatic time step control. With classical methods and
techniques this was not achieved . For more information on this topic, see [J3],
[EJ1], [JNT], [JEL].

Returning to the space discretization error in (8.42) let us notice that in
(8.37) it is possible to use different spaces Vj} for the space discretization on
different time intervals In . The error estimate (8.42) also holds in this case,

if for example Vj^cVjp1 with now the space discretization error bounded by

C max h „ max ||U(S)||H2(Q),
n^N seln

where hn is the mesh size in V[J. The condition Vj}cV£-1 may naturally be
satisfied in the usual situation when u becomes smoother as t increases.

For simplicity assume now that f =0 in (8.2). By our assumption that Q is
convex, we then have by (8.2a) and (4.27) that ||u(t) 11 H2(^)^C|Iu(t) 11 . To also
control the space discretization error to the tolerance 6, we are therefore led
to choose hn depending on n so that

(8.46)

Remark 8.1 The proof of the error estimate (8.41) for the backward Euler
method (8.37), ie, the discontinuous Galerkin method (8.36) with q=0, is
analogous to the proof of Theorem 8.1 and is again based on a duality
argument. First , we introduce the interpolant UeWhk defined by

J a(U-u, v)ds=0(8.51) VveWhk, n = l, . . ., N,6hnl I *" I„(8.47) U N °° . i„~ AC
ie,

Again we may estimate the unknown quantity 11 u||oo , in using (8.44).
For the method (8.38) one may, under the assumptions of Theorem 8.2,

prove an error estimate of the form

max ||u(t)-U(t)||=£C max (k^ ||u(2)||oc , in + h‘ max ||U(S)||H2(Q) ) ,
tel n seln

Un=U|,
n= J flh(s)ds,

Kn in
where Uh(s)eVh is given by (8.16). Now, let ZeWhk satisfy

A(w, Z) = (w^, UN-UN)

ie, Z is a backward Euler approximation of the solution z of the problem:

— z — Az = 0

z(T) = UN-UN.

Now, taking w= U-UeWhk in (8.52) and using the fact that

A(u , v)=L(v)

we get, writing 0= u-U and recalling (8.51),

||UN-UNH 2= A(U-U, Z)= A(U U, Z)

(8.48)
(8.52) VweWhk,

d2uwhere u( 2^ = and where C contains a logarithmic factor as above. We also
dt2

in Qxl,have the estimate

l|u( tn)-U "||^ C max (k^ l Au(2)||(8.49) max in

+ h„ max ||U(S)||H2(Q)) ,
se\n

which shows that (8.38) in fact is third order accurate in time at the discrete
time levels tn.

Relying on (8.49) , we are led to control the time discretization error in
(8.38) as follows:

VveWhk,

N N
= 2 J ((0, Z)+a(u-U, Z))ds+ 2 ([0""1], Z^1)

n =n„

+ (0 + , Z ^)=-"

2
"

(0 " , [Zn])+(0^, Z^).

6knll Au(2)||oo ,!„ == —•
n-2(8.50)

C N- l

Again the unknown quantity || Au(2)||oo , in may be estimated using the com-
puted solution U. The method (8.38) with time step control (8.50) will
typically require much fewer time steps than (8.37) with time step control
(8.45). Although (8.38) is more costly per step than (8.37), in general (8.38)
is much more efficient than (8.37) (cf Example 8.1) .

n = l

This gives the error representation formula

||UN-ON||2=(0f^, ZfJ)-
N21(0 ^ , [Zn]).(8.53)
n = 1
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The relations (8.57) should be compared with the following relation satisfied
by the exact solution of (8.56):

T](tn)=e-k^ Tl(tn-i) .

Here of course the rj(x) are rational approximations of the exponential e-x;
we have that

Now, corresponding to (8.18) and (8.19) , we have the following stability
estimates for (8.52) (cf Problem 8.6):

(8.54) ||UN-UN||,! |Z- n= l , • • - , N,<

1/2N —1 T ||UN-UN||.2 | |[Z"]|| *SC(l +log(8.55) )
kwn = l

e x-ri(x) =0(x1+ 1) as x —> 0,

corresponding to the fact that the order of the method i is i , i=l, 2, 3. We
also have

Together with (8.53) these estimates prove that

T 1/2
||u(tN)-UN|| ^ C (1+log -2- ) max||u(t)-U(t)|| ,

ICN t e l

ki(x)|=si for x^O, i=l, 2, 3,which proves (8.41) for n = N. Since N may be replaced by n for n =l, . .
N, we thus obtain (8.41) by estimating ||u(t)-U(t) 11 as in the proof of Theorem
8.1.

•

and

rj(x ) —> 0 oo for i= l and 3,as x
Remark 8.2 The stability estimates (8.54) and (8.55) for the discrete auxiliary
problem (8.52) used in the above proof , correspond to the estimates (8.5) and
(8.6) for the continuous problem (8.7). In particular, the near optimality of
the error estimate (8.41) is a result of the use of the strong stability estimate
(8.55). Conventional (non-optimal) error estimates for (8.37) only use the
weaker stability estimate (8.54).

but

(8.58) r2(x)--l as x 00

By (8.58) we have that the rational function r2(x) associated with the
Crank-Nicolson method does not behave like the exponential e

_ x for x large.
This means that the Crank-Nicolson method is not suitable for use in time
intervals where the exact solution is non-smooth, for example in initial
transients, where components corresponding to large eigenvalues X play a
role.

Remark 8.3 Note that the constant C in (8.41) in particular is independent
of tn. This means that we may compute over very long time intervals essentially
without growth of the global error. This reflects the parabolic nature of our
problem.

Example 8.1 In Fig 8.1 we give results obtained by applying (8.38) with
variable spaces V£ to the problem (8.3) with f =0 and u0(x)=l , 0<X< JI in

30 with a=-, cf Section 8.2. The space and

time step control was monitored by computational forms of (8.47) and (8.50).
The number of space steps was restricted to be of the form 2m, m=0, 1, . . . .
We see that the error ||e(t)||L2(O, JI) is, up to a factor 2, constant in time and
of the order 0.26=0.001. Also notice that the time and space steps vary
considerably in time and that the total number of steps N ~ 30. This example
is taken from [EJL].

Remark 8.4 If we apply the backward Euler (i = l) , the Crank-Nicolson
method (i =2) and the discontinuous Galerkin method with q =l (1=3) to the
scalar problem

which case || u(t )| | ~ Ct a as t

f]-F X.T]=0,
Tl (0)=r)°,

t>0,(8.56)

where X>0, we get the following time stepping methods

?"=r;(knk)^-!, i=l, 2, 3,(8.57)

where for x>0,

1—1--
321 r3(x)=r2(x)=n(x)= l + x ’ 1+-X +-X2

3 6
1+-2
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Error Problems
8.1 Consider the one-dimensional parabolic problem (8.3) with f =0.

(a) Prove using (8.4) that if U°(X)= JT-X , 0< X<JT, then
Toleranceo, o or-ir

3
D. DD4 ..

||u(t)||^Ct 4 0.as t

(b) Discretize in space using piecewise linear functions on a uniform
partition with space step h and determine the corresponding
ordinary differential equation (8.8). Determine the constant C in
the stability requirement (8.34) for the forward Euler method with

0.QOS . .
I

0. Q 02 ..

uniform step size k. Hint: The eigenvectors of the matrices B and
A in this case are given by vi=(v J Vjjrf ) with1’ ‘0, 001 . .

11 J JTvj=sin ( M= - -1.
M+r ’ h10log no, oooI 3,c2. o1,01.00,0 o,e

Also determine the condition numbers of the matrices B and A.

8.2 Let r) be the solution of (8.11) with g=0 given by (8.20).

(a) Prove that

|f)(t)|+|Ari(t)| s£

(b) Using (a) and the fact that |Ai;|^Ch-2|i;| prove that
T |

J (|r}(s)|+|Ar|(s)|)ds =SC (1+ | log U ) |r,0|.

Spacesteps, timesteps, time (10log-scale) t>0.

2 'll*

2. D 10log n0.c 1. o 1.B0 ° *f
h20

Suppose the time steps kn for (8.37) are chosen according to (8.43)
with a non-smooth solution u satisfying ||u(t)||~Ct-1+e for some e>0.
Compute the number of steps required if T=1 and compare with the

8.3-2..

/7-4 . . J1 number of steps required in the case of a smooth solution satisfying
u(t)||~C.spacesteps

timesteps

time

_.x-e . . JP

8.4 Propose an efficient method for solving the problem (8.22) related to
the backward Euler method (8.21).

Compare computationally the methods (8.37) and (8.38) for the
problem considered in Problem 8.1 with varying degree of smoothness
of the initial data uo. Use (8.45) for the time step control for (8.37)
and (8.50) for the method (8.38). Compare with results obtained using
a constant time step.

• • •

-el

Fig 8.1 Fully discrete approximation of parabolic problem with automatic time and
space step control

8.5
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9. Hyperbolic problems8.6 Prove for the method (8.37) with f =0 and under the assumption
kn^Ckn _

i , that

(a) ||U"| u°|| , n = l , . . N,<

N Un ~ Un
_

111 2 1/2
C||u"||,kn)(b) ( 2 tn <:

knn =1

N un-u n _
1 T(c) 2 kns= C (l +log

kn kin =l

Also extend (a) to (8.35) .
9.1 Introduction

Hint: For (b) choose v=tn(Un-Un
_ 1) in (8.37). For (c) use (b) and

Cauchy’s inequality.

Using the error representation formula (8.17) prove the following
variant of the estimate (8.14) for the semi-discrete problem (8.8) with
f =0:

In previous chapters we have seen that the finite element method applied to
linear elliptic and parabolic problems produces numerical methods with very
satisfactory properties. We now turn to problems with mainly hyperbolic
character, such as eg convection-diffusion problems with small or vanishing
diffusion. Problems of this form typically occur in fluid mechanics, gas
dynamics or wave propagation.

It was observed early on that, in contrast to what is the case for elliptic and
parabolic problems, standard applications of the finite element method to
hyperbolic problems lead to numerical schemes which frequently do not give
reasonable results. More precisely, it was observed that standard finite
element methods for hyperbolic problems do not work well in cases where
the exact solution is not smooth. If the exact solution has eg a jump
discontinuity, then the finite element solution will in general exhibit large
spurious oscillations even far from the jump and will then not be close to the
exact solution anywhere. This is of particular concern since in many interesting
hyperbolic equations, the exact solution is not smooth. Only recently has it
been possible to overcome these difficulties and construct modified non-
standard finite element methods for hyperbolic problems with satisfactory
convergence properties. In this chapter we will present these new finite
element methods, the streamline diffusion (cf Remark 9.9) and discontinuous
Galerkin methods, and compare them with standard methods. These new
methods apply to first order hyperbolic problems such as eg convection-
diffusion problems with small diffusion. We will also briefly discuss standard
finite element methods for a second order hyperbolic problem, the wave
equation for the Laplace operator. In this case improved finite element
methods are still to be discovered.

8.7

C' t||u(t)-uh(t)||« — f ||e(s)||ds + C(l + |log --- 1 ) max ||0(s)||
h2 tt 0

2

t^C ( 1+ 1 log
h2 t

This estimate shows that the error has optimal order for t bounded
away from zero even for non-smooth initial data. In other words, to
have a small error for t away from zero it is (for linear problems) not
necessary to resolve an initial transient completely. Similar results hold
for (8.30) and (8.38) (cf [Th]).

Consider the following time-dependent variant of the convection-
diffusion problem (2.23):

8.8

3u 3u 3u—-pAu+|3i f (32 =f in Qxl,3t 3xi 3X2

u=0 on Txl,

u(x,0)=u°, x e Q .
Extend the methods (8.8), (8.21), (8.24), (8.35) to this problem and
prove in the case f =0 a stability inequality analogous to (8.23).
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n
9.2 A convection-diffusion problem
As an example of a linear hyperbolic-type equation let us consider the
following convection-diffusion equation:

+div(uP)+ou-e Au=0

Pr_
n r.(9.1) in Qxl. xat

Here u is a scalar unknown representing a concentration for example,
P=( Pi , • • Pd) is a given velocity field, a an absorption coefficient, e^O a
diffusion coefficient , Qc=Rd and I= (0, T) is a given time interval. The
equation (9.1) is of mixed hyperbolic-parabolic type with more or less
hyperbolic or parabolic character depending on the size of e and p. We assume
here that e is small, which means that (9.1) has mainly hyperbolic nature (if
e is not small then the material in Chapter 8 applies, cf Problem 8.8). In
particular , with e=0 we have the following purely hyperbolic equation:

^ +div(uP)+ou=0 in Qxl,

Fig 9.1

We now observe that if x(s) is a characteristic, then by the chain-rule we have
d 3ud , , , vv 4 3u dxj „— (u(x(s))= I —— —— = 2 —i= i 3xj ds i= i 3xi

(9.2) Pi = P - Vu,3t ds
or equivalently

so that by (9.4)3u(9.3) ^ + P - Vu +yu+0 in Qxl,
3t — u(x(s))+yu(x(s))=0.(9.6)

where y=o+div p. Let us briefly study this purely hyperbolic equation and
first consider a stationary situation with u and P independent of time t, ie,
let us consider the following equation

P * Vu+yu =0

where P= P(x) and y=y(x) are given coefficients. The streamlines correspond-
ing to the given velocity field P=(Pi , . . . , Pd) are given by the curves x(s),
x=(xi, . . . , Xd), where x(s) is a solution of the following system of ordinary
differential equations:

ds

Thus, along each characteristic the partial differential equation (9.4) is
reduced to an ordinary differential equation. If the concentration u is known
at one point on a given chaacteristic x(s) , then u can be determined at other
points on x(s) by integration of (9.6). As an example let us assume that u is
given on the inflow boundary T_ defined by

(9.4) in Q,

r_ ={xer: n(x) • p(x)<0},

dxj where T is the boundary of Q and n(x) is the outward unit normal to T at xeT
(cf Fig 9.1). The concentration u at an arbitrary point x in Q can then be
determined by integration along the characteristic passing through x starting
on T_. In particular this means that in the problem (9.4), effects are
propagated precisely along the characteristics.

It is important to notice that a solution u of (9.4) may be discontinuous
across a characteristic. For instance, if the given concentration u on T_ has
a jump discontinuity at some point xeT, then the solution u will be
discontinuous across the entire characteristic passing through x. As a simple
example let us consider the following problem in R2:

= Pi(x) i= l , . . . , d.ds
These curves, parametrized by the parameter s, are also called the characte-
ristic curves (or characteristics ) of the problem (9.4). Assuming that P is
Lipschitz-continuous (i e |P(x)-P(y)|^C|x-y| Vx, ye Q, for some constant C) ,
there is for a given point xeQ exactly one characteristic x(s) passing through
x, ie, there exists a unique function x(s) such that (cf Fig 9.1)

dxj(9.5) = Pi(x), i=l, • d,
ds

x(0)=x.
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9y_ =o where Q is a density and v a velocity. This equation, and additional equations
expressing conservation of momentum and energy and a constitutive relation,
constitutes a system of nonlinear hyperbolic equations which are the basic
equations of gas dynamics.

We will also consider briefly the following generalization of the scalar linear
hyperbolic equation (9.3):

in {xeR2:0<Xj<l } ,3xi
1 1u(0, x2)= l for 0<x2<-, u(0, x2) =0 for ~<X2<1,

corresponding to taking |3i =l, [32=0 and y=0 in (9.4) . Clearly the solution
to this problem is given by (cf Fig 9.2).

1u(xi , x2)= l for 0<x2<-, 0<xi<l ,
2

for i<x2<l , 0<xi<l.

d 3u3u + I A; J^+Bu=f ,
at j= i 1 ax,-

where the Aj and B are mxm matrices depending on x and t, the Aj being
symmetric, and u is an m-vector. We say that (9.8) is a linear symmetric
hyperbolic system. In particular we shall consider a (positive) Friedrichs
system which is an equation of the form (9.8) , together with certain boundary
and initial conditions, satisfying a positivity condition. A simple example in
one space dimension of a system of the form (9.8) is given by

3u + [ 0 -1
3t -1 0 J 3x

which is another way of writing the wave equation

32W _ 32w n

3t2 3x2

. . 3w
using the notation ui = , u23t

In the case of one space dimension (i e with d=1), a system of the form (9.8)
together with appropriate boundary and initial conditions can be solved using
the method of characteristics. In this case there are m characteristics (x’(t) ,
t) i=l , . . . , m, through each point x, satisfying the equations

= .̂i(xi, t) i=l , . . m,
dt

where the\[ ( x , t), i= l, . . ., m, are the eigenvalues of the matrix Aj(x , t).

(9.8)
u(xi , x2)=0

x 2

12
0

*
** =0. ui1 u=X1 U2

Fig 9.2

Let us now return to the time-dependent problem (9.3). If we here replace
t by XQ and let (3Q=1, then this equation can be written: 3w

3x3u(9.7) 2 (3, +yu =0.
3xii =0

This is formally an equation of the same type as (9.4) and the discussion
concerning (9.4) also applies to the equation (9.7). In particular, the
characteristics of (9.7) are the curves (x(t), t) in space-time, where x(t) satsifies

dxj = Pi(x ,t) i= l, • • d,
dt

(here the parameter s is chosen to be equal to t= xo corresponding to the

equation dx0— Po= l) -ds

9.3 General remarks on numerical methods for
hyperbolic equations

Common methods for the numerical solution of hyperbolic equations are of
the following types:

Remark 9.1 Another equation of the same form as (9.2), although nonlinear
since here the velocity is unknown, is the continuity equation (or principle
of conservation of mass) in gas dynamics:

3Q— +div (pv)=0,
3t
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Thus, conventional methods are lacking in either stability or accuracy. Below
shall present the recently introduced streamline diffusion method and the

discontinuous Galerkin method which at the same time have high order
accuracy and good stability properties and which perform considerably better
than the conventional methods (cf Fig 9.3 and Examples 9.2, 9.5 and 9.6
below).

?- method of characteristics,
- finite difference methods,
- finite element methods.

The method of characteristics may be used for scalar linear equations in
several space dimensions and for linear systems in one space dimension. In
practice this would come down to solving first the equations for the
characteristics and then integrating along the characteristics, in both cases
using some numerical method for integrating ordinary differential equations.
In principle this is a very good method but it may not be so easy to
practice, particularly not for a system. Further, for a mixed hyperbolic -
parabolic equation like (9.1) , this method cannot easily be used. For these
more general problems one usually uses finite difference or finite element
methods based on a fixed mesh, i e, a finite difference or finite element mesh
that is not adapted to fit the characteristics of the particular problem to be
solved. The use of a fixed mesh gives methods which are easy to program but
it also may cause numerical difficulties if the exact solution is non-smooth with
eg a jump discontinuity across a characteristic. In such a case conventional
finite difference or finite element methods will produce approximate solutions
which either oscillate (as standard Galerkin or centered finite difference
methods) or excessively smear out a sharp front (as do classical artificial
diffusion methods) , see Fig 9.3.

we

9.4 Outline and preliminaries
We will first consider scalar problems of the form

use in

3u (x , t)eQxI,+div([3u)+ ou-e Au =f
at

(9.9)
u(x, 0) =u0(x)

with the stationary analogue

(9.10)

together with boundary conditions, where Q is a bounded domain in Rd,
I= (0,T) is a time interval, and the coefficients o, e^O and |3=( (3i , . . ., (3d)
depend smoothly on (x,t ) or x. We assume that

xeQ,

div(|3u)+ou-eAu=f in Q,

1t in Q x l,- div (3+o ^ a
2

(9.11)

where a^O is a constant with a>0 in the stationary case. This condition will
ensure the stability of the problems (9.9) and (9.10) for all e^O (for 8 small
(9.11) can be relaxed, see eg [Na]). The boundary conditions may be of
Dirichlet , Neumann or Robin (third) type. For simplicity we will consider two
model problems with constant coefficients and Dirichlet boundary conditions,
one stationary and one time-dependent. We leave the straight forward
extension to variable coefficients and other boundary conditions to the
problem section.

