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The Representation of Finite Rotations

in Spatial Kinematics

1. INTRODUCTION
1.1 The possible approaches to finite rotations

The objective of this first chapter is to describe the various possible approaches avail-
able in computational kinematics and dynamics to describe the arbitrarily large rotations
undergone by rigid and flexible bodies, and to compute the associated angular velocities
and accelerations. It has become a problem of considerable interest for new disciplines

such as computer aided analysis of mechanisms and finite element analysis of large space

structures,

We have identified mainly three complementary ways to describe large rotations, each

one shedding its own light on the problem.

- The geometrical approaeh is the most classical one. It is the one usually found in most
textbooks on dynamics. It leads to finite rotation representation tools such as Euler
angles, Bryant (or nautical) angles, single rotation about an arbitrary axis in space
(Euler—Chasles representation), Euler and Rodrigues parameters.

- The matriz approach makes use of the well known orthonormality property of a rota-
tion operator to obtain its explicit algebraic structure. As it will be seen, one is led
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in this way to a rolalion operator expressed in terms of either Euler or Rodrigues pa-
rameters. In this context, the decomposition of the operator into its vector and scalar
parts will be described. Here, we also present the derivation of other parametrization
techniques, like the rotational vector, the conformal rotational vector and the linear

parameters,
- The algebraic approach, which can be focused [rom (wo dillerent points of view:

quaternion algebro leads very directly, and in a extremely elegant manner, to the
representation of finite rotations. Making use of the quaternion algebra allows at the
same Lime to combine a sequence of finite rotations in a product of quaternions, leading
thus to a minimum number of algebraic operations. It gives rise to a systematic and

very performing matrix formalism.

matriz algebra employs concepts borrowed from differential geometry and allows to
establish simple relations between engineering measures of rotations and the employed
system of parameters. Using matrix algebra, the linearization of equations is easily

performed.

All approaches are fully described, and the principal relationships between them are
established. Differentiability properties of each parameters system are analyzed. Final
conclusions are drawn comparing the different parametrizations from various points of
view, allowing us to make a convenient choice to be used in a mechanisms analysis program.

In order to introduce the concept of finite rotation operator, we will first recall as an
introduction how to describe a frame transformation and how to compute the velocities

and accelerations associated to the transformation.

1.2 Body fixed to reference frame transformation

Let P be an arbitrary point on a body B. Let us denote by (z1,z2,23) its coordinates
in an absolute reference (orthonermal) frame {O;E;,Es,E3}, and by (X, X;, X;) its
coordinates in a relative (orthonormal) frame {O";&,,1ts,ta} rigidly fixed to body B. In
vector notation, the position vector at point P can be decomnposed in the form

F=1 + X (1.1)

where

f=0P, X =0P and i, = 00

In order to express eqn (1.1) in matrix notation, let us associate to the vectors 7, Zp



Chapter 1 13

Figure 1: Body fized to reference frame transformation

and X the unicolumn matrices

':9?1 L -“'53:‘
XT = {X] Xa XH}
{

Toi Topz Tos)

The components X of vector X being expressed in the body reference frame {O';ty,ta,ta},

the corresponding components X' in the inertial frame are obtained by a transformation

Lengths are unchanged under the transformation K. Thus, it can be shown that B is an
additive and homogeneous operator, which implies in turn that R is linear [1]. Then, we
will represent it in the orthonormal basis {O; E;,Es, Es} by means of the 3 x 3 matrix R:

X =RX (1.2)

R expresses the transformation from the frame {O';t1, 13,13} to {O;E1, Es, Es}.

Let us express that the transformation (1.2) preserves the length of vector X :
XTX = XTRTRX =XTX (1.3)
This implies the algebraic condition on matrix R
ot B g | (1.4)

These matrices are called unstary or orthonormal matrices. They are classified in two
categories, depending on the value of the determinant: those whose determinant is +1 are
called proper orthogonal and those with determinant —1 are called improper orthogonal.
Proper orthogonal matrices represent rigid body rotations, while improper orthogonal ones
represent reflections [1].
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Therefore, the matrix operation of the product of an arbitrary vector X by a proper

orthonormal matrix R has the meaning of a rotation
X'=RX with R!=RT. (1.5)

We note that by considering the body reference frame {0’ t;,t2,t3} coincident with the
fixed inertial frame {O;E,,Ez,Es} at t = 0, one can see that R is also the transformation
matrix for the rigid body rotation from the initial position to the actual one. In the

following we will almost always refer to this signification.