We shall consider the following finite element methods:

A. Standard Galerkin
B. Classical artificial diffusion
C. Streamline diffusion
D. Discontinuous Galerkin
E. Time discontinuous streamline diffusion.

K
*• x * x• /

Exact solution Streamline diffusion (without
shock-capturing)

Discontinuous Galerkin
Standard Galerkin
Centered finite difference scheme

Classical artificial
diffusion

Fig 9.3
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Let us briefly recall some basic facts concerning the regularity of the exact
solutions u of (9.12) and (9.13). As already noted, the solution of the reduced
problem (9.13) may be discontinuous with a jump across a characteristic if
the boundary data g is discontinuous, for example. In the full problem (9.12)
with £>0, the solution is continuous in Q, and such a jump will be ’’spread
out” on a region of width 0( Vre"

) around the characteristic. Such a narrow
region (for s small) where u (or some derivative of u) rapidly changes, is called
a layer. If the values attained by the solution u of the reduced problem on
the outflow boundary r+ =r \ r _ do not coincide with the boundary value g
specified in the full problem, then the solution of the latter problem will have
a boundary layer at T+. The thickness of this layer will be 0(e) , cf Fig 9.4.

Let J = (0, 1) be a space interval, I =(0, T) a time interval, and Q=JxI. Then
the time-dependent model problem is as follows:

utT ux £UXX — f
u(x,0)=uo(x)
u(x,t)=g(x,t)

with the corresponding reduced problem:

ut+ ux=f
u(x,0)= u0(x)
u(0,t)=g(t)

Clearly the problem (9.15) has (except for the u-term) the same form as (9.13).
The characteristics of (9.15) are straight lines in the (x, t)-plane with direction
(1, 1) and the inflow boundary is given by the points (x , t) with x=0 or t=0
(cf Fig 9.5).

The methods A, B and C apply to stationary mixed elliptic hyperbolic
equations of the form (9.10) with e small while method D is designed for purely
hyperbolic problems of the form (9.9) and (9.10) with e=0. Finally, E is
intended for the time-dependent problem (9.9) with e>0.

To conclude the chapter we shall discuss the application of the above
methods to the case of Friedrichs’ system and also consider some methods for
second order hyperbolic equations, such as the wave equation.

We now state the two model problems to be discussed below. Let then Q

be a bounded convex polygonal domain in R2 with boundary T and let
|3= (PI,P2) be a constant vector with | p|= l . We shall consider the following
stationary boundary value problem:

8AuTup+ u =f in Q,
u =g on T,

where e is a positive constant, and vp= P * Vv denotes the derivative in the
P-direction. The corresponding reduced problem obtained by setting e=0
reads:

(9.12)

in Q,
xeJ,
x=0,l , tel ,

(9.14)

up+ u=f in Q ,
u =g on T_ ,

where T_ is the inflow boundary defined by

r_ ={xer: n(x) • P < ()},

where n(x) is the outward unit normal to T at the point xeF. The
characteristics of the reduced problem (9.13) are straight lines parallel to P
(cf Fig 9.4) . We notice that in the reduced problem the boundary values are
prescribed only on the inflow part T_ .

(9.13)
in Q,
xeJ,
tel.

(9.15)

t

r_ Q r
r+

> X

Fig 9.5

0 (\T? ) A
0 ( e ) \ We use the following notation when discussing the methods A-D for the

stationary problems (9.12) and (9.13):

(v, w)= Jvw dx, ( Vv, Vw) = JVv - Vw dx,Fig 9.4
QQ
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boundary data g is zero. This problem can be given the following variational
formulation: Find ueHg(Q) such that

e( Vu, Vv)+(up+u,v)=(f,v)

Let now the finite element space

Vh={veVh: v=0 on T}

be given. The standard Galerkin method for (9.17) reads: Find uheVh such
that

=||V||L2(Q), ||V||S= ||V||HS(Q),

<v, w>= Jvw n • P ds,
VVGHQ(Q ) .(9.17)r

<v, w> _ = J vw n • (3 ds, <v, w> + = Jvw n • (3 ds,
r+r_

|n • p|ds)1/2,|v|=(Jv2
r

where r+ = r \ r _ = {xer:n(x) •|3^0}. We notice that by Green’s formula

(vp, w)=<v, w> (v, wp).

Further let {Th} be a family of , for simplicity, quasi-uniform triangulations
Th ={K } of Q with mesh size h which satisfy as usual the minimum angle
condition. For a given positive integer r we introduce the finite element space

Vh ={veH1(Q): v|KePr(K) VKeTh},

ie, Vh is the space of continuous piecewise polynomial functions of degree
r. From the approximation theory of Chapter 4, we have that for any
ueHr+ 1(Q) there exists an interpolant uheVh such that

(9.16a)

(9.16b) 11 u Uh 11 j^Chr||u||r+ l .

Moreover, if the derivatives of u of order r+1 are bounded on Q, then

|u-uh|^Chr+1,

and with somewhat less stringent regularity requirements (see [Ci])

(9.16c) |u-uh|^Chr+1/2||u||r +i.

In the proofs below we will often use the inequality

2ab^ea2+ e
_1b2,

for a, b real numbers and e>0.

VveVh.e( Vuh, Vv) + (up + uh , v) = (f ,v)

This method will perform well if e^h, but if e<<h then this method may
produce an oscillating solution which is not close to the exact solution. To get
an idea of what may happen, let us consider the following simple one-
dimensional example:

(9.18)

Example 9.1 Consider the boundary value problem

-euxx+ ux=0, 0<x<l ,
U(0)=T, u(l ) =0,

with 0<£<<1. The solution of this problem is given by

(9.19)

||u-Uh||^Chr+ 1||u||r+ i .

1 — x 1
e ) , a= (l-e *)-i.

For e small u(x) is close to 1 except in a layer at x = l of width 0(e) where u
decays from 1 to 0, see Fig 9.6.

If we apply the standard Galerkin method with piecewise linear functions
on a uniform mesh with mesh length h to (9.19), we obtain the following
system of equations for the values Ui of the finite element approximation Uh
at the gridpoints Xj= ih, i=0, 1, . . . , N, where XN=1:

- -3[Uj+ i-2Uj+ Ui _
i]+ i- [Ui+i-Ui_

i]=0, i= l , . . ., N —1,

u(x) =a(l-e

h 2 2h
(9.20)

U0= l , UN =0.

We notice that (9.20) may also be viewed as a difference scheme with a central
difference approximation (Uj+1 — Ui_ i )/2h for the convective term ux. Now,
if N is odd and e is very small , then the solution Uj of (9.20) is approximately
equal to1for i even and equal to 0 for i odd, and we get a solution that oscillates
in the whole region and that is not close to the exact solution (cf Fig 9.6).

9.5 Standard Galerkin
Let us first consider the standard Galerkin method for the stationary model
problem (9.12) with e>0 and let us then for simplicity assume that the
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Introducing the notation

b(w, v) =(wp+w, v) — <w, v>_ ,

/(v)=(f ,v)-<g,v>_ ,

this methods reads: Find UheVh such that

b(uh, v) = /(v)

Since the exact solution u satisfies (9.13) , we clearly also have

VveVh ,

and thus by subtraction we get the following equation for the error e=u-Uh:

VveVh.

The stability of the method (9.22) is a consequence of the following property
of the bilinear form b:

u, uh A

(9.23) VveVh.

b(u, v) = /(v)

(9.24) b(e, v) =0

»
h

Lemma 9.1 For any veH](Q) we haveFig 9.6 Exact solution and approximate solution by the standard Galerkin method
(solid lines) for (9.19) with E=0.01} h-llll , (cf also Problem 9.5 )

1b(v,v)=||v||2-f-- |v|2.
2

Proof By Green’s formula

(vp,v) =-(v,vp)+<v ,v> ,To sum up, the standard Galerkin method (9.18) may produce an oscillating
solution if e<h and the exact solution is non-smooth. However, if the exact
solution happens to be smooth , then the standard Galerkin method will
produce good results even if e<h (cf Problem 9.2).

Let us now turn to the reduced problem (9.13) with e=0. We will consider
two variants of the standard Galerkin method.

so that

1 1 1(vp,v)= -<v ,v> = -<v,v> + + -<v,v> _ .

Hence

Standard Galerkin with strongly imposed boundary conditions:
Find uheVh with uh=g at the nodes on T_ such that

(up+ uh , v)=(f, v)

1 1
2 <v ,v>+ + -<v ,v> _ - <v,v> _ =

VveVh with v=0 on T_ .(9.21) 1I,,1211=||v||2 +- <v,v>+ --<v,v> _
11 11 2 2

since n •|3^0 on T+ and n • [3<0 on T_.

Since (9.22) is equivalent to a linear system of equations with as many
unknowns as equations, we obtain uniqueness and hence also existence of a
solution from Lemma 9.1. Let us now prove an error estimate for the standard
Galerkin method (9.22).

vr,

Standard Galerkin with weakly imposed boundary conditions:
Find uheVh such that

(up+ uh , v) <uh, V> — =(f ,v)-<g,v>

Let us analyze the method (9.22) (we leave the method (9.21) to Problem

VveVh .(9.22)

9.3).
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Theorem 9.1 There is a constant C such that if u satisfies (9.13) and uheVh
is the solution of (9.22), then

9.4 Consider for e>0 the problem

— eAu +div(|3u)+ou =f
u=0

in Q,
in T,

with variable coefficients (3(x) and o(x) satisfying the condition (9.11)
with a>0. Formulate the standard Galerkin method for this problem
and prove a stability estimate.

(9.25) r +1•

Proof Let uheVh be the interpolant of u satisfying (9.16) and write qh=u — uh
and eh= uh — uh so that eh — qh — e, where e= u — uh. By Lemma 9.1 and (9.24)
with v=eheVh, we have

1eh||2+ -|eh|2= b(eh, eh)=b(r]h , eh)-b(e, eh) ,

:b(qh, eh)=(r]p, eh)+(qh, eh) — <r]h, eh> _

H^plp-f H ^llp-f- —||eh|p-F|r|hp-F -|ehp.
2 4

Recalling (9.16) we have that

9.6 Classical artificial diffusion<

The simplest way to handle the difficulties connected with the standard
Galerkin method (9.18) with e<h and (9.21)-(9.22) is to avoid these situations
completely. This can be done either by decreasing h until e>h, which may
impractical if e is very small, or simply by solving, instead of the original
problem with diffusion term -eAu, a modified problem with diffusion term
— hAu obtained by adding the term — 6Au, where 6= h — e. This is the idea
of the classical artificial diffusion (or viscosity) method. To be precise, this
method for solving (9.12) with e<h reads: Find uhe Vh such that

(9.26) h( Vuh, V v)+(up+ uh,v)= (f ,v) Vve Vh.

This method produces non-oscillating solutions but has the drawback of
introducing a considerable amount of extra diffusion. In particular , this
method introduces a diffusion term — hu^ acting in the direction q perpen-
dicular to the streamlines (“crosswind” diffusion) , and a sharp front or jump
across a streamline will be considerably smeared out. Moreover, due to the
added term -6 Au such a method is at most first order accurate, and the error
is at best 0(h) even for smooth solutions.

r+ l >

and thus

Since e=eh-r)h, the desired inequality now follows from the triangle
inequality and the proof is complete.

The estimate (9.25) proves that if the exact solution u of the reduced
problem (9.13) happens to be smooth so that ||u||r+ i is finite, then thestandard
Galerkin method (9.22) will converge at the rate 0(hr). Although this rate is
one power of h from being optimal, it shows that the standard Galerkin
method will perform rather satisfactorily in this case. However, in general u
will not be smooth and in this case the standard Galerkin method gives poor
results (the error estimate (9.25) is useless, for example, if u is discontinuous
since then ||u||i = °°).

Problems
For r= l, 2, estimate the norm ||u||r of the solution u of the
one-dimensional problem (9.19) in terms of e.

Prove an error estimate for the standard Galerkin method (9.18).
Explain why this estimate does not necessarily imply that this method
performs well for e small.
Prove an error estimate for the method (9.21).

9.1

9.2 9.7 The streamline diffusion method
It turns out that to considerably reduce the oscillations in the standard
Galerkin method (9.18) in the case e<h, it is sufficient to add a term -6upp
where 6= h-s, ie, a diffusion term acting only in the direction of the9.3
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We will prove an error estimate in the following norm

i±h |v|2)./2.

This choice of norm is related to the following stability property of the bilinear
form B(. , .).

streamlines. Such a modified artificial diffusion method would read: Find
, °une Vh such that l|v||p=(h||vp||2+||v||2

e( Vuh, Vv)+ 6(up, vp)+(u|j+ uh, v)=(f,v) VveVh,

where 5= h — e. This method introduces less crosswind diffusion than the
classical artificial diffusion method (9.26) , but still corresponds to an
O(h)-perturbation of the solution of the original problem.

However, it is possible to introduce the magic term 8(u||, vp) appearing in
(9.27) without such a perturbation. Let us first see how this may be done in
the case e=0.

(9.27)

Lemma 9.2 For any veH*(Q) we have

B(v,v)=||v|| p.

Proof By Green’s formula we have
l(vp,v)=- <v,v>,

and thus9.7.1 The streamline diffusion method with 8=0
\ 1+ hB(v,v)= —

~r (<v'v>

=1±!L Ivp+ iMP+hlWP,

<v,v> — (1+ h) <v,v> _ + 11v| I 2 + h| Ivpl I 2Let us start from the standard Galerkin method (9.22) with weakly imposed
boundary conditions. If , in the terms (. , .), we replace the test function veVh
by v+ hvp, we get the streamline diffusion method: Find uheVh such that

(up+ uh, v+ hvp)-(l + h) <uh, v> _
<v,v>_ )+||v||2+ h||vp||2

(9.28)

— (f ,v+hvp) — (1+ h) <g,v> — VveVh,

where for convenience we have also multiplied the boundary terms by the
factor (1+ h). We notice the presence of the term h(up, vp). Further, we notice
that the relation (9.28) is valid if we replace uh by the solution u of (9.13) ,
ie, the method (9.28) is consistent with (9.13) and does not introduce an
O(h)-perturbation as do (9.26) and (9.27).

Let us now analyze the method (9.28) and introduce the following notation

which proves the desired equality.

We can now prove an error estimate for the streamline diffusion method
(9.28).

Theorem 9.2 There is a constant C such that if uh satisfies (9.28) and u satisfies
(9.13), then

B(w,v)= (wp+ w,v+ hvp)-(l+ h) <w,v> _ ,
L(v)=(f ,v+ hvp) — (1+h) <g,v> _ .

The method (9.28) can then be formulated as follows: Find uheVh such that

B(uh,v)= L(v) VveVh.

Moreover, as we have just noted, the exact solution of (9.13) satisfies

B(u,v)=L(v) VveH^Q),

and by subtraction we thus have the following error equation:

VveVh,

u-uh||p ^ Chr+1/2||u(9.30) r+l -
Proof Let uheVh be an interpolant of u satisfying (9.16). Writing as before
qh= u — uh and eh= uh — uh, and using Lemma 9.2 with v=e and (9.29) with
v-uh — uh, we get

||e||p=B(e, e)=B(e, r]h)-B(e, eh)=B(e, qh)

=(ep, rih)+ h(ep, +)+(e, r]h)+h(e, r)^) — (1+ h) <e, r]h>

|̂||ep|P+h-i||T,h||2+|||ep|P+h||^|P+|||e|P+||r,*>|P

+Jl|e|P+ h2||nplP+ ^|eP+(l+h) |r,hp.
(9.29) B(e,v)=0

where e= u-uh.
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Remark 9.3 Note that for the continuous problem (9.13) with g=0 for
simplicity, we have the following stability estimate:

Recalling the approximation result (9.16), we thus have

Me||^Ch^i||u||?+I )

which proves the desired estimate. |u|+||u|M|up||^C||f||.

This estimate follows by multiplying (9.13) by u which gives control of |u| and

11 u|| , and the control of up then follows through the equation up=f-u. In the
streamline diffusion method (9.28) the corresponding stability estimate,
obtained by taking v=uh and using Lemma 9.2, reads | |uh||p^C||f || or

Remark 9.2 Notice that it is the presence of the term h||ep||2 in the quantity
||e||p dominated by B(e, e) that makes it possible to split the critical term
(ep, V1) into °ne term h||ep||2/4 that can be “hidden” in e|| p, and one term
h-1||r]h||2 that eventually will produce the factor hr +1/2. Thus, the streamline
diffusion method has “extra stability” in the streamline direction as compared
with the standard Galerkin method where the form b(v,v) dominates only the
L2-norms ||v||2 and |v|2 and where the quantity ||r]p|| appears in the proof of
the error estimate (cf the proof of Theorem 9.1).

|uh|+ ||uh||+ Vh ||up|| ^ C||f||.

This estimate is a weaker variant of the above estimate for the continuous
problem with less control of the streamline derivative. In the discrete
have no equation analogous to up=f — u and hence control of ||up|| >

follow from control of ||uh||. Instead , in the streamline diffusion method,
partial control of ||ujj|| is explicitly built in through the modified test function
v+hvp. Notice also that in the standard Galerkin method the stability estimate
reads |uh|+ ||uh| ^C||f ||, with no extra control of ||up||. Here one can only
guarantee
(7.47).

case we
does not

The error estimate (9.30) for the streamline diffusion method (9.28) states
that

u-uh||^Chr+1/2||u r + l ?

Up| ^Ch uh||^Ch-1||f || through an inverse estimate, cf-l
ll (up-up)||^Chr||U r + l -

Thus, the L2-error is half a power of h from being optimal (cf (9.16a)) , while
the L2-error of the derivative in the streamline direction is in fact optimal.
These estimates indicate that the streamline diffusion method (9.28) should
be somewhat better than the standard Galerkin method (9.22) if the exact
solution is smooth, but they do not explain the dramatic improvement
actually finds when the exact solution is non-smooth. The fact that the
streamline diffusion method also performs well in this latter more difficult case
is related to the fact that in this method effects are propagated approximately
as in the continuous problem, ie, essentially along the characteristics. One
can prove for the streamline diffusion method (see [JNP]) that the effect of
a source at a certain point PeQ decays at least as rapidly as exp (-d/CVh)
where d is the distance to P in directions perpendicular to the characteristics
(“crosswind” directions), and like exp ( — d/Ch) in the direction opposite to
the characteristics (“upwind” direction). In particular, this means that the
effect of eg a jump in the exact solution across a characteristic will be limited
to a narrow region around the characteristic of width at most 0(Vh) (in certain
cases the width is improved to 0(h3/4), see [JSW]). On the other hand, in the
standard Galerkin method effects may propagate in the crosswind and even
in the upwind direction with little damping (see the discussion for the
one-dimensional problem (9.19) in Example 9.1).

9.7.2 The streamline diffusion method with e>0

Let us start from the stationary problem (9.12) with g=0 and h>e>0.
Multiplying the equation -eAu + up+ u =f by the test function v+6vp, where
veHj(Q), and integrating, we get

— e6( Au,vp)+ e( Vu, Vv)+(up+ u ,v+6vp)= (f ,v+6vp),

where the term -e( Au, v) has been integrated by parts. Here 6 is a positive
parameter to be specified below. To formulate a discrete analogue of this
relation by replacing u by uheVh and restricting v to Vh, we have to give a
suitable meaning to the term ( Auh, vp), since this expression is not directly
well-defined for uh, ve Vh. The correct definition turns out to be simply the
following in this case:

(9.31)

one

( Auh, vp)= 2|Auhvpdx,
KeTh K

ie, we just sum the integrals over the interior of each triangle K where Auh
and vp are well-defined. We now formulate the following streamline diffusion
method for (9.12): Find uhe Vh such that
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e( Vuh, Vv) — eS( Aup, vp)+(uj^ +uh,v+ &vp)= (f ,v+6vp)

VveVh,

where 8=Ch if e<h with C>0 sufficiently small (see Remark 9.4), and 8=0
if e^h. Clearly, this is a consistent formulation since (9.32) is satisfied with
Uh replaced by u as we noted above. The error estimate (9.30) and the
localization results for (9.28) can be extended to the method (9.32) with e<h.
To sum up, the method (9.32) is an answer to the problem of constructing
a higher-order accurate method for (9.12) with good stability properties (cf
Remark 9.6).

Remark 9.4 Let us give a proof of the basic stability estimate for (9.32) in
the case e<h, which proves in particular that the presence of the term
-s8( Auh, vp) does not degrade the extra stability introduced by the
8(up, vp) if the constant C is small enough. By the inverse estimate (7.51)
have for ve Vh

(9.32) duced over- and under-shoots) was introduced. In this method the test
functions are modified as follows:

v -L8(3 • VVT8|3 • Vv,
where

(3 • Vuh Vuh,P= h|2|Vu

i e j3 is the projection of (3 onto Vuh. Since (3 depends on the unknown discrete
solution uh, this leads to a non-linear method even though the underlying
problem is linear. Further, as above 8=0(h/|(3|) and also 8=0(h/| j3|). For
numerical results see Examples 9.2, 9.6 and 13.9. The problem of theoretically
explaining the improved shock-capturing of the modified method is con-

sidered in [Sz].

Remark 9.7 The streamline diffusion method for (9.12) and (9.13) is basically
obtained by multiplication with test functions of the form vThvp where

veVh. This means that the test functions belong to a space which is different
from the space of trial functions Vh where the discrete solution uh is sought.
Such a method, where the test functions are different from the trial functions,

is sometimes called a Petrov-Galerkin method. Note that in a standard
Galerkin method the spaces of trial and test functions are the same (modulo
boundary conditions).

Example 9.2. Consider the convection-diffusion problem

— eAu +|3 - Vu =0 in Q,
u =g on ri ,

3u /-> p=0 on I 2 ,

term
we

|eft( Av, vp)|ssie|| Vv||2+ ie6C2h ~26||vp||2,
A

so that with Be(. , .) denoting the bilinear form associated with (9.32).

for veVh.BE(V , v)>|e|| Vv||2+ ||v||2+ (l- ie8C2h-2) 6||vp||2,

Thus, if C is so small that

e8C2h ~2=C2Cehh
_ 2^C2C<l,

then

Be(v, v)^ I(e|| Vv||2+6||vp||2+||v||2) for ve Vh, 3u
where e=10-3, (3=(cosl0°, sin 10°), Q={xeR2: 0<Xj<l } is the unit square,

r2={xeT: X2= l ) and F\=r\r2 where T is the boundary of Q . Further, g= l
for 1/2<X2<1 , XI=0, and g=0 if X2<l/2 or xj= l . In Fig 9.7a we give the
approximate solution of this problem obtained using the streamline diffusion
method on the indicated mesh with 8=h and using piecewise linear basis
functions. In Fig 9.7b we give the corresponding result using a small amount
of shock-capturing (8=0.15 h).

which proves the desired stability result.

Remark 9.5 If {Th} is not quasi-uniform or ||3| is variable, then in (9.32)
choose 8=C1IK/|[3| on KeTh if e<hK|(3|, where hK is the diameter of K, and
8=0 if £^IIK||3|.

we

Remark 9.6 As noted above the streamline diffusion method will capture a
jump discontinuity of the exact solution in a thin numerical layer. However,
within this numerical layer the approximate solution may exhibit over- and
under-shoots (cf Fig 9.3). Recently, in [HFM] and [HM2], a modified
streamline diffusion method with improved shock-capturing properties (re-

Problems
Formulate the streamline diffusion method for the one dimensional
problem (9.19) with e>0 as well as 8=0. Determine the corresponding
difference schemes in the case of piecewise linear trial functions and

9.5
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9.8 The discontinuous Galerkin methoda. Without shock-capturing

Galerkin methods using continuous trial functions will lead to globally coupled
systems of linear equations, ie, systems where a change in data at one node
will (at least in principle) affect the solution at all nodes. This is natural in
the elliptic problem (9.12) with e>0, but not so for the purely hyperbolic
problem (9.13) with e=0. In this latter case it would be more natural to be
able to solve the linear system by successive elimination starting at the inflow
boundary T_.

We will now consider a finite element method for the reduced problem
(9.13) which permits such a solution procedure and which has stability and
convergence properties similar to that of the streamline diffusion method. This
method, the discontinuous Galerkin method, may be viewed as a general-
ization of the method with the same name in Chapter 8. It is based on using
the following finite element space:

Wh={veL2(Q): v|KePr(K) VKeTh},

that is, the space of piecewise polyomials of degree r^O with no continuity
requirements across interelement boundaries.

To define this method let us first introduce some notation. For KeTh we
split the boundary 3K of the triangle K into an inflow part 3K _ and an outflow
part 3K+ defined by

5

b. With shock-capturing

3K _ ={xe3K: n(x) - p<0},

3K+ —{xe3K: n(x) -|3^0},

where n(x) is the outward unit normal to 3K at xeK, (cf Fig 9.8).

Fig 9.7 Solution graph and level curves for streamline diffusion method for problem
in Example 9.2 (a) without and (b ) with shock-capturing

a uniform partition. Make a computational comparison with the
method (9.20) (cf Fig 9.6 where the thin curve gives the streamline
diffusion solution in the case e=0.01, h =1/11 and 8=2h/3).
Prove the error estimate (9.30) for the method (9.32) with e<h.
Generalize the streamline diffusion method (9.32) to the variable
coefficient problem of Problem 9.4. Hint: Use eg the test function
v+6div((3v).

Fig 9.8

9.6 Further, suppose S is a side common to two triangles K and K' (cf Fig 9.8)
and consider a function veWh which may have a jump discontinuity across
S. We define the left and right hand limits v _ and v + by

9.7
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I
5

v _ (x)= lim v(x+s|3),
s —> 0-

v+(x)= lim v(x+s[3) ,
s —» 0+

To write (9.33) in more compact form suitable for analysis, note that (9.33)
can be written

BK(uh,v)=(f ,v)K VvePr(K),

for xeS and we also define the jump [v] across S by

[v]= V+-V_ .
The discontinuous Galerkin method for (9.13) can now be formulated as

where
BK(W,V)=(W[3+ W,V)k- J [w]v+n •|3 ds.

3K _

The discontinuous Galerkin method can now be formulated: Find uheWh such
thatseeking a function uheWh according to the following rule: For KeTh, given

u!l on 3K _ find uh=uh|KePr(K) such that

(9.33)
B(uh ,v)=(f,v) VveWh,(9.34)

(u« + uh,v)K- J u +v+ n • (3 ds = (f ,v)K- u h_ v+ n • (3 ds,
3K _ 3K where

B(w,v)= 2 BK(W,V),
KeTh

and u!l=g on T_ . Clearly the exact solution u satisfies the equation
B(u,v)=(f ,v), VveWh (note that [u]n - [3=0), and thus we have the error
equation

(9.35)

VvePr(K),
where

(W,V)K= JWV dx, u h =g on T_ .
K

To see that this problem admits a unique solution , note that (9.33) is nothing
but the standard Galerkin method (9.22) with weakly imposed boundary
conditions in the case of just one element. Thus, if is given on 3K _ we
know that UH|K is uniquely determined by (9.33). Now, we can start to deter-
mine uh on the triangles K with 3K _ c=r_ since then u!i=g is given. This will
then define uh on the triangles K next to T_ , and we may continue this process
until uh has been determined in the whole domain (cf Fig 9.9 where the order
in which uh may be calculated is indicated).

B(u — uh,v)=0 VveWh.

Before analyzing the method (9.34) in some detail let us consider the following
examples.

Example 9.3 Let us consider the one-dimensional analogue of (9.13) , i e, the
problem

for 0<x<l,ux+ u =f
u(0)=g-

Let 0=xo<xi . . . <xN= l be a subdivision of I=(0, 1) into subintervals
Ij= (xj, Xj+i). The method (9.33) reads in this case (cf . (8.36)): For j=0, 1,
. . . N —1, given uh(xj)_ find uh = uh|ijePr(Ij) such that

J (Ux+ uh)v dx+ (uh(xj) +-uh(xj) _)v(xj)+ = J fv dx

(9.36)

19
16

2 06 2 2143 1 0 17 VvePr(L)
ii

15 2171 where v(x)± = lim v(x+ y) and uh(x0)-=g. In particular , for r=0 in which case
y-*0±

uh is piecewise constant, we get the following method: Find Uj=uh(xj) _ such

1 14 18

82 that1 25
Uj+i-Uj 1+Uj+1= — if dx

hi i,
j=0, . . N —1,

h iJFig 9.9
U0=g,
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where hj=Xj+i — Xj, which is a simple finite difference method for (9.36) ,
namely the upwind or backward Euler method .

Lemma 9.3 For any piecewise smooth function v we have

B(v, v)=|,|§-ijvVPI*•

Example 9.4 Let us consider the method (9.33) in the case r=0 and to simplify
further, let us assume that f =0 and also that the u-term is not present so that
we simply have the problem up=0 in Q, u =g on T-.
Galerkin method then reads: For KeTh, given u ^_ on 3K_ find the constant
UK=UH|K such that

Proof By Green’s formula

2(vp, v)K = J v ?.n •|3 ds- J v ^|n - (3|ds,
The discontinuous

3K 3K _
and thus- J UK n • (3 ds = — J u!ln • (3 ds,

3K _ 3K _
2B(v,v)= 2 { / v ^n - pds- J V 2|n - p|ds

K 3K 3K _ie

+2|(v+ — v _ )v+|n •|3|ds}+2||v||2.UK = J u ^n - 13 ds/ J n • (3 ds.(9.37)
3K _3K . 3K

Since every side of 3K+ coincides with a side of dK'_ for an adjoining element
K', except if 3K+cT+, and similarly with -I- and — reversed, we have

2 J v ?.n •|3 ds = Z J* v ?.|n • (3|ds
K 3K

4- J v ?.n * (3 ds- J v |n • (3|ds,

In other words, for each K the value UK is obtained as a weighted average
of the values of on adjoining elements with sides on 3K _ . As an example,
using quadratic elements in the following configuration

K 3K _

r r_

and consequentlyK3K 1
2B(v,v) = 2 { J* (v +-2v_ v+ 4-v ?.)|n • (3|ds}4-

K 3K _
K 2 4-|v ?.n - (3 ds - J v ?_|n • (3|ds-f-2||v||2,

r+ r _

which proves the desired result.
From Lemma 9.3 we obtain in the usual way existence and uniqueness of

a solution to the discontinuous Galerkin scheme (9.34), and it is also possible
to derive an error estimate which proves 0(hr) convergence in the | • |p-norm.
However, this estimate is not the best possible. One can prove that if 6=Ch
for some suitable constant C, then for veWh

and assuming that [3j>0, we find that

Pi P2U3= Ui + U2,
P1 + P2

where U^UK,. Again this corresponds to a simple difference scheme for the
equation up=0 (in fact this is a usual upwind difference scheme for this
equation if we relate the value Uj to the midpoint of each Kj).

P1 + P2

B(v,v+Svp)^C(||v||p — J v!|n •|3|ds),
r

(9.38)

whereLet us now prove a stability inequality for the discontinuous Galerkin
method (9.34) using the norm | • | p defined by IMIs = M p+ h 2 ||vp||£,

' K
W||K= (W,W)k.

| |v | |2 + - 2 J [v]2|n • (3|ds 4- - J vln • (3 ds.
2 K 3K _ 2 r

Mp
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where the constant C depends on max {|Dau(x)|: |a|= l, xeQ}. This proves
the desired error estimate, modulo the fact that we have used a somewhat
stronger norm on the exact solution u than stated in the theorem. It is in fact
easy to see that the norm ||u||i is sufficient and this is left to the interested
reader.

Using this improved stability, it is possible to prove the following error
estimate

(9.39)

In the case r=0 we have ||v||p=|v|p for veWh since here vp=0 on each K. Thus,
for r=0 the stability of Lemma 9.3 should be sufficient to obtain 0(h1 /2)
convergence. Let us prove that this is in fact the case.

Theorem 9.3 There is a constant C such that if uh satisfies (9.34) with r=0
and u satisfies (9.13), then

u — uh||p =£ Chr+1/2||u||r + i .

Remark 9.8 Suppose we stop the calculation of uh when uh has been
determined on a subset Th of Th, eg on the triangles Kj, . . . , Kn in Fig 9.10,
and let Q' be the union of the triangles in T^ . Then clearly the error estimate
(9.39) holds with £2 replaced by Q'. In particular this means that we obtain
error estimates in the weighted L2-norm

J v 2 n - p ds,
l

|u-uh|[3 =S Ch 2||u||i.

Proof Let uheWh be the interpolant of u defined by letting uh|K be the mean
value of u over K for each KeTh, and let us write as usual r)h =u-uh. Applying
Lemma 9.3 with v=e=u-uh and noting that e~ =0 on T_ , we get, using also
the error equation (9.35) with v= Uh — Uh

|e|p = B(e, e) = B(e, u-uh) +B(e, uh-uh)

= B(e, r|h) = 2 {(ep, rih)K- J [e]ri ^n (3 ds}+(e, V1).

extended over the outflow boundary r|of each subdomain Q', eg along the
line ABCD of Fig 9.10.

3K _K

Now, ep=(u-uh)p= up on each K since uh is piecewise constant, and thus by
Cauchy’s inequality

(9.40)

+( Z J [e]2|n • (3|ds)1/2 • ( Z J |qh|2|n • (3|ds)1/2.
K 0K _

It is easy to realize that if ueC^Q) so that i=l , 2, is bounded on Q, then

K 3K _
0

0Xi
Fig 9.10Max |r]h(x)|^Ch,

xeQ

and therefore, since the length of 9K _ is 0(h) and the number of elements
is 0(h-2), we have We now turn to the time-dependent model problem (9.15) with e=0, ie,

the problemZ J |r]h|2|n - p|ds ^ Z Ch3=SCh.
K 3K _ K

Ut+Ux=f
u(x,0)=uo(x)
u(0,t)=g(t)

As already noted this problem has the same form as the stationary model
problem (9.13) with e.=0. Thus, we can apply the discontinuous Galerkin

in £2=JxL=(0, l)x (0, T),
for xeJ ,
for tel.

Thus from (9.40) we conclude, hiding terms as usual on the left hand side,
that

(9.41)

|e|^C||up||h+Ch2+Ch =sCh,

|e|p ^ Chi/2,
or
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method using a triangulation of Q=JxI, ie, a triangulation in space-time. It
is natural to consider a triangulation where the elements are organized in time
as in the following example (note that triangulations in adjoining strips do not
necessarily have to match):

9.9 Evaluate UK in (9.37) in the case of triangular elements in a general
configuration. Distinguish between the cases when 3K _ consists of one
and two sides.

Let uh be the solution of the discontinous Galerkin method with k = l
for the problem

9.10

3u =0 in Q, u=g onr _ ,
0X21 8 1 9

1 5 on the following triangulation:1 7

1 2 1 3 1 4
1 198 1 0

K 474 5 6
31 2

(1,1)— x
K3

Fig 9.11 x2K 1 K 2

It is then possible to compute the discrete solution uh successively on one strip
after another starting for each strip on the left and moving triangle by triangle
to the right (the order in which uh may be computed is indicated in Fig 9.11).

Conventional schemes for (9.41) are based on using separate discretizations
in space and time. First a semidiscrete problem (an initial value problem for
a linear system of ordinary differential equations) is obtained by discretizing
the space variable using finite elements or finite differences, and then a
difference method is used to discretize in time. However, for the problem
(9.41) there is really no reason to distinguish between x and t and it seems
most natural to use space-time elements.

To sum up, the discontinuous Galerkin method has theoretical stability and
convergence properties similar to those of the streamline diffusion method.
In practice it turns out that when applied to eg (9.41) the discontinuous
Galerkin method performs somewhat better than the streamline diffusion
method. In fact , already for k = l the discontinuous Galerkin for (9.41)
performs remarkably well and we know of no (linear) finite difference method
that is better (cf Problems 9.12, 9.15 and Example 9.5 below).

(0 , 0 ) X1 ( 2 , 0 )( 0 , 2 )

Suppose that on SKiuSKj: is given by

u _(xi, 0)=ai + p1xi ,
u — (xi , 0)=a2+ p2xi ,

Determine u !i on 3Ki, i e, assuming that U 11 (XI ,1)=64+ P4XI for
-1<XI <1, determine a4 and p4 in terms of ai, Pi , a2 and p2. Hint:

=0 on K1 and K2 and then prove that

-2<xi <0,
0<xi<2.

(9.42)

3uhProve first that
3X2

1 1j u!l(xi , l )v dxi = J u!l.(xi ,0)v dxi for v= l, xi ,-l -l

ie prove that u ^(xi , 1), —1<X2<1, is the L2-projection onto the space
of linear functions on ( —1, 1) of the piecewise linear function
u!l(xi , 0) given by (9.42) for -l<xi<l.

9.11 Extend the analysis of the previous problem to the more general
Problems equation up — 0 with (3 chosen so that the inflow boundary

r-=3K l u3K 2 . Based on this analysis make an interpretation of theDetermine the difference scheme corresponding to the discontinuous
Galerkin method with k = l for the one-dimensional problem of
Example 9.1.

9.8
discontinuous Galerkin method for the problem up=() as a method
composed of two steps: exact transport and projection.
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9.9 The streamline diffusion method for time-
dependent convection-diffusion problems

Consider the discontinuous Galerkin method with k =l for the
problem

9.12

. 3u n+ y — =0,3u (x, t)eRxR+ , Let us now consider the time-dependent model problem (9.14) with e>0, ie
the problemat 3x

u(x, 0) =g(x),

with O^Y^I * Use a uniform triangulation of RxR + of the form:

xeR, in Q=JxI,
xeJ,
x=0, 1, tel,

Ut + Ux-EUxx=f
u(x, 0)=u0(x)
u(x, t)=0

where for simplicity we consider the case of zero boundary data. With e>0
we cannot apply the discontinuous Galerkin method of the previous section
to this problem; to handle the diffusion term -euxx, the trial functions should
be continuous in the space variable. On the other hand, to be able to compute
the discrete solution successively on one time level after the other, it is natural,
if we insist on using space-time elements, to use trial functions which are
discontinuous in time. Thus, we are led to consider a method where the trial
functions are continuous in space and discontinuous in time based on a
triangulation of space-time with the elements organized in strips in time e g
as in Fig 9.11 or 9.13.

To define such a method let 0=to<ti<. . .<tN=T be a subdivision of the
time interval I= (0, T) and introduce the strips Sn defined by

Sn={(x, t): 0<x<l, tn_ i<t<tn},

for n= l, . . . , N. Further, for each n let Vn be a finite element subspace of
FF(Sn), based on a triangulation of the strip Sn with elements of size h>e,

o
and let Vn ={veVn: v(x, t)=0 forx=0, 1}. (Notice that it is not necessary that
triangulations of different strips “fit” across the discrete time levels, cf Fig
9.13).

(9.43)

( 1 ,7 )

tn-1

* x
Fig 9.12

where Xi=ih, tn= nh, i=0, ±1, ±2, . . . , n=0, ±1, ±2, . . . . Suppose
we represent the discrete solution u!l.(. , tn) on the interval (xj-i , xj)
as

u *Ux, tn) =U“4(x-xi) V?,
n

-. Prove, using eg the result of Problem 9.11, that
2

the discontinuous Galerkin method in this case is equivalent to the
following explicit difference scheme:

xe(xi _ i , X,),

where x- =Xj—
t

*11+ 11 ur1u? i
2 Y sn=(I-Y)

1-2Y-2Y2 v?-1V? 6y

1 n —1
2

(1
_

T)

6(1— y) -3+6Y ~2Y2

connecting the values of the vector (U, V) associated with the
-marked points in Fig 9.12.