From (1.5), one deduces the transformation
¥ =% + B X (1.6)

which expresses in matrix form the vector relationship (1.1). It describes the position and

orientation transformation resulting from a rigid body rotation and translation.

Let us note that the direct consequence of the orthonormality property of R is that it
can be expressed in terms of 3 independent parameters. Indeed it 1s a 3 x 3 matrix, made

of 9 elements, which can be written in terms of the column vectors

3 I — [r1 I'a 1‘3] [l.?}

Owing to the orthonormality property (1.4) the vectors r; are linked together by the 6

congtraints
g ry = b fi= i §=1,28 (1.8)

Therefore we may write

R. — R[&hu‘lg, r‘la] {19]

where «;, s, @a are three independent parameters retained to describe the rotation.
Numerous choices exist, according to the representation technique adopted. These choices

will be described In the next sections.

Euler theorem [1]

It can be shown that a proper orthogonal matrix has exactly one eigenvalue equal to
+1. If n is the eigenvector of It corresponding to 41, it follows that

Rn =n (1.10)

and furthermore, for any «
Ran = an (1.11)

So, all points of the rigid body located along a line passing through a fixed point O and
parallel to n, remain fixed under the rotation R. This line is called the azis of rotation.
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The angle of rotation is measured on a plane perpendicular to the axis of rotation (see

paragraph 2.7 ).
1.3 Translation and rotation velocities

Let us make the assumption that body B on fig. 1 is a rigid one. Lel us restarl from the
matrix expression of the position vector of point P

x =% +RX (1.12)

The components of the corresponding velocity vector are obtained through time differenti-

ation
x =% +RX +RBX (1.13)

where
%, represents the velocity veetor at the reference point O
X =0 gince body B is a rigid one.

It provides the expression for the velocity of an arbitrary point on the body

X = X+RX (1.14)

Equation (1.14) can still be modified by expressing velocities in terms of quantities in

the inertial reference frame. To this purpose, let us invert eqn (1.12) in the form
X = RY (x - xo) (1.15)
This yields then to the velocity expression

x = %o + RRT (x — x¢) (1.16)

It is possible to show that this expression for the absolute velocity at point P is the

matrix form, giving extrinsic expression in terms of cartesian coordinates, of the wvector
relationship

dT dzo

et o g i(E o i .17

where & is the angular veloeity vector of frame {0'; 11,15, t3} relative to {O; E;, Bz, E5}.
In order to check it, let us invoke the orthenormality property for R:
R el w SR EE = (1.18)
from which follows that the matrix

T

RRT = - RR
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is skew-symmmnelric.

Let us then deline the malriz of angular velocilies

) 0 —ildy o
@ =RRT = | ws 0 —uwy (1.19)
it wh 0

where wy, we, ws are the cartesian components of vector & in the reference frame
{D;El:E'Z:Eﬁ}'

With the definition (1.19), equation (1.16) can finally be rewritten in the form
X = X + @ [(x — Xo) (1.20)

which is the matrix analog of (1.17).
1.4 Translation and rotation accelerations

Let us keep the indeformability hypothesis for body B and restart from equation (1.12).
A second time differentiation yields

K ==% +RX (1.21)
or, by taking account of (1.15)

% = s + RRT(x — x0) (1.22)

The meaning of the matrix RRT can be obtained from a time differentiation of the

angular velocity matrix & given by eqn (1.19):

dor " - o - s - -
E=.c=c=n,:a,i"+R.R_-1:.:1%.'.:‘"+mﬂ”_R:E,T—Lﬁ (1.23)
where
] 0 —lg  Wa 0 —fkg o
& = @ = L;.Ja a ""L;FI o X a -y {12‘1]
—tn W] —gs g ]

denoctes the matrix of angular accelerations.

Substitution of (1.23) in (1.22) provides the expression for the acceleration at point P
% = %o + (& + &) (x — xa) (1.25)

whete

- the first term represents the translational acceleration;
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- the second one represents the contribution of angular acceleration;

- the third one represents the centrifugal acceleration contribution.

Equations (1.12), (1.20) and (1.25) together with the definitions (1.9), (1.19) and
(1.24) provide the matrix notation for the kinematics of a rigid body.

1.5 Interpretation of arbitrary rigid body motion as screw motion

It is interesting to mnote that the differential motion of a rigid body as described by eqn
(1.20) may be interpreted as screw motion, i.e. the combination of a translation and a

rotation about a same axis s with arbitrary orientation in space.

To this purpose, let us determine the locus of points P having a velocity vector x
paralle] to that of the angular velocity w. The problem is to find a scalar quantity o such
that

X =Xg + D(x — %) =ocw (1.26)
Premultiplying eqn (1.26) by w® provides the expression

I ’ -
v =g Wt %g (1.27)

and the locus itself is obtained by solving (1.26) with respect to x. To this purpose, let us

rewrite the system of equations to be solved as follows

wlXg

L w—% + @xp = b (1.28)

Grap =
w

By examining this system we note that

- obviously, a solution to (1.28) exists if and only if w'b = 0. It is easy to verify that
this orthogonally condition is fulfilled here.

- a particular solution is obtained by seeking a solution in the form
X =kwb 4+ pw (1.29)
Its direct substitution in (1.28) gives
Gx = k&b = k(ww? — «’1)b =D (1.30)
After noticing that wb = 0, we obtain

k= —— (1.31)
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The general solution to (1.28) is thus

8, 1 1 -
x:—ﬁwb+#w:x0—ﬁ(wj1xg}u—Fxnm—l-uw

= Xo t+ pw

where the latter equality is obtained after using the arbitrariness of u.

Equation (1.32) describes the locus of points having a velocity parallel to w. It is a
straight line & with direction w and free parameter u, passing through x4. Hence forth we

will write

B = Xp + pw (1.33)
All points on & have, clearly, the same velocity Xyp = o w as can be verified by replacing
(1.33) into (1.26).

x

Figure 2: Interpretation of rigid body motion as screw motion

If we compute X from (1.33) and we replace it into (1.26), the following expression
for the velocity at an arbitrary point P is obtained
X = %o + W(x — s
i ,{ ) (1.34)
= ocw+ @(x — s)
It is easily seen that it corresponds to a screw motion characterized by

- a first component of translational velocity parallel to the rotation axis w with a pstch

veloeity o given by eqn (1.27);

- a second component resulting from angular motion with rotational velocity w around
the straight line s, equal to the angular speed cross product the distance from the

point P to s. The straight line & can thus be interpreted as the serew axis of the
helical motion.

This form of expressing motion of a rigid body is stated by Chasles theorem, which
says Lhat the most general displacement of a rigid body is equivalent to a translation

together with a rotation about an axis parallel to the translation.
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Some properties of the screw axis follow:

- The velocities of all the points of a rigid body undergoing an arbitrary motion have

the same projection along the screw axis.

- The difference vector of the velocities of any two of the points of a rigid body under-

going an arbitrary motion is perpendicular to the screw axis.

- If the velocities of 3 noncollinear points of a rigid body are identical, the body under-

goes a pure translation.

This properties can all be shown by applying equation (1.34), but they can also easily
accepted by intuition. Ref.[1] gives a detailed demonstration of them.

2. GEOMETRIC DESCRIPTION OF A FINITE ROTATION OPERATOR

2.1 The plane rotation operator

The simplest rotation operation that can be considered is the rotation about a coordinate
axis. Let us consider the case of fig. 3 where a rotation ¢ is performed about the =z

coordinate axis.

Figure 8: Kotation in plane Ory

For a vector x with components {z; z2 z3), one obtains the components of the

rotated vector x'
£y = Zico8¢ — zgsingd

I, = T{Sing =+ Iacosod
3:3 = Iy

In matrix form
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with the rotation operator

cosp —sing 0
R(z,¢) = |sing «cos¢ O (2.1)
0 0 1

Similarly, for a rotation # about the y axis and a rotation ¢ about the r axis, one
would obtain the rotation operators

cos@ 0 sind
Ry, 6) = 0 1 0 (2.2)
—sind 0 cosd

and
1 0 a

R(z,¢) = |0 cosyy —singy (2.3)
0 sziny cosy

2.2 Finite rotations in terms of direction cosines

The most obvious expression for a rotation operator performing an arbitrary rotation is
the one obtained in terms of direction cosines. Tet us denote (fig. 4) by E;,E3,E3 the
unit vectors describing the cartesian frame Ozyz. Let also t;,t,,ts be the basis vectors
of the body frame O'z'y’z', obtained by application of R to E;,Es, Es:

t; = R KE; {2.4}

Figure §: Finate rotation in terms of direction cosines
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The rotated vector x' is obtained by applying R to x
X' =z E = Rx = Rz; By = z;t; = =7 (Be- t5) By (2.5)