9.13 Prove (9.38) and (9.39).

1 Ui-i
+Y n — 1Vi —1

* x

Fig 9.13
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Show that the method in this case is equivalent to the difference
scheme:

— +-X.+-X 2) U^+21 + ( —
4 3 9 1 1

-X ~1+-+ — X+ — X21 U,n +1
3 4 18 2 /
± +-X+ k2 ) u j V2 = i 799 9 ) 1+2 \ 6

h~1+-+ — x|u" +
3 4 12 1

If we now apply the streamline diffusion method (9.32) successively on each
strip Sn to the problem (9.43), imposing the initial value at t= tn-i weakly and
the boundary conditions strongly, we obtain the following method: For n= l ,
. . ., N, find une Vn such that

(u?+u;, v+8(vt+vx))n +<u +, v+>n

+e(u", vx)n-eS(u£x, vt+vx)n

=(f , v+6(vt+vx))n + <u "
where S=Ch with C sufficiently small for e<h, 5=0 for e^h,

_ 101x_ 49
36 36

lx.-1—-- — X- —6 6 36 36 ) J +1

x21 up!186
-l

++ J(9.44)

VVE Vn,-1 n-1, V +> +

— + — XU?.
36 36

11 14 3
_ r r1 + j+2’j +1(w, v)n =|wv dxdt, <W , V>n = Jw(x, tn)v(x, tn)dx, 6

Sn 0
where X= At/ Ax and Uj+1^ un( jh , (n + l )k) _ .

Compare computationally the discontinuous Galerkin and the stream-
line diffusion method for the problem (9.41) with the uniform
triangulation of Problem 9.14. Consider the following cases for
example:
(i) u is smooth,
(ii) u is piecewise smooth with a jump discontinuity,
(iii) uo is a delta function, g=0.

In the same cases also make a computational comparison with the
following difference methods:

Ujl + 1 = ( l -X)Uj+XUj*

v+(x, t)= lim v(x , t+s) ,
s —» 0+

and u!?_ =uo=initial data, and e8(uxx,
to (9.31).

For each n (9.44) is equivalent to a linear system of equations and thus we
o

have an implicit scheme (cf Problem 9.14). Further, since the space Vn is
independently defined on each strip with no continuity requirements from one
strip to the other, the solution un will in general have jumps across the discrete
time levels tn. In the case e^h and a suitably chosen triangulation of (0, 1)x (0,
T) the method (9.44) would coincide with the discontinuous Galerkin method
for parabolic problems presented in Section 8.4.

v _ (x, t) = lim v(x, t +s),
s —> 0-

vt+vx)n is defined in a way analogous
9.15

(upwind
method)

(Lax-
Wendroff )

-i >

Problems
9.14

2 2l+fjU^+ O-X2)!-1?-
(l-X) Ujl!'11+(l+ X.)Uj1+1=(l+X.) Uj,_1+(l-X.) U'1 (box scheme)

Consider the streamline diffusion method (9.44) with e=0 and
J=( — oo , oo) on a regular space-time triangulation of the type U"+ 1 = u"j +1J

i _ x + x^ _
6 2 2 6

^(Vj+i —2Vj+Vj-1)

“kU"+1+ XU"-!
where U1- approximates u( jAx, nAt) and X =i)2+

U"i-l

+2+ T M u? (Shasta)+ j + iAt

1n +1=Vi-u .1J

*• x n-ln +1 (leap-frog)= Uu JIAX At
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Example 9.5 In Fig 9.14 below we give the results after 49 time steps obtained
by applying the discontinuous Galerkin method of Problem 9.12 and the
difference methods of Problem 9.15 to (9.41) with A.=0.56 and a step function
as initial data.

BOH schemeShostsUpuiind

Disc. Galerkin Leap frogLaH- l i l endrof f

STEP 49

Fig 9.14 Comparison of the discontinuous Galerkin method and some difference
schemes for a convection problem

Example 9.6 Consider the convection problem in two space dimensions
3u + P - V =0 for xeQ, t>0,
3t

u(x,0)=u0(x) for xeQ,

where Q= ( — l ,l ) x ( —1,1) and (3 is the velocity field

|3(x)= r( —sin 0, cosO),

corresponding to a clockwise rotation around the origin. In Fig 9.15a, b we
give the initial condition uo and the corresponding approximate solution
uh( * ,t) after rotation 360° obtained by the direct extension of the streamline
diffusion method of Section 9.9. In Fig 9.16a, b we give the initial condition
uo and the corresponding approximate solution after rotation 90° obtained by
the streamline diffusion method with a certain amount of shock-capturing.
Note that in this experiment the space-time finite element mesh was adaptively
modified automatically in each time step using the technique indicated in
Section 4.6. The time step was chosen to be qual to the minimal space step
on each computational ‘slab’ Sn=QxIn, In=(tn-i , tn).

ZZZZZZ I I 8ft6222*28̂ !

^82222222222222^(82182
^KrArArArArArArArArArArArArArAwA^/iZM
VZ!krArArArArArArA*ArArArArArArATArArA*A\
EMtWkWWkZtWZtmrAWITA*AvArArA*ArArA*A*A*AwA*A*ArA*ArA*AVArAX
rArArArArArArArArdrjrArjrArArArArArArArAr-

V&rArAVArArATArATArArAWArArArArArArArArArAi

^ ÂrArArArArArArArArAwArArArArArArAtArAr^̂

W7ZZZZx=r(cos 0, sin 0), Z Z Z Z zz4 Z Z Z Z £Z/Zz7 Z Z Z Z/ Z Z. Z. Z2 Z c c 2 Z Z Z Z Z 2 Z Z Z22222' 222 cZZ <- 222Z Z Z Z Z Z Z Z Z Z Z Z' Z Z Zzzzz izzzzzzzzzz ''zzzzzzzzz2 2 2 2 2 2 2 2 2 Z 2 Z 2 Z 2 2 2 22 2 2 2 2 2 Z 2 2 2 Z 2 < 2 2 2 2 2222222222222222 < 222 2 2 2 2 2 2 2 2 2' 2 2 2 2 2 2 2 <*2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 z. 2222222222222222222Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z^

ZZ^i zz z 3Zzzzz 222222222222' 2222 2 Z 2 2 Z Z Z 2 2 2 2 2 Z 2Z Z Z Z 2 Z Z 2 Z Z Z Z Z zzzz K ZZZ^a 7

b. Same as in a. for finite element solution
after rotation 360°.a. Graph and level curves for initial condi-

tion together with initial mesh.

Fig 9.15 Streamline diffusion method without shock-capturing for convection problem
with fairly smooth initial condition
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9.10 Friedrichs’ systems
9.10.1 The continuous problem
In this section we will briefly indicate how to extend the streamline diffusion
and the discontinuous Galerkin methods to the case of linear first order
hyperbolic systems of the form (9.8) , or Friedrichs’ systems (cf [Le]). We then
consider first the following problem in a domain Qc= Rd with boundary T:

d 3u(9.45a) f Ku =F in Q,Lu = 2 Aj
3xji=l

(9.45b) (M-D)u=() on T,

Here the Aj, K and M are given mXm matrices depending on x , u is an
m-vector and

zVZZZZ
£ zszzzzz

dz D= 2 iijAi
i = 1

Z where (ni , . . ., nd) is the outward unit normal to T. We assume that the
matrices Aj are symmetric (with real elements) and that

on r,(9.46a) M+M*^0ZZ
|3A,

i = l 3Xj

(9.46c) Ker (D-M)+Ker (D+M)= Rm on T,

where a is a nonnegative constant , E* denotes the transpose of a matrix E
and I is the identity matrix. For matrices E and F we have written E^F to
mean that E-F is positive semi-definite, and Ker E ={^eRm: E^=0}. Under
the conditions (9.46) (with o>0) and some smoothness assumptions one can
prove that if Fe[L2(Q)]m , then (9.45) admits a unique solution , (see [F]).

Many problems in mechanics and physics can be written in the form (9.45).
Let us here mention only two special cases.

(9.46b) K+K*- in Q,^ ol

Example 9.7 The reduced problem (9.13) has the form (9.45) with m= l ,
Ai= Pi, K=l , D= (3 • n and M= | D|.

Example 9.8 The initial-boundary value problem for the wave equation

32W 32W

3x2 3x7

a. Graph of initial condition and initial mesh. b. Graph and level curves of finite element solu-
tion together with mesh after rotation 90°.

Fig 9.16 Streamline diffusion method with shock-capturing for convection problem
with non-smooth initial conition

0<xi <l , |X2|<1,(9.47a) =f
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where by (9.46b) ,

L+L* ol.
We also introduce the spaces Vh =[Vh]m and Wh =[Wh]m with Vh and Wh
defined in Sections 9.4 and 9.8 above. We can now formulate our methods
for (9.45). For the error estimates we also assume that M+M*^cl or T for
some c>0 (cf [JNP]).

0<xi <l ,

|x2|<l ,

w(xi , -l)=w(xi , 1)=0

(0, x2)=0
(9.47b)

(9.47c) 3ww(0, x2)=3xi

where xi is a time variable, can be written in the form (9.45) with
3w3w F=(f, 0) andQ=(0,l) x (-1, 1), u = (ui , u2), ui = u2=3xi ' 3X2

0 00 -11 0
o ’ K=, A2-AI = 9.10.2 The standard Galerkin method

Find uheVh such that

0 0 ’-10 1

1 0 for xi =0 or xj=1,M= 0 1
(Luh, v)+i <(M — D)uh, v>=(F, v) VveVh.

-1
for x2= —1, M= ^2 1

P for x2=l.

Note that the boundary conditions (9.47b) translate into the conditions

=0 for |x2|= l , 0<xi<l , which correspond to the conditions

M= 1-1 0 Choosing here v= uh and using Green’s formula (9.48) we obtain (with o>0)
the stability estimate ||uh||+ |uh|^C||F||, from which error estimates of the
form ||u-uh||^Chr ! |u||r+ i can be derived in the usual way.3w

ui = 3xi
' 2 0

±2 0
ui 9.10.3 The streamline diffusion method

Find uheVh such that
(M-D)u = =0 for x2= ± l , 0<xi<l.

u2

Let us now generalize the standard Galerkin method , the streamline
diffusion method and the discontinuous Galerkin method to the Friedrichs’
system (9.45). We will use the following notation

(v, w)=JV w dx, 11 vj| — (v, v)1/2,

(Luh, v+ hLov)+i <(M-D)uh, v>=(F, v+ hLov) VveVh,(9.49)

where
d 3L0= 2

Q

<v, w>=|v - w ds, |v|=<v, v>1/2. 3xii=1

Again choosing v= uh, we obtain (for h sufficiently small) the stability estimate
(with again 6>0)By Green's formula we have

(Lv, w)=<Dv, w>+(v, L*w), \nr||L0uh||+||uh||+<Muh, uh>1/2^C||F|| ,
from which we obtain the error estimate
in the proof of Theorem 9.2.

where Chr+1/2||u||r+i, arguing as<:u uh

3xj i= i 3xj

d 3- 2 A j — + K*,L*=
i =1

so that in particular, 9.10.4 The discontinuous Galerkin method
To formulate this method we need additional notation. For KeTh we write

(v, W)K = JV * W dx, <v, w>=|vw ds,

11(Lv, v)=-((L+L*)v, v) + - <Dv, v>,(9.48)

K 3K
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[w]= wint-w

w,nl(x)=lim w(y) , w

ext where
ext =lim w(y) , xe3K, 0 -1 2 +1A= 0 ’ M= P forx2= ±l.

Changing dependent variables through the orthogonal transformation

y-> x
y*K

y -̂ x
yeK -1 ±1

d
Dk= 2 AinfS

i= l 1 1 -1
V 2 1 1 ’

cp=Su, S=where n K=( n f ) is the outward unit normal to K, and where we set wext(x)=()

for xeT. Further, for each KeTh, we introduce matrices MK defined on 3K
and satisfying, for K, K' eTh,

MK MK'

M K + M K^0

Here a possible choice on interior edges is MK=^I with ^>0.
The discontinuous Galerkin method for (9.45) can now be formulated: Find

uheWh such that

u =S*cp,

we can write (9.51) as

(9.52a) |£+ A^=0,

on 3Kn3K',

on 3K, MK =M on T. 3xi 3X2

(M — D)cp=0

qp(0, x2)= qp°(0, x2)

(9.52b)

(9.52c)
x2= ±l, 0<X]<1,

|x2|<l,

where
2 {(Luh , v)K +i<(MK-DK)[uh], V>k}=(F, V),
K 2

VveWh.(9.50)

A=SAS*= J 0 ,
For this method we again have error estimates of the form -1

l 2 2M — D=SMS*-SDS*=r+ ~ for X2=-l ,0 0
Note that in the scalar case with m=l, choosing MKHP ' nKl (9.50), where
{3=( (3j), (3i = Ai, gives the discontinuous Galerkin method (9.34).

The formulation (9.45) also includes time-dependent problems if we
consider xi to be a time variable and choose e g A] =I, Q=(0, T) x Q' and M=I
for xi =0, T. In this case we should modify the streamline diffusion method
(9.49) following the pattern of Section 9.9. On the other hand , the discon-
tinuous Galerkin (9.50) directly applies also to the time-dependent case, cf
the following example:

0 0A A

M — D= for X2=l.2 2

Note that (9.52a) is an uncoupled system of two scalar advection equations,
and that the coupling in (9.52) only occurs through the boundary conditions.

Suppose we now apply the discontinuous Galekin method to (9.52) with
MK=MK given, on interior edges, by

|nf fn*| 0 mf 0MK= '(9.53) In K — n Kllnl n 2 I mf J '

We then obtain a discrete analogue of (9.52) consisting of two discontinuous
Galerkin discretizations of scalar advection problems which are coupled only
through the boundary conditions (9.52b). Alternatively we may consider a
direct application of the discontinuous Galerkin method to the coupled
problem (9.51) with the MK given by

0
Example 9.9 Let us again consider the one-dimensional wave equation (9.47)
written on system form according to Example 9.8, with now f =0 and non-zero
initial conditions for xi=0:

3u3u jx2|<1, 0<xi<l ,=0(9.51a) + A
3X23XI

(9.51b) (M-D)u=0

(9.51c) u(0, x2)=u°(0, X2)
m ^ I m ^ m ^m 2 +m 1 m 2-m 1

m ^ rn K mK | Km 2 — m i m 2 +m 1
MK=S*MKS=
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32uwhere Q is a bounded domain in R2 with boundary T=((), T), u=
3uu= — . This equation models e g a vibrating membrane with given deflection
3t

uo and initial velocity ui. Following Example 9.8 it is possible to rewrite (9.54)
as a first order hyperbolic system and in principle we may then apply the
methods of the previous section. However, with this approach we introduce
new unknowns which result in an increase in the number of variables in the
discrete problems. Thus, there are good reasons to try to keep the formulation
(9.54) involving second derivatives and a scalar unknown. However, with this
formulation it does not seem to be known how to construct methodscombining
good stability with high accuracy. In particular , we cannot extend the
streamline diffusion and discontinuous Galerkin methods to the wave
equation (9.54) because of the presence of second order differential operators.
Anyway let us here describe some methods for (9.54) that are currently used .

The wave equation (9.54) can be given the following variational formulation
using the notation of Section 8.2: Find u(t)eV= Hg(Q), such that for tel,

(9.55a)

(9.55b)

The basic energy estimate for (9.55) is obtained by choosing v= u in (9.55a)
which gives with f =0 for simplicity,

with the notation of (9.53). In fact these two approaches are equivalent and
would produce the same numerical results since if v=S*\p, we have

(Au, v)K =(AS*cp, S»K=(SAS*cp, ^)K=(Acp, H>)K,

and corresponding relations hold for the remaining terms. Thus, we conclude
that the discontinuous Galerkin method applied to the coupled problem (9.51)
with proper choice of the MK “automatically diagonalizes” the system (9.51a).
The same holds for the streamline diffusion method. This is of interest eg
when analyzing the nature of propagation of effects in the discrete analogues
of the coupled problem (9.51).

Remark 9.9 The streamline diffusion method for stationary problems was
introduced in [HB1], [HB2]. The mathematical analysis of the method was
started in [JN] and was continued, with extensions to time-dependent
problems, in [J2], [Na], [JNP]. The method has also recently been extended
with good results to incompressible and compressible flow problems, see
[BH], [HFM], [HMM], [HM1], [HM2], [JSa], [J4], [JSzl], [JSz2], [Sz], and
Chapter 13. For combinations of finite element methods and methods of
characteristics, see [DR], [M], [BPHL]. The discontinuous Galerkin method
was first analyzed in [LRa], see also [JP2].

Problems
9.16 Apply the discontinuous Galerkin method to (9.51) or (9.52) to

compute approximate solutions of the wave equation (9.47). Test the
performance of the method with different degrees of regularity of
initial data as eg in Problem 9.15. Also compare with the results of
other methods for the wave equation such as e g those presented in
Section 9.11 below.

9.17 Prove error estimates for the standard Galerkin and the streamline
diffusion methods for (9.45) with o>0 and M+M*^cl, c>().

and
3t2

(u(t), v)+ a(u(t ), v)=(f(t), v)

u(0)=u0, u(0)= m .

VveV,

-
2 £ l|i(,)ll4 tel,

so that

u(t)||2+ 1 i V u(t)||2=constant= |m||2+ 11 Vu0||2,

This equation expresses the fact that the total energy of the system (9.54) is
conserved if the applied force f =0.

For the numerical solution of (9.55) suppose the finite element space
Vh <= Ho(Q) is given , and let us first formulate the following semi discrete
analogue: Find uh(t) eV such that for te(0, T)

(iih(t), v)+a(uh(t ), v)=(f(t) , v)

uh(0) =u0h , u(0)=uih ,

where uoh , uih ^ Vh are approximations of the initial data uo and uj. This
problem is equivalent to the following system of ordinary differential
equations (using the notation of Section 8.2): Find ^(t ) eRm such that

(9.56) t e l.

9.11 Second order hyperbolic problems
Previously we have considered first order hyperbolic problems. We now turn
to second order problems. A typical example is the wave equation:

in Qxl,

on r x l,

for xeQ,

VveVh,
(9.57)

(9.54a) ii-Au=f

(9.54b)

(9.54c) u(x , 0)=u0(x), u(x, 0) =U](x) ,

u=0
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B^+A^=F, tel,

i(o)=e0, i(o)=6i.
Problems(9.58) 1 1Prove a stability estimate for (9.60) in the case-

2 2
Hint: Multiply the equations by (J;n +1— ^n) and B(r)
tively.

A class of time discretization methods for (9.59) well-known in the
engineering literature is given by the so-called Newmark method (with
F=0),

where 0o and 0i are the coordinates of uoh and uih with respect to the basis
{cpi, . . ., CPM} of Vh - Clearly (9.57) satisfies an energy conservation relation
analogous to (9.56).

It now remains to discretize the second order system of ordinary differential
equations (9.58) with respect to the time variable. To this end it is convenient
to rewrite this system as follows:

tel ,

tel,

n + l rjn), respec-

9.19

B|n +i=B|n +knBn"— k2 ( (3A^n +1+(|— (3) A^n),

Bqn +1 = Brin-kn(YA^n +1-t- (l-Y)A^n),

where |3 and y are parameters satisfying 0=^ (3^-, O^ y^ l . Prove that
2

this method is unconditionally stable for 2(3^Y^~ - Note that with|3=0
2

1and Y=- and a uniform subdivision, we retrieve the centered scheme

obtained by taking (a, Y)=(0, 1) in (9.60).

Write the wave equation (9.54) as a first order Friedrichs’ systems (cf
Example 9.8).

9.21 Consider the method (9.60) with (a, Y)= (0, 1) and kn=k, n=l, 2, .
. . , N, or equivalently the following centered scheme for (9.57): Find
Un, n =0, 1, 2, . . N such that for n=l, . . . , N —1,

-4 (Un+1 — 2Un+ Un
_1, v)+a(Un, v) = (f(tn), v)

Bf ) + A^=F,

1-11=0,

i(O)=0o, ri (O)= 0 i .