where the latter equality is obtained after developing t; in the basis {E;}. This expression
shows thal the componenis of the rotated veclor x’ are computed by orthogonal projection

on the unit axes:

zy = (Bi-t1)z; + (Byp-t2)ze + (E1-ts)zs
23 = (Ba-ti)zr + (Bz-to)ze + (B2 ts)ea (2.6)
zi = (Ep-t1)z; 4+ (Bs-tz)zs + (E5-tg)zs

giving the expression for the components of the rotation operator in the natural basis
E; @ E:'
(BEy-ty) (BEi-t2) (Ep-ta)
R = |(Bz-t1) (Ez-t2) (Ez-ts) (2.7)
(Bs-t1) (Es-12) (Es-ts)

Let us note that when using this representation

- the dependence of the operator with respect to only 3 parameters does not appear
immediately;

- the oerthonormality properly, on the other hand, is obvious.
Indeed, the inverse transformation
x = R1x (2.8)
can also be calculated through the geometric projection

z1 = (t1-E)z] + (t:1 Bz, + (t; - Ea)zh
Ta == (tg-El]:‘::i + [:T:-g *Eg:]:ﬁ; o (tg-Eg}:ﬂ’S (2.9)
T3 = (ts-Ep)z] + (ts-Eg)zp + (ts-Es)zg

The scalar product being commutative, one easily verifies that

R—l Zei7 RT

2.3 Finite rotation in terms of dyadic products

A complementary result to (2.4) consists to observe that, using matrix notation, any finite

rotation can be written in the form

R =tE +1E] + taEf = t;9E; (2.10)
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This can be shown by simply applying R to the vector x:

Rx = (4:0E;) 2, B; = o t; = X 2.11
7 &y

Moreover, R can be defined in this way in terms of any two orthogonal bases
{n,;,n.,ns} and {n’;,n’;,n's}, provided these two sets of orthonormal vectors verify the

relation:
n'; =R n; (2.12)

The proof holds by obscrving that an arbitrary vector x is transformed by the so-defined

rotation operator according to
n;®on)x = RBRn;(n;-x) = Rx = x' (2.13)

Another way to show that the transformation (n'; ® n;) is a rotation is to point out that
the length of the vector x is unaffected hy the transformation:

z? = ((0'y ®1,)x%) - (s @ ni)x) = ((n;-x)n’y) - ((mi-x)ns) = (ni-x)(mi-x) = 2°

(2.14)

2.4 Non-comrmutative character of finite rotations

Let us consider an object (fig. 5) submitted to two successive rotations R; and R, of 90°

about z and y axes respectively
Ri = Rz 90°) and Ra — Ry, 90°%)
We know that the matrix product is a non-commutative opecration
RiR; # Ro R,

In the finite rotation context, non-commutativity expresses the fact that reversing the
order of the rotation operations leads to different geometric configurations of the object to
which they are applied. It implies that in all decomposition techniques of a finite rotation
in terms of elementary rotations as described below, the order in which the successive
rotations are performed is essential.

While infinitesimal rotations may be assigned a vectorial entity, this is not the case
for finite ones. One important reason is the non-commutative character that hinders the
application of the parallelogram composition law, one of the three essential properties
of vector quantities. Non-commutativity marks heavily the treatment of finite rotations:
we, engineers, are not familiar with this character. Special operation rules are developed
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Figure 5: Nlustration of the
non-commutative character of finite rotations

to handle these objects forming the so-called non-commutative algebras, which will be

discussed elsewhere in this report.
2.5 Finite rotations in terms of Euler angles

Euler angles provide a system of 3 independent parameters to express in a unique manner
an arbitrary finite rotation. Euler angles are well suited for describing the kinematics of
specialized rotating systems such as tops, gyroscopes, etc... It is not so adequate, however,
to describe more general articulated systems.

The Euler angle formalism consists of expressing the transformation from Qzyz to
Oz'y'z" as a sequence of three elementary rotations (lig. 6)

- a ¢ rotation about Oz: R(z,¢)
- a 0 rotation about Oz;: R(z4,8)
- a 1 rotation about Oza: R(za,7)

In terms of these 3 successive rotations, the frame transformation can be written
x = R(z,¢) R(z1,0) R(2,¥) x' = R x'

with
R = Rz ¢) R{z1,0) R{za,) (2.15)

and where the elementary rotations about z and = axes are given by eqns (2.1) and (2.3).
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One obtains explicitly

cos¢pcosy) — sindcosfisiny —cosgsiny — singcosfcosyf singsinf
R = |sindcosty + cosgcosfsiny —singdsiny + cosgeoslcostd —cosgsind
sin fsin o sin # cos o cosf
(2.16)

b

Figure 6: Deseription of finite rotations
in terms of Fuler angles

Ezistence of singularities

The description of finite rotations in terms of Euler angles becomes singular when
# = 0 or 7, in which case both intermediate rotation axes along =z become collinear: the

rotation is then reduced to a single rotation (¢ £ ) about 2,
Kinemalics inversion

A practical problem that arises [requently in mechanism analysis is the need to solve

the snverse problem: given the numerical values of R

i1 Tiz Ti5
R = |re1 ree ros| = R(1,6,¢) (2.17)
31 Tsz Tas

determine the corresponding numerical values of Euler angles (4,8, ¢).

Expression (2.16) shows that a crude solution of {2.17) would consist of calculating

532 }

= -1 = s M = cos™ !
# = cos™(rss), ¢ = —cos” (—), = ana {sinﬂ‘

sin #
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This method of solution is however unsatisfactory since it does not provide the sign of the

angles and becomes very inaccurate in the vicinity of singular points.

A satisfactory solution consists of making a systematic use of the function tan—1%;
one calculates first

B —1,731
P = tan [rﬂ] (2.18)

which gives two possible solutions ¢ and ¥ = t; 4 . § and ¢ may then be evaluated
without ambiguity

sinf = Fs1 Sintﬁ' + fag t.ljﬁﬂj

{ CcCos E — r33 {2-19}
cosgp = ri;cosy — ryjssin

{51ﬂ¢' = ra1c08%¥ — ragsiny (2.20)

2.6 Finite rotations in terms of Bryant angles

In order to specily the orientation of some mechanical systems such as a fiying vehicle or
a Cardan type device, it is better adapted to define the finite rotation operator in terms
of three elementary rotations about three distinet axes, called roll, piteh and yaw axes.

Let us express the transformation from Ozyz to Oz'y'z' as a sequence of the three

elementary rotations (fig. 7)
- a ¢ rotation about Oz: R(z,1)
- a # rotation about Oy;: R(yi,6)
- a ¢ rotation about Ozy: Rz, @)

In terms of these 3 successive rotations, the frame transformation can be written
x = R(z,¢) R(y1,f) R(zz,8)x" = R x’

with
R = R(z,¢) R(y1,0) R(z2,9) (2.21)

where the elementary rotations about 2, y; and zs are given by egns (2.1), (2.2) and (2.3).
One obtains explicitly

cosficosty sinfsindcosty — singeosd sinfcospcosty + sinthsing
R = |singcosl sinfsindsiny + costpcos¢ sinfcosgsinyd — sindcosth
—sginé sin ¢ cos 8 cos ¢ cos
(2.22)

* in practice, the FORTRAN function ¢ = ATAN2(z,y) provides the result —7 < ¢ < 7.
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X{’ i
: e

Figure 7: Description of finite rotations

tn terms of Bryant angles
Eristence of singularities

The description of finite rotations in terms of Bryant angles becomes singular when

0 =+

2%
rotation is then reduced to a single rotation (¢ + ) about =.

in which case both intermediate rotation axes along z become collinear: the

Hinematics inversion

The same remark as made for Fuler angles holds here. A satisfactory solution consists

to calculate first
.
¢ = tan"}{-=) (2.23)
Fi1
which gives two possible solutions 10y and 903 =1y + x. # and ¢ may then be evaluated

without ambiguily

{c.osﬂ = rgpsinty + rijcosy (2.24)
sinf = -—rg;
and
cos¢ = (riacosy + rassint)sind + rascosd (2.25)
sing = (rizcosy + razsing)sind 4 rszcosé d

2.7 Finite rotation as a unique rotation about an arbitrary axis

Both types of rotation parametrizations seen in paragraphs 2.5 and 2.6 are clear examples
of non—invariant measures. They were developed to treat particular cases, i.e. the Euler
angles are oriented to describe the kinematics of the spinning top problem, and they are
not well suited to handle any general problem. In this paragraph and in the next one,
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we will describe the geometrical derivation of two fnuvariani pareametrizations, that is,
parametrizations that do not possess any preferred direction.

Euler’s theorem on finite rotations (see paragraph 1.2) states that any finite rotation
can be expressed as a unique rotation ¢ about an appropriate axis 7 (fig. 8).