(9.59)

Now, let 0<to<ti, . . . , <tN=T be a subdivision of I with time steps
kn=tn — tn-i. We may consider the following class of time discretization
methods for (9.59) (with F=0 for simplicity): Find (^n , qn)eRMxRM, n=0,
. . ., such that for n= l, 2, . . . N,

n+l _
+ aAHn +1+(l-a)A^n =0,B H

kn
9.20£n + l _ t n

(Ynn+1+(1-Y)r1n)=0, n =l , 2, . .(9.60) • ikn
°̂=0o, rj°=0i ,

where 0 ^a, y^ l are parameters. This method is unconditionally stable for

^and second order accurate if (a, Y)=|^ ~ j , for example. With (a, y )

=(0, 1) and a uniform subdivision in time, the scheme coincides with a
well-known explicit second order centered scheme with no artificial viscosity.
This particular scheme performs very well if the exact solution is smooth but
not so if , for example, the initial data uo has a jump discontinuity, in which
case severe spurious oscillations occur. With (a, Y)= (1, 1) we get a first order
accurate implicit method with better stability properties but with heavy
artificial viscosity. For a scheme similar to (9.60) which has been used
extensively in applications, see Problem 9.19.

>a, Y (9.61) VveVh,
k2

U°= uoh, U1=U°+kuih.

Prove that this scheme is conditionally stable under the condition
k^Ch with C sufficiently small. Hint: Rewrite (9.61) using the notation
Wn = (Un-Un-1)/k and take v=(Wn+1+ Wn)/k to give

[Wn +1, Wn+1]+4| V U =[Wn, wn]+-||vun||2,
2

n+ l|1 2

where

k2
[w, w]=(w, w)-— a(w, w), (w, WH|W||2H|W||L2(q).
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Problems of this type occur in fluid mechanics and acoustic scattering, for
instance. In the latter case the equation Au=0 is replaced by Au+ co2u=0
where cu is a given frequency. Instead of (10.1a) one may also consider
homogeneous, constant coefficient elasticity or Maxwell equations corre-
sponding to elastic or electromagnetic scattering.

Since the domain Q' is unbounded, we cannot triangulate Q' using a finite
number of triangles, and thus we cannot apply the finite element method
directly to this problem. To get a finite number of elements the first idea is
simply to replace Q' by the bounded domain Qb ={xeQ': |x|^b} for some
suitably large b and use the approximate boundary condition u(x)=0 for
|x|=b. To get reasonable accuracy one may have to choose b quite large, and
then this procedure may be too costly.

As we will see below, since the differential equation (10.1a) is homogeneous
it is possible to reformulate the problem (10.1) as an integral equation on the
closed and bounded surface T. Applying a standard Galerkin or finite element
method to solve this integral equation numerically , we obtain a boundary
element method.

We will meet below integral equations of the following types (named after
the Swedish mathematician Ivar Fredholm 1866-1927).

Fredholm equation of the first kind: Given f: T —» R and the kernel k: Tx T —> R
find q: T —> R such that

(10.2)

10. Boundary element methods

10.1 Introduction
In this chapter we consider finite element methods or BEM, boundary element
methods, for some integral equations arising in connection with certain elliptic
boundary value problems in mechanics and physics (the presentation is based
on [N], cf also [W]). As an example of such a problem let us consider the
following exterior Dirichlet problem:

(10.la)

(10.1b)

where Q is a bounded simply connected open set in R3 with smooth boundary

T, C2 ' = R3 \Q is the complement of Q=QUT (see Fig 10.1). Further — denotes
3n

differentiation in the direction n , where n=n(x) is the outward unit normal
to T at xeT. This notation will be kept throughout this chapter.

Au=0 in Q',

u UQ on T, u(x)-* 0 as |x| —>

Jk(x ,y)q(y)dY(y)=f(x) , xer.
r

R and k: fxT-̂ R findFredholm equation of the second kind: Given f: T
q: T —> R such that

q(x)+ Jk(x, y)q(y)dy(y) = f(x) ,
r

(10.3) X G T.

Here dy is the element of surface area on T and dy(y) indicates integration
with respect to the variable y. The kernels k(x ,y) that we will meet, will be
weakly singular; more precisely we will have

c(x , y)(10.4) k(x,y)= x^y,|x-y| ’

where c(x,y) is a bounded function of x and y. Recall that a singular kernel
in two dimensions (r is two-dimensional) behaves like |x-y|-2 as x —> y. In
particular, a weakly singular kernel satisfying (10.4) is integrable, ie,

/|k(x,y)|dv(y)<°° , xer.X1 r
Fig 10.1
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u(x)=0(|x| l ) , |Vu(x)|=0(|x| 2) as | x|-* °°,

dy(y)-J[u] T^-( r) dy(y)
r 3ny \ |x yj /

if x* r,

(10.8b)If we introduce the notation

Kq(x)= Jk(x,y)q(y)dY(y), then(10.5) xer.
r 1— ( I —4jt1 r SnJ |x — y|then we may say that K is an integral operator; given a function q defined on

r, a new function Kq is defined on T by (10.5). With this notation the problems
(10.2) and (10.3) can be formulated as

(10.6) Kq=f

(10.7) (I+K)q=f

(10.9) u(x)

u1(x)+ue(x)(Fredholm first kind),

(Fredholm second kind),

where I is the identity. In the applications below, the kernel k in (10.6) will
be symmetric, ie, k(x ,y)= k(y,x) , x , yeT, while the kernel k in (10.7) will be
non-symmetric.

if XET,
2

where for xeT (i =interior, e=exterior) ,

3u _ 3u' _ 3ue
3n . 3n 3n

[u]= ul — ue,

u!(x)= lim u(y), ue(x)= lim u(y),
y —> x
yeQ

y —> x
y e Q'

u(x +sn)-u(x) 3ue
3n

u(x+sn) — u(x)3u* (x)= lim (x)= lim10.2 Some integral equations 3n s s0+0

Let us now briefly recall some of the integral equations that arise in connection
with various boundary value problems for the Laplace equation. Let us then
start by recalling that the fundamental solution for the Laplace operator in
three dimensions is given by the function

and ^ indicates differentiation in the direction n(y).
3ny

Proof First let x be a given fixed point in Q and define (cf Fig 10.2)

QE={yeQ: |y-x|>e},

SE={yeR3: |y-x|=e},
where e is so small that Se <= Q.

1
E(x)= 4JT x

By this we mean that

|E(x) Acp(x)dx= (p(0),
R3

for all smooth functions cp in R3 vanishing outside a bounded set. In other
words,

AE=S,

where 6 is the delta function at 0 (cf Problem 10.2). In particular , we have
that AE(x)=0 for x^0. Next, let us recall the following representation
formula:

Theorem 10.1 If u is smooth in Q and Q' and

(10.8a) Au=0 in Q and Q', Fig 10.2
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1Applying Green’s formula on QE to the two functions u(y) and v(y) =
which satisfy Au= Av =0 in Qe, we get

10.2.1 An integral equation for an exterior Dirichlet problem
using a single layer potential

Let us consider the following exterior Dirichlet problem:

in Q' ,

on r,

4jt |x — y|

0= J u Av dy- J v Au dy= J u1 — dy- J v 3u!
(10.10) dy

3n 3nQe QE r r Au=0

“ J u^dy+ J v^dy,
sE on sE on

where on SE the normal n is directed outwards (see Fig 10.2) . Since u is smooth
3uin Q so that — is bounded close to xeQ , and since the area of SE is equal to

4jte2, we have

(10.13) u=u0

u(x) =0(|x| ’) , | Vu(x)|=0(|x| 2) , as |x| OO

One can show that if uo is sufficiently regular (more precisely, if uo is the
restriction to T of some function weH'(R3)) , then this problem has a unique
solution u . We can extend this solution to the interior of Q by letting u satisfy

in Q ,

on r.

Au=0dy(y)3uJ v — dy SS Cj
se 3n

(10.11) = Ce —> 0 as e 0. (10.14)
SE 4JT|X y| u=u0

We know that under the condition on uo just stated , this problem also admits
a unique solution .

By the representation formula (10.9) we now have since [u]=0 on T:

Further, for yeSE

3v 1f- (y)= 4jr |x — y|23n
3u 11u(x)= — { , ,

4JI rL 9nJ x — yj
dy(y) x ^r,and thus (10.15)

3v 1J u J u dydy=- u(x) as B > 0. and since (u!+ue)/2=uo on T,
4jte2 sE

0 in (10.10) we find , using similar arguments for xef and
SE 3n

Hence , letting e —>
xeQ', that

3u 11
U°(X)= T- J | |4JI rL 9n J |x — y|

dy(y). xef .

Thus, writingu(x) xeQ,

3u
dy(y)- Ju' — ( dy(y)

r 3ny \ |x — y| /
3u‘ 11 =|^ u'(x) xer, (10.16) q =— J4JT r |x-y|(10.12) 3nJ ’

we are led to the following integral equation: Given UQ find q such that
xeQ'.

A corresponding result can be obtained by applying Green’s formula on the
exterior truncated domain Qb = {yeQ': |y|^b} and then letting b —» using
(10.8b) . Together with (10.12) this yields the desired representation.

0 q(y)I0°-17) ,
This is a Fredholm integral equation of the first kind with weakly singular
kernel . Clearly the kernel is symmetric. One can show that for a large class
of functions uo, (10.17) admits a unique solution q . More precisely one can
show that if uoeHs(T) , then there exists a unique q eHs-l( r) satisfying (10.17) .

Here and below HS(T) denotes the Sobolev space of functions defined on V

with derivatives of order sin L2(T) . With q = determined from (10.17) ,

dY(y) =uo(x) , xeT.

1 3is said to be a single layer potential and — 1Remark The kernel l*-y| 3nyV |x — y|
a double layer potential .

Let us now derive the integral equations that we want to study . 3n
obtain the solution u of (10.13) (and (10.14)) by the formula (10.15) .we
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so thatAnother way of obtaining the integral equation (10.17) is to start out by
seeking a solution of the exterior Dirichlet problem (10.13) of the form _ u1(x)~ ue(x) + uc(x)+ u *(x)ue(x)= 22

q(y)Iu(x)=-J 1(10.18) dy(y), xeQ ' . dy(y), xeT,4JI r |x — y| 2 4JI r
where1Since Ax =0 for x^y, where Ax indicates that the derivatives are

taken with respect to the variable x, it is clear that a function u given by (10.18)
satisfies Au=0 in Q'. Now letting x —> T and using the fact that the right hand
side of (10.18) is a continuous function of x, we obtain the integral equation
(10.17) for the unknown density q.

l*-y| cp=[u]= u'-ue.

Thus, since uc(x) = uo(x) for xe T, we are led to the following Fredholm integral
equation of the second kind:

^+ j-J <p(y) ( -i—^—r) dv(y)
2 4jtr 3ny \ |x — y|/

=-u0(x), xeT.(10.21)

Remark The function u defined by (10.18) for xeR3 may be interpreted for
instance as the electric potential given by a distribution of electric charges on
T with density q , or the temperature given by heat sources on T with intensity
q.

By the representation (10.9) we also have for x $ T,

u(x)”(10.22)

Note that the right hand side of (10.22) is not a continuous function of x; this
function has a jump equal to cp=[u] across T.

To see that (10.21) is an integral equation with a weakly singular kernel of
the form (10.4), we observe that for x, yeT, xJ= y ,10.2.2 An exterior Dirichlet problem with double layer potential

When considering the exterior Dirichlet problem (10.13) let us replace (10.14)
with the following interior Neumann problem:

in Q,

= _ n(y) • (x — y)
|x — y|3 ’

3 1
3ny \ |x — y|

Now, if T is smooth, then n(y) is almost orthogonal to (x-y) for x close to
y (see Fig 10.3). More precisely, since T is smooth it is easy to show that

Au=0
(10.19)

3u _ 3u'
3n 3n

n(y) ’ (x — y)=|x — y|2c(x, y) ,on r,=g

where c(x, y) is bounded function , and thus the kernel in (10.21) satisfies
(10.4).3uewhere g=3n reca^ a necessary condition for (10.19) to have a

n ( y )
solution is that

3ueJ gdy= I(10.20) dy=0.
f 3n

and further, a solution of (10.19) is unique only up to a constant (if u is a
'S

solution of (10.19), soisu +cfor any constant c). Since u

r

=0 in this case,
3n

the representation formula (10.9) gives

uc(x) -fu1(x) _ 1
4tt rflulin:( Fy[) dy(y)' xeT,2 Fig 10.3

221220



One can show that if again uo is the restriction to T of some function weH^R3)
and (10.20) holds, then (10.21) admits a solution cp which is unique up to a
constant.

3u . Now, it can be shown that if u is given by (10.25) , then forwhere q=
xeT,

3n

q-® + f / q( y)^(rLr) dv(y),
2 4JC r 3nx \ |x — y|/

3ue (x)—Problems
10.1 Prove that 3n

and using (10.23b) we are thus led to the integral equationxeQ,-1,

- q(x) — — Jq(y) — f —±—\2 4 4JT r J 3nx \ |x — y|/
i i (10.26) dy(y)=-g(x), xer.xef ,

2’4JT

This is again a Fredholm equation of the second kind with non-symmetric
weakly singular kernel satisfying (10.4). One can show that for any geL2(r)
there exists a unique solution qeL2(f ) of (10.26).

xeQ' .

What can be said about the uniqueness of a solution of (10.21)?

Prove using the technique of the proof of Theorem 10.1 that

is a fundamental solution for the Laplace operator in R3.

0,

10.2
1E(x)

4JI|X|
10.2.4 Alternative integral equation formulations
It is also possible to use a double layer potential for the exterior Neumann
problem. Further, if in the representation formula (10.9) we take u=0 in Q,
then

10.2.3 An exterior Neumann problem with single layer potential
Let us now consider the exterior Neumann problem

(10.23a)
| dY(y)+ Ju ^- ( r^-r)| r 9% \ |x — y| /

rdy(y)+ J U ~ ( —!—) dy(y) ,
r 3ny \ |x — yj /

3u 1
P 3n |x — y

1Au=0 in Q', U(X)= T- “ J(10.27) dy(y) > for xeQ'
4JT

3u(10.23b) on r,=g where u=ue on f , and3n
1 , A 1 r 3u-u(x )= — - I — -
2 4JT p 3n |x — y

1(10.23c) u(x)=0(|x|~1), | Vu(x)|=0(|x|-2) ^ ^ oo (10.28)
3w for xeT.One can show that if g is sufficiently smooth (more precisely, if g=

some function weH](R3)), then (10.23) admits a unique solution (note that
for this exterior problem to have a solution it is not necessary that g satisfies
(10.20)). With (10.23) we associate the interior Dirichlet problem:

for
3n

3uEquation (10.28) gives an integral equation of the second kind for u|r if — |r
3u dn

is known, and an equation of the first kind for — Ip if u|r is known. Thus,
3n

the exterior problems (10.13) and (10.23) can be solved by first solving for
3uu|r or — |p in (10.28) and then using the representation (10.27).
3n

Au=0 in Q,
(10.24)

on r.u = ue
Since then [u]=0, we have by the representation formula (10.9)

xeR3,(10.25) dy(y),
4JT r |x — y |
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where10.3 Finite element methods
b(q , P)=^J Jqj^pdY(y)dY(x),

%> )= Juo(x)p(x)dY(x) .

We shall now consider finite element methods for the numerical solution of
the integral equations (10.17) and (10.26) , that is, the equations

r
(10.29)

4 jtr |x-y|
dy(y)= uo(x) , xeT, This leads naturally to the following Galerkin method for (10.29): Find qheWh

such that

(10.32) b(qh, ph)= /(ph)

Using the basis {\pi , . . . , ^M} this relation can be formulated equivalently
as the linear system of equations
(10.33) B£=/,
where £=(li, • • £M)SRM,

xer.(10.30) VpheWh.

For simplicity we consider only the case of piecewise constant finite element
approximations. Let Th={Ki, . . . , KM} be a subdivision of T into “elements'

Ki (eg “curved” triangles or rectangles, cf Fig 10.4) of diameter at most h.
We introduce the finite element space

Wh={veL2(r): V|K, is constant, i=l , . . ., M}.
We will use the basis {%, . . . , tpM} for Wh where each ip; is equal to one
on Kj and vanishes on Kj for jAi.

M
qh= Z gjipj,

J =1

and B= (bjj), /=(/]) with

b|p j
K, K, lx-yl

/ j= Ju0dY,

(10.34)

i , j= l , . . . , M .
K ,

The form b(. , .) is bilinear and evidently symmetric. As we shall see, b is also
positive definite, (ie, b(p, p)3=4) with equality only if p=0). Thus, we may
define a norm || • ||w by

(10.35)

To see that b is positive definite we recall from Section 10.2 that if

l |pliw=b(p, p)1/2.

Fig 10.4

v«« i f P<y)(10.36) dy(y) , xeR3,
4JT r |x — y|

then
10.3.1 FEM for a Fredholm equation of the first kind

Multiplying the equation (10.29) by a test function p(x) in some test space W,
as yet unspecified, and integrating over T, we are led to a variational
formulation of (10.29) of the following form (cf [NP]): Find qeW such that

(10.31) b(q , p)= /(p)

(10.37a) Av=0 in Q and Q',

3v(10.37b) — =p and [v]=0 on T,on

(10.37c) v(x)=0(|x|-!), |Vv(x)|=0(|x|“2) as x 00VpeW,
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Remark 10.4 Note that the matrix B in (10.33) is dense; we have bjj^O
Vi, j. Thus, to solve (10.33) by Gaussian elimination requires 0(M3)
operations.

Using Green’s formula it follows that

J | Vv|2dx= J Vv • Vvdx+ J* Vv • Vv dx

e 3ve
QQR3

r ; Sv1 , r= J v1 —-dy- J v
r 3n

dy= Jvpdy, Problem
10.3

3n rr Estimate the number of operations needed to solve (10.33) by the
conjugate gradient method.since vJ =ve on T. Thus, multiplying (10.36) by p and integrating over T, we

have
p(y)p(x)l dy(x)dy(y)= J | Vvpdx.

R3
b(p, P)= — J , ,

4 jrrr |x — y| 10.3.2 FEM for a Fredholm equation of the second kind
Let us now consider the equation (10.30) which we write as

(I — K)q=f,

where f =-2g, I is the identity operator and K:L2(T)^ L2(r) is the integral
operator defined by

Hence b(p, p)5*0, and if b(p, p)=0, then Vv=0 so that v is constant in R3,
and hence by (10.37b) it follows that p=0. Thus, b is positive definite.

It now follows immediately that (10.32) admits a unique solution qheWh
and by our general theory for finite element methods for elliptic problems
from Chapter 2, we have

(10.39)

VpheWh.Ilq-qhllw « l |q-ph ! lw(10.38)
Kq(x)= f — J q(y) -r— f "j ~ r]

zjt f dnx \ |x — yI /
(10.40) dy(y), xeT.

It can be shown that the norm 11 • | |w is (slightly) weaker than the L2(T)-norm
(ie, ||p||W =̂ C||p||L,(T) and in particular we have Wh <=W), and thus using the
L2-norm on the right hand side of (10.38) we find by the usual approximation
theory

One can prove that given feL2(T) this problem admits a unique solution
qeL2(T) , and for some constant C independent of f

(10.41)

where I
l |q||^C||f ||=C||(I — K)q||,| |q-qh| |w^Ch| |q | |Hi(r>

• || denotes the L2(T)-norm , ie,

I IPI I =(Jp2dy)1/2.
Remark 10.1 For readers familiar with Sobolev spaces, let us mention that
here W=H~1/2(T) (cf [Ad]).

Remark 10.2 One can show that the condition number of the linear system
(10.33) is 0(h

_1) if the triangulation Th is quasi-uniform (this is of course
related to the fact that ||p|| w^Mp, p)^C||p |L2(F), where the last inequality
is easily proved). Thus, for realistic choices of h the system (10.33) is quite
well-conditioned. This is in contrast to some other Fredholm integral
equations of the first kind having smooth kernels which may be very
ill-conditioned and thus difficult to solve numerically.

r
Let us now consider the following Galerkin method for (10.39): Find qheWh
such that

(qh, ph)-(Kqh, ph)=(f , ph)(10.42) VpheWh ,

where

(q , p)= Jqpdy -r
The relation (10.42) is equivalent to the following system of linear equations
(10.43)

where

Remark 10.3 A large part of the computational work will have to be spent
on computing the coefficients bjj defined by the double integrals (10.34). If
the elements Kj and Kj are not very close, then simple one-point quadrature
for each integral in (10.34) may be used. If Ki and Kj are very close, then one
has to be more careful and use special quadrature rules (cf [JS1] and Problem
10.5).