: /

Figure 8: Ezpression of a finile rotation
s a untgue rotation ¢ about arts i

In this case, there are 4 rotalion paramelers, which are however linked by one con-

straint:
Poy My, Mgy P (2.26)

with

in|| = wr'ng-l-nﬁ—l-ng = 1 @ € |0, 7]

The meosat intuitive procedure to obtain the explicit expression of the corresponding

rotation eperator consists to proceed in § phases

(a) 2 elementary successive rotations (fig. 9)
R(z,—a) and Ry, +7)
combined in a unique rotation matrix
C = R(z —a) R(y,+5) (2.27)

have the effect of bringing the # axis in coincidence with the Oz axis
(b) perform rotation ¢ about the Oz axis
(¢} bring the f axis info posilion by (he inverse transformation C™' = CT

The resulting operation combines into

R(n.¢) = CR(z,¢) CT (2.28)
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z

Figure 9: Superposition of two vectors
through two successive rotations

with the matrix ) )
cosacosfl] sine cosasing

C = | —sinacosd cosa —sinasinf (2.29)
—sin 0 cos 3

If one notes further that

sinfl = .\.,-"ﬂ,g-{-ng cos 3 = yfnZ+ng
n n
sing = —p=l— cos e = £ (2-30)

y/n2 +n2 \/ M2+ ng

one obtains the explicit expression for the rotation operator

ni Vg + Co nghy, Vo — n, S5¢ n.n, V¢ + n, Sé
R = |ngn, Vo + n, 5¢ ng Vé + Cp nyn; V¢ — ng Sé (2.31)
nn, Vg — n, S¢ n.n. Vo + n, 5¢ n: V¢ + Cé

with the notations

Céd = cosd, S¢ = sing, Vé = vers(dp) = 1—cos¢ (2.32)

An alternate proof of this result can be obtained by starting from eqn (2.13), from

which we express the rotation eperator in the form:

R = [@'ysn] +n'2nd +n's nJ] (2.33)

Suppose that n, is oriented along the axis of rotation. Then, vectors ns and ng are

transformed according to

n's = nscos¢ + nasing (234

]1’3 —- —]1355_11?5 + Iy CUS'#'
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and substitution of (2.34) into (2.33) yields to
R = [0'; nT +cos¢ (n2 nf +n3 n3) +sin¢g (nz n7 —ng nj)] (2.35)

If we further note that {m;,ns,n3} form an orthonormal basis, the following identity can
be established:

n;xh = (nzxng)xh = (nz-h)n; — (nz-h)n; = (Nz®n3 — n;@nz) h vh e ®*

(2.36)
Then,
{112 ]Ilg' — Iy ﬂgj — fl]_ [23?}
where 1, is the skew-symmetric matrix
] —n1q z G )
n; = | nyg 0 —nig (2.38)
M1y Ty = 0
We can also easily verify the identity:
Ng®@Ng + Na®@ns = 1 — 1y @0y [2.39]

The resulting rotation operator is then equivalent to eqn (2.31), written in matrix form
= [cosp 1 + (1-cosg)nn? + sing 1 (2.40)

where the index 1 was eliminated for conciseness.
Kinematies inversion

When trying to invert (2.31) in closed form, one faces again the problem of an existing
singularity. The sum of the diagonal terms in eqn (2.31), when compared to (2.11), provides
the relationship

rii+roe+ras = (n2+nl+nl) (1-cosd) + 3cosd

(2.41)
= 1+2cos¢

and similarly, the quantity obtained from the differences of off-diagonal terms gives

[:T:m o !"ﬂsll:l2 i ffis = Tal)g o g [Tﬂl £ 1"12}2 = 4[ﬂf + 'ﬂlﬁ + nf} sin® ¢

s iy (2.42)

so that the rotation angle ¢ can be calculated by

2 2
Tsz —T fis — 7% G 4 r
o a1 \/{ 32 93 { 13 31']' { 21 12] 6 EUJFE (2'431

Tirt+roatrag—1
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and the difference of the off diagonal terms gives next
Faa —Taa Fia —Ta1 a1 — T1g
we Bl we gl w-lgE g
The relations (2.43-44) show that for a rotation angle close to zero, the determination of
the rotation direction becomes very inaccurate. This difficulty can be overcome only by
not distinguishing between the rotation direction and the corresponding angle, as Euler
parameters do. They are described in the next section.

2.8 Finite rotations in terms of Euler parameters

Let us introduce the following definitions

o
= It Bl —
€1 be 2
€g = CO5 é €y = Tiy sin E {2.’15}
2 2
€3 = TigSin E
3 = 9

Equation (2.31) may then be rewritten in the form

1-—- 2[6212 -+ Es:z] ZI:EIEQ - E[]Eg] 2(51&3 = Enﬁg]
B = 2{&162 -+ E:}Eg} 1- 2[&12 & Eaz] 2{&253 - Euf]_} [245}
2{&1(-:3 — egen) 2[3263 + egey) 1-— 2[%212 -+ EQE]
where the four parameters introduced are algebralc quantities which play equal roles. they
are linked by the conatraint

2

eg” 4 £12 | {322

Feg? = 1 (2.47)

Even though the component ey is a known function of the other three components, the
four components are needed for accurate computation of the matrix R (when ¢ is nearly

180 deg., the magnitude of e, i.e. sin ¢/2 becomes insensitive to variations in ¢).

The kinematic inversion does not give rise to any singularity (in fact there is a two-
to-one relation between Euler parameters and rotations, because (eg,e) and (—eq,—e)
represent the same rotation; so, the sign of Euler parameters has to be arbitrarily chosen
when they are derived from R and also, the positive and negative values have to be tested
for equality of rotations). An algebraic manipulation of the components of (2.46) together
with the constraint provides the inversion formulas

1
Enp = Ev’rlﬁ-fu'i‘rzz'i‘f:m
1

g = Esig,'ﬂ{f'gg o ?'23} \,?(l + 71— Fis — i

: (2.48)
gz = Esiﬁ‘?ﬂ["m —ra1) V1 =711+ T2z —ras

i

— H Fi
€3 = E-‘Hgllfrzl —r12) V1 =111 = roo + ras
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One observes thus that Euler parameters form a set of four dependent parameters,

and their dependence property is their main drawback. They have however some very nice

properties which make their use attractive:

- the associated inversion procedure does not give rise to any singularity;

- they are algebraic quantities: the use of transcendental functions appears only when

separating the rotation angle from the rotation direction is necessary;

- in calculations where Euler parameters are used, their property of obeying to the so-
called quaternion multiplication rule (see section 4) brings significant simplifications

1o the arithmetic operations.

3. MATRIX APPROACH TO FINITE ROTATIONS

3.1 Cayley form of an orthogonal matrix

Let us start again from the fact that the finite rotation of a vector about the origin may

be described by the operation
% = R

(3.1)

where R is an orthogonal matrix. This operation conserves the length of the original

vector,

or
(x'+x)T (' —-x)=0

Equation (3.3) means that the vectors f and g defined by

fe=w “x=il-L%
g =X +x=(R+ 1)x

are orthogonal together
Ll g =20

Let us next eliminate x between both equations (3.4). One obtains
f=(R-1(R+ 1) 'g=Bg
where B is necessarily of antisymmetric type, since (3.5) yields to

gfBg =0

(3.2)

(3.3)
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Let us express this property in terms of the veclor b = {(by bz bs) collecting the
components of the matrix

3 0 —bs bs
B=5b=|b 0 -b (3.8)
~by b O

Equation (3.6) shows that the rotation matrix R is such that
R—-1=D>0(R + 1) (3.9)
If we solve it with respect to R, cne gets the relationship
R=(1-b"1(1+hb (3.10)

which corresponds to a particular choice of the three parameters describing the finite

rotation.

The following identity, which can be easily verified by simple computation, will be
repeatedly used in this report. Let h € R%; then:

(@1 + fh@h + yh)™! = (@1 + L h®h + =, h) (3.11)
with &
0T PP e
& h 2
foo o OF - sBBP s
(v [h[* + &) (e + & |[h|[?)
T
BT AR
Let us then calculate explicitly
o 1 z
(1 — h) ‘=w[1+h@b+b] (3.13)

Performing the product (3.10) leade to the general algebraic expression for the rotation

operator
1

— e 1 ey
T o
By making use of the fact that

B = Ib>)1 + 2b@b + 2b] (3.14)

b@b — |bj?1 = bb (3.15)
equation (3.14) may be rewritten in the more compact form

2

R=1+W(E+EE} (3.16)
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3.2 Possible choices of the parameters

In the following, we discuss several aliernatives of invariant measures proposed in the
literature to parametrize the rotation operator. They can all be related, in a more or
less direct way, to equations (3.14-16). We qualify them as invariant, to differentiate from
parameters with preferential directions, i.e. Euler angles and Bryant angles.