(D-B)|=/,

M
q h= 2^j, §=(& > • • •, ?M) eRM,

]=1
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B= (bjj), D=(di) is a diagonal matrix and /= (/j) with

dY(y)dy(x) , dj= Jdy,

Here H^T) denotes the space of functions defined on T with first derivatives
in L2(T). This result says that if peL2(T), then KpeH^T), and thus by
applying the integral operator K, we increase the regularity by one derivative.
Such a smoothing operator is also said to be compact.

We will also use the following error estimate for the projection operator
Ph, cf Problem 4.8,

u. 1 r r
lj 2JT KJ Kj 3nx \ |x y|

1
K,

A = Jf dy.
Ki

Again, the matrix B is dense but this time non-symmetric. For the computation
of the bjj Remark 10.3 again applies.

Let us analyze (10.42) and then reformulate this equation using the
following notation. Let Phi L2(T) —» Wh be the L2-projection defined by (cf
Problem 4.8).

l |P“Php||^Ch||p||Hi(r) -
Note that since Wh consists of piecewise constants, we have in our case

Php|K = Jp dy/ Jdy = mean value of p over Ki, i= l, . . ., M.

(10.47)

Ki K

(Phq , ph)=(q , ph)

By this relation it follows that PhP=p if peWh and

(Phq ,p)= (Phq ,PhP)=(q .PhP)

VpheWh, qeL2(r) . Now, combining (10.46) and (10.47) we find that for peL2(r)

|| (K-Kh)p||=||(I-Ph)Kp||^Ch||Kp||H,(r)«Ch||p|| ,
Vp, qeL2(r) . Thus,

(10.48)Since (10.42) can be written as

(qh,Php)-(Kqh,Php)=(f ,Php)
||(K-Kh)p||^Ch||p||, VpeL2(r),

which may also be written as ||K-Kh||s£Ch where ||A| denotes the operator
norm of an operator A: L2(r)-* L2(r) , ie, ||A||=sup { |Ap||/||p||: peL2(r)}.

We can now prove the desired stability estimate:

VpeL2(r),

we conclude that

(qh,p)-(PhKq\p)=(Phf ,p) VpeL2(r) ,

Lemma 10.1 There are constants C and ho such that for h^ho and peL2(T)or equivalently ,

IIPII^CIKI KH)p| |.(I-Kh)qh= Phf ,

where Khi L2(Q) —> Wh is defined by Kh= PhK . To sum up, the continuous
problem and its discrete analogue can be formulated as the following
equations in L2(Q):

(I-K)q=f,

(I-Kh)qh= Phf ,

We now want to prove a stability estimate for (10.45). Once this has been
done, we obtain uniqueness and hence also existence of a solution to (10.45)
and we can directly obtain an error estimate. To prove the stability of (10.45)
we shall use the stability (10.41) of the continuous problem (10.44) and the
following crucial property of the integral operator K:

Proof Combining (10.41) and (10.48), we have

||p||«C||(I — K)p||=C||(I — Kh)p— (K — Kh)p||
«C||(I-Kh)p||+C||(K-Kh)p||

==C||(I — K^pll +Qhllpll ,
(10.44)

(10.45) Kh =PhK.

so that

(1-Cih) I|p|I ^C|I(I-Kh)p|I ,
1and the lemnia follows by choosing, for instance, Ciho=-.
2

Using this stability estimate we easily obtain the following error estimate.
Proposition The operator K defined by (10.40) is smoothing; more precisely
there is a constant C such that

||Kp||H,(r) =£C||p||L2(D, VpeL2(r) .
Theorem 10.2 There are constants C and ho such that if qeH^T) and qheWh
are the solutions of (10.44) and (10.45) , then for h^ho,(10.46)
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where K is the triangle with vertices (0, 0), (1, 0) and (1, 1) and g is
a smooth function. Prove that the change of variable y=xz transforms
the integral (10.50) into

(10.49) ||q-qh||^Ch.

Proof Substracting (10.45) from (10.44) we get

(I-Kh) (q-qh)= (K-Kh)q+(I-Ph)f , 1 1 g(x, xz)(10.51) JJ dxdz.
0 0 Vl+z2

so that by Lemma 10.1
This integral has a smooth integrand and may be computed using
standard numerical quadrature with few quadrature points, whereas
the same approach for the weakly singular integral (10.50) gives poor
results. This “trick” may be used to compute the elements bjj in eg
(10.34) when Kj and Kj are close (in fact here the integrals with respect
to x may be replaced by numerical quadrature with quadrature points
at the nodes of the triangulation which leads to integrals of the form
(10.50) to be calculated, cf [JS1]).

||q-qh||^C(||K-Kh)q||+ ||(I-Ph)f||).

The desired estimate now follows from (10.47) and (10.48).

Remark 10.5 By Lemma 10.1 it easily follows that the condition number of
the matrix (D-B)T(D-B) is bounded independently of h and thus (10.43)
can be solved efficiently by, for example, the conjugate gradient method
applied to the least squares form of (10.43): (D-B)T(D-B)^=(I-B)T/.

Remark 10.6 In certain applications it is of interest to combine the usual finite
element method and the boundary element method. This is the case, for
instance, if (10.1a) is replaced by the non homogenous equation Au=f in Q' ,
where we assume that the support of f is bounded so that for some b>0, f(x)=0
for |x|^b. We also assume that £2 <={x:|x|^b}. The resulting problem may be
discretized using a standard finite element method on the bounded domain
Qb={xe£2 ': |x|^b}, together with an integral equation on the surface
Tb={x: |x|=b) which connects the unknown values of u and the normal

0u— on Tb. In this method finite elements are thus used to discretize
3n

the bounded domain Q (, where L£0, and a boundary integral method is used
to handle the unbounded region {xeQ': |x|>b} where f =0. For more
information on this topic, see [JN].

derivative

Problems
10.4 Consider the integral operator K:L2(I) —> L2(I), I= (0, 1) , defined by

Kq(x)= Jk(x, y)q(y)dy, xel,
I

where k(x,y)= l if yex and k(x,y)=0 if y>x. Prove that

I|Kq||Hi(l)^C||q| |L2(I) , qeL2(I).

10.5 Consider the following integral with weakly singular integrand:

(10.50) J’ g(x > y)
J / 2 2 x 1/2
K (x +y )

dxdy,
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(11.2a) ( Vu, Vv)-(p,div v)=(f ,v)

(q,div u)=0

VveV,

VqeH,
11. Mixed finite element methods

(11.2b)

where denotes L2-inner products, so that in particular
22

( Vw, Vv)= 2 f V w j - Vvjdx, (f ,v)= 2 JfiVjdx.
i= l Q i = lQ

A natural idea to get a discrete analogue of (11.2) is now to replace V and
H by finite-dimensional subspaces Vh and Hh. This gives the following
method: Find (uh, ph) eVhXHh such that

11.1 Introduction
( Vuh, Vv)-(ph , div v)=(f , v)

(q , div uh)=0

VveVh,(11.3a)

(11.3b)

A method for (11.1) of the form (11.3) is called a mixed (finite element)
method; the term mixed refers to the fact that in (11.3) we seek independent
approximations of both the velocity u and the pressure p. With the formulation
(11.3) we do not have to explicitly construct a finite element space of
divergence free velocities as in (5.7) , something which is difficult to do using
low order polynomials (cf Section 5.2). Thus, the formulation (11.3) opens
the possibility of working with velocities that only satisfy the zero divergence
condition approximately through the discrete zero divergence condition
(11.3b). However, we have to pay for this added freedom in the choice of Vh
by introducing the pressure space Hh (cf Remark 11.1 below).

In order for (11.3) to be a reasonable discrete analogue of (11.2), the spaces
Vh and Hh will have to be conveniently chosen ; not just any combination will
work. Loosely speaking, we want to choose Vh and Hh so that the resulting
method is both stable and accurate. These demands are in some sense
conflicting and one has to find a reasonable compromise. Below we will
consider in detail one special choice of Vh and Hh for which stability is easily
proved but which is not optimally accurate. We will also briefly give some
methods with improved accuracy but omit the more elaborate proofs needed
to prove the stability in these cases. Recently, modifications of (11.3) with
additional stability have been introduced, see Problem 11.3. In these methods
the spaces Vh and Hh can be chosen more independently.

Let us now return to the discrete Stokes problem (11.3) and consider first
the stability of this problem. A natural stability inequality for (11.3) would
be the following: There is a constant such that if (uh, ph)eVhXHh satisfies
(11.3), then

(11.4)

In this chapter we briefly discuss so called mixed finite element methods which
generalize the basic finite element method for elliptic problems described in
Chapters 1-5. As an important example we shall focus on a mixed finite
element method for the following Stokes problem in two dimensions (cf
Section 5.2): Find the velocity u=(ui, U2) and the pressure p such that

in Q,

in Q,

on T,

where Q is a bounded domain in R2 with boundary T and f =(fi, f2) is given
(here of course (11.1a) is a vector equation, cf (5.6a)). Note that the pressure
p is only determined up to a constant; if (u, p) solves (11.1) then (u, p+c)
also solves (11.1) for any constant c. To obtain a unique pressure, we may
for example impose the extra condition

Jpdx=0.

VqeHh.

(11.1a)

(11.1b)

(11.1c)

-A u+ V p = f

d i v u = 0

u = 0

(H i d)
Q

Let us now give a variational formulation of (11.1) which generalizes the
previous formulation (5.7). We shall seek u and p in the spaces V and H
defined by

V=[Hj(Q)]2 = {v=(vi ,v2): v;eHj(£2), i=l , 2},

H={qeL2(Q):Jqdx=0}.
Q

Notice that the velocity space V is here not restricted to divergence-free
velocities as was the case in (5.7). Now multiplying (11.1a) by veV and
integrating by parts, and multiplying (11.1b) by q e H, we are led to the
following variational formulation of (11.1): Find (u , p)e V x H such that Uh||i +||Ph||o^C||f||-1,
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where, (cf Remark 4.3) as possible and thus to find a good balance between Vh and Hh. In the first
example we will have a situation where in fact the space Vh is “too big”.

For simplicity we will in the examples below assume that Q is a square with
a uniform subdivision Th={K} of Q into squares K with side length h. The
methods to be presented can be generalized directly to quadrilateral elements,
cf Chapter 12.

(f ,v)
> IIVIII= (IIVIIIHI(Q)+ IIV2|IHI(Q))1/2,||f||-i= sup

V 1veV

and ||q||o= ||q||L2(Q). The velocity estimate in (11.4) is obtained easily as
follows. Taking v= Uh in (11.3a) and q =ph in (11.3b) and adding the resulting
equations, we get

Example 11.1 Let

(11.10a) Vh ={veV: v|Ke[Q2(K)]2, VKeTh},

(11.10b) Hh={qeH: q|KeQo(K), VKeTh}.

In other words, Vh consists of continuous piecewise quadratic velocities and
Hh of piecewise constants. We will subsequently verify that (11.8) holds in
this case and thus we have by the error estimate (11.9):

Hu — uh||i+||p— ph||o^Ch(h||u||2+||p||i).
This estimate is not optimal for the velocities, since optimality would require
second order convergence.

To prove (11.8) with the choice (11.10) , we recall (see [GR]) that there is
a constant C such that for all qeH there exists ve[Hj(Q)]2 such that

(11.11a) div v=q,

(11.11b)

l | uh| l i =(f , uh)s£||f ||-i||uh||i ,

so that

l |uh||l«C||f ||—!.(11.5)

Next, we want to use the relation (11.3a), ie,

(11.6)

to conclude that

(11.7)

which together with (11.5) will prove the desired estimate (11.4). To be able
to conclude (11.7) from (11.6), we need the following estimate: There is a
positive constant c such that for all qeHh

(q , div v)

(ph, div v)= ( Vuh, Vv)-(f , v) VveVh,

HPh||o=SC(||uh||i +||f||— x),

ŝ l l q l l o -(11.8) sup
veVh ||v||i =£C||q||o.v i

Note that this result proves the validity of the following analogue of (11.8)
for the continuous Stokes problem:

(q , div v)

It is clear that by using (11.8) we obtain the pressure control (11.7) from (11.5)
and (11.6). The inequality (11.8) is called the Babuska-Brezzi condition (for
the method (11.3)) and is the crucial inequality that will guarantee stability
of the mixed method (11.3). Once (11.8) is established one can easily prove
the following optimal error estimate for (11.3) (cf Problem 11.1 and [Br]):
(11.9)

5=c||q||0 VqeH.(11.12) sup
veV vll l

Now, for a given qeHh, let veV satisfy (11.11) and define VheVh as the
following interpolant of v:

(11.13a) vh(P)=v(P)

(11.13b) Jvhds= Jvds

l lu-Uh|| i +||p-ph||o^C( inf ||u-v||i + inf ||p-q||o).
veVh qeHh

for P a corner of KeTh,

for all sides S of Th,
s s

11.2 Some examples
We will now consider the problem of constructing the spaces Vh and Hh so
that we will be able to verify (11.8). This is in fact easy to achieve by simply
taking Vh large enough; the real challenge is to try to choose Vh nearly assmall

(11.13c) Jvhdx= Jvdx for all KeTh,
K K

where veVh is defined by ( V (v-v), Vw)=0 VweVh - It is then easy to see that
||vh||i^C||v||i (see Problem 11.4). Using Green’s formula, (11.11a), the fact
that qeHh is constant on each KeTh and (11.13b), we now have
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||q| lo = (q, div v) = 2 Jqdiv v dx method suffers from pressure instabilities similar to those of the Qi-Qo
method discussed in the previous example.K K

= 2 J qv • nKds = 2 J qvh • nK ds
K 3K

= 2 Jqdiv vh dx = (q , div vh),

K 3K Remark 11.1 Introducing bases {cpi , . . cpn} and {ipi , . . \pm} for Vh and
Hh, respectively, the discrete problem (11.3) can be written in matrix form

K K as
with nK denoting the outward unit normal to 3K , KeTh. But, recalling
(11.11b), we have

(11.14a) AJ;— B0 = F,

BT^ = 0,(11.14b)

where A=(ajj), B=(bjj), F-(Fj), with

aij=a(cpi,cpj), bij=(al>i, div tpj), Fj= Jfcpjdx,
Q

Vh||i^C||v||x^C| |q||0,

and thus

_ (q, div vh) (q , div vh)s=C0- 11vh|11 and £ and 0 are the coordinates of Uh and ph.
In order for 0 to be uniquely determined from (11.14a), we clearly need

to have dim Vh^dim Hh. The same demand comes from (11.14b) since we
want the space {veVh: (div v, q)=0 VqeHh} corresponding to {qeRn:
BTr]=0} to be rich enough to contain a good interpolant of u .

The system matrix in (11.14) is not positive definite and thus it is not so
clear how to solve (11.14) iteratively in an efficient way, neither is it clear that
Gaussian elimination without pivoting will work . One way out of this difficulty
is to replace (11.14b) by the perturbed equation

(11.15) E0+BT|=O,

with E a small positive constant (cf Problem 11.3). After elimination of 0, this
leads to the following positive definite symmetric problem in the velocity
variable ^ only

which proves that the stability estimate (11.8) is satisfied in the case
(11.10) .

Example 11.2 The simplest example of a mixed method for Stokes problem
is probably given by the Qi-Qo method where

Vh={veV: v|Ke[Qi(K)], VKeTh},

Hh={qeH: q|KeQ0(K), VKeTh}.
This method does not satisfy the stability inequality (11.8) since the pressure
space is “too rich”. Despite this fact it is possible to prove the velocity estimate
(see [JP]),

u-uh|| i =£ C inf ||u — vj| j .
veVh

However, the pressures ph may not converge to p. To obtain convergence one
has to filter out some unstable components of the pressure by local smoothing
(eg averages over groups of four neighbouring squares K, see [JP]) .

(A+iBBT)£=F.
The condition number of this problem increases with decreasing E and may
require double precision in Gaussian elemination (for accuracy reasons we
would like to choose eg e=0(h2) in the case of Example 11.1).

Mixed methods may be used for problems other than the Stokes equations,
eg for the elasticity equations, Maxwell’s equations and the plate equations.

In these cases the problem is formulated as a system of equations and the
different unknowns are independently approximated. For more information
on mixed methods we refer to [Br], [GR].

(11.16)

Example 11.3 A good method based on square (or quadrilateral) elements
K is given by

Vh={veV: v|Ke[Q2(K)]2, VKeTh},

Hh={qeH: q|KePi(K), VKeTh}.
This method, the Q2-P1 method, satisfies the stability inequality (11.8) and
the spaces Vh and Hh are well-balanced. Note that the corresponding Q2-Q1
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Problems
11.1 12. Curved elements and

numerical integration
Prove the error estimate (11.9) for the method (11.3) under the
assumption (11.8). Hint: Write (11.3) in the form: Find

cph =(uh, Ph) 6 <t> h =VhXHh
such that

B(cph, ^)=LO), Vai) £ (t>h ,

where

B(0, ty)= ( Vw, Vv)-(r, div v)+(q, div w), 12.1 Curved elements
L(\p)= (f , v), 6= (w, r), i^= (v, q).

Next prove that with ||v||=[||v|| j+ ||q||o]1/2,

B(0, t|>)

In our applications of the finite element method so far we have used piecewise
linear boundary approximations. For example, in the case of a two-
dimensional region Q we approximated the boundary T of Q with a polygonal
line. The corresponding error is of the order 0(h2) where h as usual is a
measure of the size of the finite elements. To achieve higher order of
approximation one may approximate the boundary with piecewise polyno-
mials of degree k^2 and in this case the error due to the boundary
approximation will be reduced to 0(hk +1). In a “triangulation” of the region
Q, the triangles (or quadrilaterals) close to the boundary will then have one
curved side, see Fig 12.1.

^c||0||, V0ecbh,sup

by choosing for a given 0=(w, r), the function ip= (w +6z, r), with
zeVh chosen so that

-(div z, r)2sc| Mlo,

and 6>0 conveniently chosen (sufficiently small) .

11.2 Determine the matrix equations corresponding to Example 11.2 in
the case of a uniform subdivision of the unit square and interpret
the resulting method as a difference method. Verify that the space
{qeHh: (q, div v)=0, VveVh} contains a pressure that alternatively
takes the values ±1 on a checkerboard pattern. Is the solution of (11.3)
unique in this case?

11.3 Consider the following (cf (11.15)) perturbed variant of (11.3): Find
(uh,ph)eVhxHh such that

( Vuh, Vv)-(ph , div v) — (f ,v)

h2( Vq, Vph)+(q ,div uh)=0

2111= 11 *110,

Fig 12.1VveVh,

VqeHh,

where now HhCiH^Q). Prove without using the stability condition
(11.8) an error estimate for ||u — Uh|11 (cf [BP], [HFB]).

11.4 Prove that there is a constant Csuch that if Vh e Vh is defined by (11.13),
then ||vh||i^C||v|| i . Note that veVh is introduced because we cannot
guarantee that |V(P)|^C||V||H1(Q).

A “curved” element may be obtained in principle as follows: Suppose
(K, PK, 2) is a finite element (cf Section 3.4) , where K is the reference triangle
in the (xi, £2) - plane with vertices at a1:= (0,0) , a2= (l ,0) and a3= (0,l ). For

A

simplicity let us suppose that the degrees of freedom 2 are of Lagrange type,
A . /v

ie, 2 is a set of function values at certain points a^K, i = l , . . . , m. Let now
F be a one-to-one mapping of K onto the “curved triangle” K in the (xi , X2)
- plane (see Fig 10.2) with inverse F-1.
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X2

F
25^6

EL < /N

K

~ X1 x1^ 2a
Fig 12.3

i

Fig 12.2
Let us now define a transformation F by

6
F( x )= E aiq) j(x), xeK,We now define j= i

?K ={p: p(x)=p(F ^x)), xeK, pePR},(12.1)

(12.2)

and let us write

2K={the values at a1=F(a1), i=l, . .
4
., m}. K=F(K)={xeR2: x=F(x), xeK}.

Then we clearly have that F:K-» K and F(ai)=ai, j=l, . . 6, ie, the points
3) in the x-plane are mapped onto the points aJ in the x-plane. We will now
consider the following questions:

(a) Under what conditions is the mapping F:K

(b) How can we compute the element stiffness matrix corresponding to the
curved element (K, PK, 2K) where PK and 2K are defined by (12.1) and
(12.2)?

(c) What is the interpolation error using the functions in PK?

(d) How can we construct a finite element space Vh using the element
(K, Pk, 2K)? IS it true that VhcC°(Q)? What is the global error?

It is then easy to realize that (K, PK, 2K) indeed is a finite element. The
functions pePK are defined through the inverse mapping F-1: K-H> K and the
polynomial functions p: K-> R, pePR. If the mapping F=(Fi, F2) is of the
same type as the functions in Pft , ie, if FjePK, i=l , 2, then the element (K,
PK, 2K) is said to be of isoparametric type. In general the inverse mapping
F"1 is not polynomial, unless K is a usual triangle in which case both F and
F"1 are linear, and thus the functions pePK are not polynomials in general.

We will now study a concrete example in more detail .

K one-to-one?

Example 12.1 Let K be the reference triangle with vertices at a1, i=l, 2, 3
and let a\ i = 4, 5, 6, denote the mid-points of the sides of K. Further, let
PK=P2(K) and let 2 be the values at the nodes a1, i= l, . . ., 6 (cf Example
3.2) and let <pieP2(K), i= l, . . . , 6, be the corresponding basis functions, so
that <pi(aj)=6ij. Suppose now a\ i = l , . . . , 6, are the points in the (xj, x2)-plane
given by Fig 12.3. In particular, a4 and a6 are the mid points of the straight
edges a!a2 and a]a3, and a5 is slightly displaced from the straight line a2a3.

(a) When is F one-to-one?

The mapping F is locally one-to-one in small neighbourhood of each point
xeK if

(12.3) det J(x)^0, xeK ,
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Since by assumption the points a1, a2 and a3 are not situated on the same
straight line, we have that det B^O and F is therefore one-to-one.

It now remains to analyze the mapping F. We easily see that

Fi(x)=xi+dixix2, i = l , 2,

where

3Fi 9Fi
3xi 3x2

3F2 3F2
/-N A '"S A3xi 0 X 2

J =
where

di=4bf-2.

The Jacobian J corresponding to F is given by

l+dix2 d]Xi

l+d2xi

is the Jacobian of F and det J is the determinant of J. In general the condition
(12.3) does not guarantee that the mapping F:K-» K is globally one-to-one
(cf Problem 12.2). In our case, however, the sides of K are mapped in a
one-to-one fashion onto the sides of K and one can then show that (12.3)

A

implies that F:K ~* K is one-to-one, ie, for each xeK there is a unique xeK
such that F(x)=x. To check if det J(x)¥=0 for xeK, we split the transformation— A

F in two transformations F and F,

J(x)=
d2x2

from which it follows that

det J(x)=l+dix2Fd2xi ,

and thus detj is linear in x. Therefore detj is positive in K if det j is positive
at the vertices aJ , j=l, 2, 3. We have

J(0,0)=1,

F(x)=F(F(x)),

according to the following figure:
J(l,0)=l +d2, J(0,l)=l+d!,

which proves that det j>0 in K if dj> —1, i=l, 2, ie, if/
2 .3

b5 > ^ i= l , 2.
4’

a6f & We thus conclude that F is one-to-one if b5 and a5 lie in the shaded
Fig 12.4, and thus in particular if a5, the mid-point on the straight line a2a3,
is close enough to a5. Hence the original mapping F is one-to-one under the
same condition. In particular, if the element K with one curved edge is used
to approximate a smooth boundary, then the distance |a5 — a51 (cf Fig 12.1,
12.4 and Problem 12.2) will be of the order 0(h£), where hK as usual is the
diameter of K. Hence a5 will be close enough to a5 if hk is sufficiently small,
and thus we conclude that the mapping F will be one-to-one for sufficiently
fine triangulations.

areas in
i6

a4 a2

~ X1

Fig 12.4

Here F is the affine mapping that maps the vertices W =ah j=l , 2, 3 on the
vertices aj=(aJ1, a^), j=1, 2, 3, ie,

F(y)=By + b,

(b ) Computation of the element stiffness matrix

The local basis functions on K are given by

<Pj(x) =4j(F
_1(x», j=l , . . . , 6,

where <pj, j=l, . . . , 6, is a usual basis for PK=P2(K). If for ex .nnpl. t > ».
underlying differential equation is the Poisson equation (1.1b ) . then > * » * .
to compute the integrals

where
1

ai al
a2-a2

a2-*1
al a!
a2~a2

ai
, b=B= la2
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Ij = X Vcp; V qpjdx
K

, i , j= l , • • 6 . (c) The interpolation error
Given a function v on K, we define the interpolant jrvePx in the usual way
by requiring that jrv(a,)=v(a1), i=l, . . 6. If K is our usual triangle we have
from Chapter 4

(12.6)

The estimate also holds for a curved triangle K if K is not “too curved”; more
precisely if |a5 — a5|=0(h^) with a5 and a5 the points of Fig 12.4. Thus, in a
typical application where the curved elements approximate a smooth bound-
ary curve, then the estimate (12.6) will hold.

(12.4) a

To this end we note that by the chain rule

8cpi 3xi
3xi 3xj

3cfci 3x2
3x2 3xj ’

3<Pi — (4> i(F J (x)))=
3x; 3xi ||v- jrv||Hs(K) ^ Ch^ s11v11Hr(K) > 0^s^r^3.JJ

so that
V cpi=J-TVcpi,

where J"T is the transposed Jacobian of the mapping F"1,

3xi 3x2

3xi 3xi
A A A3xi 3x2

3X2 3X2

If we now transform the integral in (12.4) to an integral over K using the
A

mapping F:K-» K, we get ,

a£= J(J-Tvfc) • (J-TV4)j) |det J|dx.
K

Further, by a simple calculation

J-T=(J-l)T=

(d ) The corresponding space Vh
Let Th={K} be a triangulation of Q using the finite element (K, PK, 2K) where
the “triangles” K may have one or more curved edges. Let Qh be the union
of the elements in Th. Then Qh is an approximation of Q with piecewise
quadratic boundary (see Fig 12.1). We now define in the usual way the finite
element space

J"T=

Vh={veH1(Qh): v|KePK, KeTh}.
It is then easy to see that if V|K 6PK for KeTh and v is continuous at the node
points of Th, then v is continuous across all element edges and thus veFL(Qh).
Thus, we may choose the values at the node points as global degrees of
freedom. If we use this space to discretize, for example, the Poisson equation
(1.16), then we have the following error estimates

I |u Uh||H1(Qh)^Ch2||U||H3(Q) >

||u-Uh||4(Qh)^Ch3||u||H3(Q).

1 Jo,
det J

where
(12.7a)

(12.7b)
3F2 3F2

3X2 3xi
Jo=

3Fi 3Fi
3xi3X2

12.2 Numerical integration (quadrature)so that finally

(12.5) We have seen above that the elements in the element stiffness matrix for a
curved element contain integrals that may be difficult to evaluate exactly. We
meet the same difficulty in the case of nonlinear problems or differential
equations with variable coefficients. For example in the heat equation of
Example 2.7 the elements of the element stiffness matrix are

Kau

Thus the matrix element ay can be computed by evaluating an integral over
the reference element K. We see that the integrand is a rational function r(x)
(i e, r(x)=p(x)/q(x) with p and q polynomials) , and thus in general it is difficult
to evaluate the integral (12.5) analytically. In practice this integral is most
conveniently evaluated approximately by some appropriate quadrature for-
mula, as discussed below.

2

aff = J 2 km(x)
K m = l

(12.8) dx,
3xm 3xm

where km(x) is the heat conductivity in the xm-direction at the point x .
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Remark Let us return to Example 12.1 where we considered isoparametric
quadratics. One can show that if the integrals (12.4) are computed with a
quadrature formula which is exact for polynomials of degree r=2, then the
error estimate (12.6) holds, that is ||u-Uh||H1(^h):=0(h2). Further, to compute
the integrals (12.8) using quadrature one should use quadrature formulas
which are exact for polynomials of degree 2r-2 when using piecewise
polynomials qpjePr(K).

To evaluate such integrals in practice one would use a suitably chosen
numerical quadrature formula of the form:

q
(12.9) Jf (x)dx ~ 2 f (yj)wj

J =iK

where the wj, j=l, . . ., q, are certain weights and the yJ are certain points
in the element K.

To estimate the error committed in using the quadrature formula (12.9) we
check for which polynomials p the formula (12.9) is exact, ie, for which
polynomials p we have

Jpdx= 2 p(yi)wj-

Problems
12.1 Consider the mapping F:K-» K, where F(r ,0)= (r sin 0,rcos 0),

K={(r, 0): l^r^2, 0^0^2JT}, K ={xeR2: l^|x|^2}. Show that the
A A

Jacobian of F is different from zero in K and that F:K^ K is not
one-to-one. This shows that the condition that the Jacobian is non-zero
is not sufficient to guarantee that a mapping is globally one-to-one.

Let T be a circle with diameter d and let Th be a polygonal
approximation of T with vertices on T and with maximal side length
equal to h. Prove that the maximal distance from T to Th is of the order
h2/4d.

Let K be the unit square with corners a1=l, . . . , 4, let PK =QI (K) and
A .

let 2 be the degrees of freedom corresponding to the values at the a1.
Prove that if K is a convex quadrilateral, then we may define an
isoparametric finite element (K, PK, 2K) by (12.1) and (12.2). This
finite element is frequently used in applications.

j= iK

If (12.9) is exact for pePr(K), then the quadrature error can be estimated as
follows (if r>0):

12.2
| Jf (x)dx — 2 f(yi)wj| ^ Chr+1 2 J |Daf|dx.

• * |a|= r+ l K

Let us now give some simple quadrature formulas. Here r indicates the
maximal degree of the polynomials for which the formula is exact. Further,
a1 (i=l, 2, 3) are the vertices of the triangle K, ( j=l , 2, 3) denote the mid
points of the sides of K and a123 the center of gravity of K. By Q we denote
a rectangle with sides parallel to the coordinate axis of lengths 2h] and 2h2
and centered at the origin . We then have, for example, the following
quadrature formulas:

(12.9)
j =iK

12.3

Jfdx~f(a123) area(K) r=l
K

Jfdx- 2 f(bi) H2(>a
K j = l 3

Jfdx- I [f(ai)

9 area(K)

r=2

20j=iK

+f(a123) r=3
20

J fdx~ f (
O \

hi h2
V3’ V3

+tlh.-h.IvT V3
hi Ji2_
V3 ’ V3

+f

h2 \1 area(K)h,
r=3+f V3’ V3 4
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13. Some non-linear problems where V is a Hilbert space and F:V >̂ R is a quadratic functional. We will
now briefly discuss generalizations of (13.1) to convex functionals F that are
related to non-linear elliptic problems. To formulate these generalizations we
need the following definitions (as before V is a Hilbert space with scalar
product (. , .)v and norm 11 - 11v) • A set KcV is said to be convex if for all v,
weK and 0^a=Sl , one has

av+(l-a)weK.

The condition (13.2) states that if v, weK., then all points on the straight line
between v and w also belong to K, cf Fig 13.1.

(13.2)

13.1 Introduction
In this chapter we consider some applications of finite element methods to
non-linear problems in continuum mechanics. We will just indicate some
aspects of this extremely rich problem area. We first consider a class of convex
minimization problems generalizing the quadratic minimization problems
studied in Chapters 1-7. These problems correspond to non-linear elliptic
partial differential equations and so called variational inequalities. We will
then discuss a non-linear parabolic problem modelling eg heat conduction
with heat conduction coefficient and heat production term depending on the
temperature. The finite element methods of Chapters 1 to 8 may be directly
extended to these problems. Finally we consider extensions of the streamline
diffusion method of Chapter 9 to the Euler and Navier-Stokes equations for
an incompressible fluid, and to a model problem for compressible flow,
Burgers’ equation.

In all cases the discrete problems obtained after application of a finite
element method, consist of non-linear systems of equations to be solved. We
also comment on some iterative methods of Newton type for the numerical
solution of these systems.

K
w

a v+ ( 1 -a ) w
v

Fig 13.1

We say that a functional F:K -̂ R defined on the convex set K is convex if
for all v, weK and O^a^l , one has (cf Fig 13.2)

F(av+(l-a)w) ^ aF(v) +(l-a)F(w).

The functional F is said to be strictly convex if equality holds in (13.3) only
for a=0 or a=l.

(13.3)

F

a F ( v ) + ( 1 -a ) F ( w )13.2 Convex minimization problems
13.2.1 The continuous problem
We have seen that many linear stationary problems in mechanics and physics
may be formulated as minimization problems of the form

(13.1) Min F(v),
veV

I

F ( a v + ( 1 -a ) w )

V
a v + ( 1 -a ) w wv

Fig 13.2
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Example 13.1 A linear functional is evidently convex. The quadratic func-
tional F(v)=- ||v||y , veV, is strictly convex (cf Problem 13.4).

A

We further say that a set Kc= V is closed if XjeK and ||xj — x||y —> 0 as j-» oo
imply that xeK. Finally we say that a functional F:K —> R is continuous if xjeK

0 as GO , where xeK, imply that F(xj) —» F(x) as j-» oo.
We consider minimization problems of the form

co. Thus, the assumptions of Theorem 13.4 are satisfied and
existence and uniqueness of a solution of (13.4) follows in this case. Note in
particular that Theorem 2.1 is essentially a special case of Theorem 13.1.\

Example 13.3 Let V=Hg(Q) where Q is a bounded domain in R2 with
boundary T. Let tyeH^Q) be a given function defined on Q such that 4>(x)^0
for xeT and define

and 11xj — x11v S
i

K={veHo(£2): in Q}.
Clearly K is convex and one can also show that K is closed. Further let F be
defined as in Example 13.2 with a and L given by Example 2.3. Then the
assumptions of Theorem 13.1 are satisfied. The unique solution ueK of (13.4)
in this case represents e g the deflection of a membrane fixed at its boundary
under the presence of an obstacle given by the function\\). The side condition
ueK, ie, in Q , corresponds to the fact that the membrane cannot
penetrate the obstacle cf Fig 13.3. For more examples of similar nature, see
[DL], [GLT].

(13.4) Min F(v),
v e K

where Kc= V is a closed convex set and F:K-+ R is convex and continuous.
If K^V, then (13.4) is a constrained minimization problem; we then seek to
minimize F(v) under the side condition veK. If K=V we have an unconstrai-
ned minimization problem. Problems of the form (13.4) are related to
variational inequalities, see [DL], [GLT].

Let us now formulate a general result concerning existence and uniqueness
of solutions to problems of the form (13.4).

Theorem 13.1 Suppose K is a non-empty closed and convex set in the Hilbert
space V and that F:K-» R is convex and continuous. Suppose that K is
bounded , ie there is constant C such that ||v||y^C, VveK, or that F(v)
as 11 v||v —> oo . Then there exists a ueK such that

F(u)=Min F(v).
v e K

If F is strictly convex, then u is uniquely determined.
We do not prove this result here. For a (short) proof we refer to [ET]. We

now give some examples of problems in mechanics and physics that may be
formulated in the form (13.4).

—* CO - X

Fig 13.3

Example 13.4 Consider the non-linear elliptic problem

)-4(v<|Vu|2,H)^-|v(|Vu|2) 9u =f in Q,(13.5) 3xi

on T,

where Q is a two-dimensional bounded domain with boundary T and v:R — R
is a given positive function. This problem is obtained, for example, from the
following Maxwell’s equations modelling a two-dimensional magnetic field
problem:

u =0Example 13.2 Our standard problem (2.4) from Chapter 2 has the form (13.4)
with K=V and

1F(v)=- a(v, v)-L(v),

where a(. , .) and L(.) satisfy the conditions (i)-(iv) of Section 2.1. Here F
is strictly convex and continuous and by (2.2) and (2.3), V x H= j,

B= K|B|2)H,

div B=0,

(13.6)F(v)>|l|v||^-A||v||v=|iv||v||||v||v-A j-> °°
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i the function v. The solution of (13.10) corresponds to a soap film spanned
by the graph of the boundary function g, cf Fig 13.4.

where H=(Hi , H2, 0) is the magnetic field, B=(B1 ? B2, 0) is the magnetic
flux density, p is the magnetic permeability assumed to depend on |B|2 and
j=(0, 0, -f) is a given electric current density. The problems (13.5) and (13.6)
are connected through the magnetic vector potential A=(0, 0, u) related to
B by B= V x A, so that in particular |B|2=|VU|2, and through the relation

. Now suppose that1v(S)= m
3<j)(13.7) v(|)= =4>m ^0.3?

Then (13.5) corresponds to the minimization problem

(13.8) Min F(v)
veV Fig 13.4

where

1 Let us now check if Theorem 13.1 may be used to prove existence of a solution
of (13.10). It is natural to start with V=Hl(Q) and K={veH1(Q): v =g on
T}. We easily check that F: K-^ R is convex and continuous but we cannot ,
however guarantee that F(v)
to prove existence of a solution of (13.10) , using a variant of Theorem of 13.1,
the space V has to be chosen larger than Hl(Q), (basically, V would be the
space of functions on Q whose first derivatives are integrable or more
precisely , the functions on Q of bounded variation cf [T2]).

F(v) = — J 4>(| Vv|2)dx- Jfv dx,(13.9)
Q

V=Hj(Q).
To see this formally, note that if u is a solution of (13.9), then for any veV

g(0)^g(e)=F(u+ ev)

so that g'(0)=0 which gives

Jc(> '(|Vu|2) Vu - VV= Jfv dx

GO if | jv 11v —> GO , cf Problem 13.5. To be able

VeeR, 5

tVveV. t Example 13.6 A problem similar to (13.10) occurs as a model for the
displacement of a body made of an elastic, perfectly plastic material under
a load f. In two dimensions this problem takes the form (13.4) with now

Q Q

But, using (13.7), this is a weak formulation of (13.5). Suppose now eg that
v is non-decreasing and for some positive constants v0 and Vi we have
v0^v(^)^V!, Then is convex and it is easy to see that F given by (13.9)
is convex, continuous and that F(V)-H> OO as F(v)= Jc})(| Vv(x)|)ds — Jfv dx,

Q Qo° .V||v

Example 13.5 Consider the minimal surface problem

(13.10) Min F(v) ,
v =g on f

1 2- rz if 0=Sr^l,
2

<Kr)= lk
1 if r>l.— rIwhere 2

j

Again we need to take V larger than HQ(Q) to obtain existence in general (cf
Example 13.5). Also f has to be small enough to avoid having
inf F(v)= — 00 , which corresponds to collapse of the elasto-plastic body and
non-existence of a solution , cf [T2], [JS2].

F(v)= J (1+|Vv|2)1/2 dx,
Q

where Q is a bounded domain in the plane with boundary T and g is a smooth
function. Here F(v) represents the area of the surface given by the graph of
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Example13.7 An alternative formulation of the elasto-plastic problem of the
previous example, using stresses instead of displacements as unknowns, is as
follows (cf Problem 2.9):

mization problem in RM. We note that the typical problem (7.1) of Chapter

7 has the form (13.12) with Q= RM and f quadratic, f(q)=ir] • Ar)-b • r\ .

Mini ||q||2,
q e K 2

where
13.2.3 Numerical methods for convex minimization problems

Let us very briefly indicate some methods for the numerical solution of convex
minimization problems of the form (13.12). We shall then use the notation
of Section 7.1 with in particular f ' and f" the gradient and Hessian of f (which
we assume to exist ) . Let us then first consider the unconstrained case with
Q=Rm. In this case it is easy to show that ^eRM is a solution of (13.12), ie,
f(S;)^f(r]) Vr] eRM, if and only if

(13.13) f'(£)=0.

Further, if f is strictly convex, corresponding to f"(q) being positive definite
for all qeRM, then the solution i; is uniquely determined.

For the numerical solution of (13.12) with Q= RM we shall consider, as in
Chapter 7, iterative methods of the form

?k+1=^k+akdk, k=0, 1, . . . ,

where as earlier ak is a step length , dk is a search direction and is an initial
approximation. We shall first give some examples of methods with dk =
-Hkf '(^k) , where Hk is an MxM matrix. As in Chapter 7 we see that dk is
a descent direction if Hk is positive definite.

K =HfnPc= H,

Hf ={qeH: divq +f =0 in Q},

H= {q=(qi > q2): qieL2(Q)}=[L2(Q)]2,

P={qeH: |q(x)|̂ l , xeQ},

llqll 2= Jlq(x) l 2dx.
Q

One can easily show that K is closed in H and the existence of a solution follows
from Theorem 13.4 if K is non-empty. The latter condition will be satisfied
if again the load f is below the collapse load .

13.2.2 Discretizations
Suppose now we have a convex minimization problem of the form (13.4). A
discrete analogue of this problem is obtained by replacing K with Kh=KDVh,
where Vh is a finite-dimensional subspace of V. This leads to the finite-
dimensional minimization problem:

(13.11) MinF(v).
(a) The gradient method with optimal step length

In this method one chooses, of course,

dk =-f '(^k), ak =<pt,

veKh
In Example 13.3 above we may eg choose

Kh={veVh: v^ xp in Q},

where Vhc=Hj is a standard finite element space of piecewise linear functions
on a triangulation Th. Introducing as usual a basis {cpi, . . TM} for Vh, the
problem (13.11) may be written as a convex minimization problem in RM of
the form

where

f(^k +a^pt dk)=min f(^k +adk).

As in the special case of a quadratic functional one can prove that the rate
of convergence of this method is inversely proportional to the condition
number of the Hessian f"(^).

I
)

(13.12) Minf (r|)
qeQ

where Qc= RM is a closed convex set and f:RM^ R is convex. If
Q= RM(Q^RM) then (13.12) is an unconstrained (constrained ) convex mini-
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(d) Generalized conjugate gradient (Fletcher-Reeves)

This method reads:
(b) Newtons method

In this method we have

dk=-f"(^k)-if'(lk),

ak= l.

Note that in this case one has to solve a linear system of equations with
coefficient matrix f"(Jjk) at each step. If f "(£) is non-singular (thus in particular
if f "(§) is positive definite) and the third derivatives of f are bounded , then
Newton’s method will converge quadratically (that is very quickly) in a
neighbourhood of In this case there is a 6>0 and a constant C such that
if |l;k-!;|=s6, then

jik+ l_£k+akdk ?

ak=akpt >

dk +1=-gk +1+ (3kdk,

k + l . g k +1

g k . g k
where gk=f'(^k) and d°=-g°. Usually a restart with dk =-gk is made in this
method at certain intervals, eg every Mth step.

Finally, let us just mention that to solve the problem (13.12) in the case
Q^RM, ie, the case of a constrained minimization problem,
different methods from nonlinear programming such as, for example, penalty
methods, projected gradient methods, Lagrange multiplier methods, duality
etc, see eg [G], [GLT],

gP k =

one may use
The main problem with Newton’s method is to get a sufficiently good initial
approximation. Once this is achieved one gets the solution with very few
iterations. To get such an initial approximation ^k one may have to choose

ak<l to start with . In this case the method is a damped Newton method.

(c) Quasi-Newton methods

These methods are variants of Newton’s method of the form
dk= — Hkf '(|k), ak=a£pt,

where Hk is an MxM matrix which may be viewed as an approximation of
. In the simplest case one may choose

Hk=r(i°)

which corresponds to the classical modified Newton’s method, or one may take

Hk =C

where C=ETE is an approximation of eg f "(?°) with E sparse, in which case
get preconditioned variants of the gradient method, cf Section 7.4. In a

true quasi-Newton method the matrices Hk are successively updated in a
simple way using the fact that the difference f'(^k) — f '(^k

_
1) gives information

about f"(^k) and then the Hk become better approximations of f"(£)
The quasi-Newton methods are very efficient on large classes of

problems (see eg [MS]).

13.3 A non-linear parabolic problem
Let us consider the following non-linear parabolic problem:

!~—div (a(u) Vu)=f(u) in Qxl,f"(^k)-i

-i , k=0, 1, . . (13.12) u =0 on Txl,
u(. , 0)=u0,

-1, k=0, 1, . . . where a:R R is a given function satisfying a0^a(r)^ai, reR for
positive constants aj and f:R

some
R is given. This problem models heat

conduction with heat conduction coefficient a and heat production f depend-
ing on the unknown u. Systems of equations of the form (13.12) also model
eg chemical reactions.

we

A weak formulation of (13.12) reads as follows: Find u(t) eV=Ho(Q), tel,
such that

-l as k
increases.

(u(t), v)+a(u(t); u(t), v)= (f(u(t)), v) VveV, tel,(13.13)
u(0)= u0,
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is based on a reformulation of (13.15) using the vorticity co and stream function
\\) as variables while the second method is based on the velocity-pressure
formulation (13.15).

We begin by recalling (cf Section 5.2) that since Q is simply connected and
div u =0 in Q there is a unique stream function aji(x, t) such that for tel

where

a(u; w, v)= Ja(u) VwVv dx, (v, w) = Jvw dx.
Q Q

Discretizing (13.13) by extending the backward Euler method (8.29), we get
the following discrete analogue of (13.13): Find UneVh, n=l, 2, . ., N, such
that for n= l, . . N,

(13.14) (Un-Un-J , v) + kna(Un; Un, v)= kn(f(Un), v) VveVh,
in Q,u= rotip=

3X2 ’ 3xi

ip=0 on r.

Alternatively i|> may be specified as the unique solution of the Poisson
equation:

where U°=uo.
Under the assumption that f and a are globally Lipschitz continuous (i e for

constant C, |f (r)-f(s)|s=C|r-s| and similarly for a) the error estimatesome
(8.42) may be generalized to (13.14) (see [EJ1]). Also the discontinuous
Galerkin method (8.35) may directly be extended to (13.13) (cf Problem 13.2).

-Aij)(. , t) = (o(. , t)

op(. , t) = 0

in Q, tel,

on T, tel,
(13.16a)

where

3U2 3UIco= rot u= 3xi 3x2

13.4 The incompressible Euler equations
13.4.1 The continuous problem
Let Q be a simply connected bounded domain in R2 with boundary T . Let
us recall the Euler equations for an incompressible inviscid fluid enclosed in
Q: Given g and u0 find the velocity u=(ui, u2) and the pressure p such that

in Qxl, i=l, 2,

is the vorticity of the velocity field u. Applying now the operator rot just
defined to (13.15a), we obtain the following reformulation of (13.15):
Find a): Qxl —» R such that

d)+ u(oi>) • Voi> =f

CO = COo

in Qxl,

in Q for t =0,

where f =rot g, co0= rot Uo and u(co)=rot ip, where satisfies (13.16a). We
that (13.16b) formally has the form (9.3) with a coefficient P=u(co)

depending on the unknown solution to. Notice that we do not have to specify
any boundary conditions for to in (13.16b) since by (13.15c), u • n=0 on T.

We shall now indicate how to extend the streamline diffusion and the
discontinuous Galerkin method of Chapter 9 to the nonlinear hyperbolic
problem (13.16).

(13.16b)

3piij+ u • Vui+(13.15a) =gi3xj see
in Qxl,

on Txl,

in Q for t=0,

(13.15b) div u=0

(13.15c) u - n=0

(15.15d)

where as usual n =n(x) is the outward unit normal to T at xeT and I — (0, T).
It is known that (see eg [K]) if g, u0 and T are smooth and div u0=0 and
u0 - n=0 on T, then (13.15) admits a unique smooth solution for any T. The
problem (13.15) is an example of a nonlinear hyperbolic problem. Note that
the boundary condition u • n=0 states that no fluid particles enter or leave the
domain Q.

In this section we will briefly consider two possible ways of discretizing
(13.15) using streamline diffusion finite element methods. The first method

u=u0

13.4.2 The streamline diffusion method in (co, i^-formulation
Let 0=to<ti. . - <tN=T be a quasi-uniform subdivision of I into intervals
Im=(tm-i , tm) of size h and introduce the “slabs” Sm= QxIm. Let further
Th={t} be a quasi-uniform finite element triangulation of Q with elements
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x also of size h, and introduce for a given integer r^l and m = l , . . N the
finite-dimensional spaces

Um={v £H1(Sm): v|KePr(-t) xPr(Im), VK =xxIm, xeTh},

ie, Um consists of continuous functions defined on Sm that are piecewise
polynomial in x and polynomial in t of degree at most r. We also introduce
the spaces

where (n(x , t) , nt(x , t)) denotes the outward unit normal to 3K at (x , t) e3K.
Further let us introduce for m= l , . . N, the space

Wm={veL2(Sm): v|K6Pr(t)xPr(Im), VK =ixIm, xeTh},

ie, Wm consists of possibly discontinuous functions on Sm that are piecewise
polynomial in x and polynomial in t of degree at most r. Let us also for
(x, t) e3K _( (3) introduce the notation

v±(x , t)= lim v(x+sn • P, t +s), [v]=v+ — v _ .

(13.17)

V“={(p H1(Sm): <p|KePr+ i(T) xPr(Im)

VK=TXI

(13.18) !| 0±

xeTh, and cp=0 on rxlm},

ie, 'P consists of continuous functions on Sm that are piecewise polynomial
in x of degree r+1 and polynomial in t of degree r. We shall further use the
following notation analogous to that of Section 9.9:

(w , v)m= J wv dxdt,

m > We can now formulate the discontinuous Galerkin method for (13.16) as
follows: Find (oom, 'ipm)eWmxlPm, m=l, . . ., N, such that for m=l, . . . , N,

2 {|(d)m + p • Voom)vdxdt 4- J [com]v+|n • p+ nt|ds}=0
9K-(P)K K

VveWm,
sm (13.20) ( Vxpm, Vcp)m = (o)m, cp)m VcpeW"1,

<w, v>m = j w(x, tm) v(x, tm) dx,
where (3=rot \pm, co° = OOQ for t =0 and we sum over all K=xxlm with xeTh.

3\pm .

Q

Note that since \pm is continuous in x,|3 • n=
3 3s

element boundaries S of Th, where — denotes differentiation along S.

is continuous across inter-[v]=v+-v_.v±(x, t)= lim v(x, t +s),
o±

3sThe streamline diffusion method for (13.16) can now be formulated as
follows: Find (oom , \pm)eUmx*Pm, m=l, . . . , N, such that for m=l, . . . , N,

(13.19a) (cbm +um(ipm) • Vo)m, v+h(v+um(\j)m) • Vv))m

+<[com], v+ >m _ 1 = (f , v+h(v+ um(^m) • Vv))m VveUm,

(13.19b) ( V^m, Vq))m =(com, cp)m VqpeWm,

where o)?_ = coo for t=0 and um(^m)= rot\\)m. Here and below we also use the
convention that co =(D

_ 1 for t=t

13.4.4 The streamline diffusion method in (u, p)-formulation
For m= l, . . ., N, we introduce the velocity space

Vm={v: v=rot cp, cpeW"1},

and the pressure space Qm= Um where Wm and Um are given by (13.18) and
(13.17). We observe that the functions v in Vm satisfy div v=0 in Q, v • n =0
on T and v • n is continuous across interelement boundaries.

We can now formulate the following streamline diffusion method for
(13.15): Find (um, pm) eVmxQm, m=l, . . . , N, such that for m=l, . . . , N ,

S { J ( um+ p - Vum+ Vpm, v+h(v+|3 * Vv4- Vq))dxdt
K K

+ I ([umL v+)|n - P+nt|ds} =|(g, v+ h(v+ p - Vv+ Vq))dxdt
9K _(P)

m —1 •

13.4.3 The discontinuous Galerkin method in (a), \p)-formulation
Let P:Q-^ R2 be a direction field such that p - n is continuous across
interelement sides of the triangulation Th with normal directions n. We define
for each K=xxlm, xeTh with boundary 3K:

3K_ (p)={(x, t)e3K: n(x, t) • P(x , t)+nt(x, t)<0},

(13.21)i

sm
V(v, q )eVmxQm,
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where (3= um, u 0 = uo for t=0 and as above we sum over K =xxlm, xeTh -
Further, (. , .) denotes the scalar product in R2. Note that although the
velocities veVm satisfy the incompressibility condition div v=0, the pressure
is still present in the formulation (13.21), cf (5.7). Note also that choosing v=0
in (13.21) gives the following discrete Poisson equation, with Neumann
boundary condition , for the pressure pm in terms of um

( Vpm, Vq)= 2 (g — um — (3 • Vum, Vq)

numerical approximation discussed in Chapter 9. If p is not small , then (13.22)
is dominated by the linear viscous term and our earlier methods for Stokes
problem may be directly extended to (13.22), see [GR], [Tl].

To extend the streamline diffusion method of the previous subsection to
the Navier-Stokes equation (13.22) with p small we shall introduce the
vorticity as an additional unknown. This is needed because the discrete
velocities in the velocity space Vm are not necessarily continuous in x (the
tangential velocities may be discontinuous across inter-element boundaries)
and thus it is not clear how to handle the viscous term Au. We note that if
co^ rot u then since div u =0, we have

3co _ 3oo
3x2’ 3xi

We now formulate the following streamline diffusion method for (13.22): Find
(um, pm, 0)m) eVmxQmxQm, m=l, . . ., N, such that for m = l , . . . , N ,

(13.23a) 2 { J( um+|3 - Vum+ Vp, v+5(v+|3 • Vv+ Vq))dxdt
K K

+ J ([um], v+)|n * [3+nt |ds+ p J(rot (om, v+6(v + (3 * Vv+ Vq}dxdt
SK _ (P)

— I (g, v+6(v+ (3 - Vv+ Vq))dxdt V(v, q) eVmxQm,

VqeQm,
K

which corresponds to the following equation obtained by applying the
divergence operator to (13.15a)

— Ap= — div(g — u — u • Vu)

— = 2 (g i-U j-u - V u O n i3n i — l

For the methods (13.19)—(13.21) one can prove global error estimates of order

in Q, = — Au.rot o)=

on r.

lr+-r
0(h 2), see [JS].

K

sJm13.5 The incompressible Navier-Stokes equations
(13.23b) (rot 0, um)ra =(com, 0)m

where 6=Ch with C a sufficiently small positive constant and as above (3= um
and u ^= uo for t=0. Note that (13.23b) gives a discrete formulation of the
relation oo=rot u together with the no-slip boundary condition u • s=0 on T.

The method (13.23) is robust, accurate, uniformly stable for O^p^h and
suitable for complicated flows. In Example 13.8 below we present some results
obtained using this method with r= l, ie, piecewise linear velocity , pressure
and vorticity. For an analysis of (13.23) , see [JS]. Numerical results for (13.21)
and (13.23) are given in [Han], cf Example 13.8.

V0eQm,
The extension of the Euler equations (13.15) to the case of a viscous fluid with
viscosity p>0, ie the Navier-Stokes equations for an incompressible fluid,
reads as follows: Given g and UQ find the velocity u and pressure p such that

3p
-pAuj=gi in Qxl, i=l, 2,(13.22a) Uj+u • V Uj+ 3xj

(13.22b) div u =0

(13.22c) u • n=u • s=0

(13.22d)

in Qxl ,

on rx l ,

in Q for t=0,u — u0

where s is a tangential direction to T. We note that the boundary condition
u * n =0 in (13.15) is here supplemented by the no-slip condition u - s=0 on
r requiring the tangential velocity to be zero on T.

The Navier-Stokes equations (13.22) are an example of a non-linear mixed
hyperbolic-parabolic system with nonlinear hyperbolic convection terms
u • Vuj and a linear elliptic viscous terms — pAuj. We will here be interested
in the case of small viscosity p in which case we meet the difficulties in

13.6 Compressible flow: Burgers’ equation
We conclude with an application of the streamline diffusion method to a model
problem for compressible fluid flow, namely Burgers’ equation: Find u:
J x l-* R such that
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(13.24a) u +u — -p =0
3x 3x2

(13.24b) u(0, t)=u(l, t ) =0

3u 13.3 Defining (U, P) on Qx (0, tN) by U|Sm = um, P|Sm = pm, m=l, . . ., N,
where (um, pm) satisfies (13.21) , prove the following stability estimate
in the case g=0:

l lu( - > tN)-|lL2(Q)+ J |[U]|2|n * U+nt|ds
K 3K_(U)

+2h J |U+U • VU+ VP|2dx}^ IIUO|IL2(Q) ,

(x, t)eJxI,

tel,

xeJ ,

where J = (0, 1), I=(0, T), and uo is a given initial function. If p=0 then
the boundary condition u(0, t )=0 is enforced only if u(0, t)^0 and u( l , t)=0
only if u ( l , t) =^0, corresponding to inflow conditions. Let us use the notation
of Section 13.4.2 with now Th={x} a subdivision of J into subintervals x and
define

(13.24c) u(x, 0)= UQ(X),

K

where we sum over elements K =xxlm, xeTh, m = l , . . ., N.

Prove that the quadratic functional F(v) = i ||v||y is convex, cf
Example 13.1. 2

Prove with the notation of Example 13.5 that there is a sequence {vi}
such that F(vj)^l and ||vj||v
Prove formally that the problems of Examples 13.6 and 13.7
equivalent.

13.4
Um={veUm: v(x, t)=0 for x=0, 1}.

13.5The streamline diffusion method for (13.24) with p=0 can now be formulated
as follows: Find umeUm, m=l , . . . , N, such that for m=l, . . ., N ,

v+h(v+ um —)) + <[um], v+>m _1=0 VveVm,

oc as I 00

13.63um are(13.25) (um+ um
3x 3x

where u ^ = uo for t=0. This method can be directly extended to the case
O^p^h following Section 9.6.

One can prove (see [JSzl]) that if the finite element solutions um satisfying
(13.25) stay uniformly bounded as the mesh size tends to zero, then the um
will converge to the (entropy) solution u of (13.24) with p=0. For applications
of streamline diffusion type methods to the compressible Euler and Navier-
Stokes equations, see [HFM], [HMM], [HM1], [HM2], [JSz2], [Sz]. Methods
of this type hold promise to be the first successful theoretically supported finite
element methods for compressible flow problems with potentially extensive
applications. In Example 13.9 below we give some results for (13.25) and
variant of (13.25) with shock-capturing according to Remark 9.6, see [JSzl].

Example 13.8 In Fig 13.5 below we give for a cavity problem the velocities
obtained by the method (13.23) after 5, 10 and 15 time steps with r= l (ie
piecewise linear velocities, pressure and vorticity) , 6=h= At, p=10-3, given
inlet velocity= l and initial velocity=0 on a 8x 16 mesh.

Example 13.9 In Fig 13.6 below we give the result of applying (13.25) with
and without shock-capturing and with h =0.1 in a case where the exact solution
of (13.24) with p=0 consists of a rarefaction wave and a shock and J is replaced
by ( — 00 , °°) . The exact solution is represented by the dotted line (see [JSzl]).

i

Problems
13.1 Prove the following stability estimate for (13.25) for m = l , . . ., N,

n m .
| | 22(i ) + 2 | |[u"] (., tn-i) ||L(I)

n=2
um(., tm) _

m 3un I I 2 UOIIL2(D -+2h 2 || un+ un L2(S )3xn = l

Extend the discontinuous Galerkin method (8.35) to (13.13). Prove
a basic stability estimate.

13.2
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5 time steps
Fig 13.6 Streamline diffusion method for Burgers equation
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Fig 13.5 Streamline diffusion method for the incompressible Navier-Stokes equations
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