- Rodrigues parameters

The set of three parameters b; are usually called Rodrigues parameters. Their geomet-
rical meaning can be obtained by comparing (3.14) to (2.40). By equating coefficients
corresponding to the term fi

2 |ib]]
sin{¢) = ————— 3.17
A 540
and by performing some algebraic steps, we arrive at the result:
|b| = tan ﬁ (3.18)
' 2
from which we obtain
by = n, tan%
by = my tan%—' (3.19)
bg = ngy ta.n%

The Rodrigues parameters offer the advantage of using just three independent quantities.
However, they give rise to a singularity when ¢ = 47 and have thus to be used with

caution.

- Euler parameters

By making the change of variables

s =198 (3.20)
€0

and by defining the fourth parameter e; through the normality condition
e2teltel+el =1 (3.21)
we restore the rotation operator (2.46) obtained from geometric considerations

R =(23 - 1)1+ 2(ee’ + ed)

S pe (3.22)
1+ 2@ + 2&2

1
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The Euler parameters have the geometric meaning

&y = N, sing

£g = €08 — s = n, sin £
2 2 y ]

es T n_ sin%

(3.23)

in terms of the rotation angle ¢ € [—r, +=] about the direction n (this fact can be verified
easily from (3.19) and (3.20-21) ). They are such that

—1<e =<1 1=0, 123 (3.24)

- The conformal rotation vector (CRV)

The idea of the conformal rotation vector seems to have been introduced for the first time
by Milenkovic [2], and developed further in ref.[3]. It is based on a conformal transforma-
tion on Euler parameters

de;

% B = »1,2,3 .
@ = oo =01 (3.25)

which produces a set of three independent parameters

g = deabn _ 4nmtan-ff

14eg . :
dngtend ¢ l-m 4x] (3.26)

— depby
- Ml e

— Sapiy __ L]
68 = s = 4 ny tan §

1l

The fourth parameter is given by

Compared to the Rodrigues parameters, they do not contain any singularity in the interval
¢ € [—m, 4], since they are such that

0=e=2

i (3.28)
—4 g < +4 1=1,2,3
The formulas (3.25) can still be inverted in the form
= ;
_— i=0,1,2,3 3.29
Gt o (3-29)
and provide the expression of the rotation matrix

i "

B = [2¢ T + 2¢¢ + (c3—c|?) 1] (3.30)

(4—cq)
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Figure 10: Variation of rotation angle and its derivatives

in lerms of CRV parameters
or, if we use €& = ccT — ||c||?1, we obtain

1
B UETSE |

Finzally, if we make also use of the facts

R 2008 + ce” + 51 + E¢

16 = Bep+le||* and €&c =0 (3.31)
we get the expression
R=;[c§1+lcgr_cﬂ,+-1-||c||2ccT—.—2<:.:.E+EE] (3.32)
(4 — ¢o)? 2 16
The latter equation can be rewritten in the compact form
R = F? (3.33)
with the operator
F:ﬁ[culer%cc"”qtej (3.34)

which has the meaning of a rotation of /2 expressed in terms of the Rodrigues parameters
of value b; = ¢;/4. In this way, the total rotation is regarded as the composition of two

equal partial rotations.

The motivation for introducing the factor 4 into the expression of CRV’s, appears
clearly when taking the variation of (3.26). In this way, the variations of CRV parameters
have the meaning of infinitesimal angles

bc = nébp = b¢ (3.35)

An important feature of CRV parameters is the almost linearity of the relationship
¢(c) in the interval [—m, -7 . It is illustrated by fig. 10 which displays the angle and its
first and second derivalives in terms of .
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- The rotational vector

Let us introduce in (3.16) the explicit expression (3.19) of Rodrigues parameters. The
rotation operator takes then the form

g 2 2" all o
R =1+ m(f-mEETtaﬂ EDH] {3.35}

Let us next define the rotational veetor by the vector quantity
¢ = no (3.37)

made of the rotation components ¢, ¢, and ¢, about the rotation direction n. Starting
from (3.36}, the rotation operator may be written in the form

b - sing - 1 sind ;- 4
R =1+ 5 ¢—r§{ %) ¢ ¢ (3.38)

The following alternative expression (see 2.40) can be obtained after some algebraic steps

1—cosg

led + TG (3.30)

R — cosgpl + 3

A highly simplificd cxpression can be computed from (3.38), by noting that the factors

" &
2nd and L = (== . }2 can be expanded in power series, giving (4]

b
2 “ P o
R=1 1—-— L B +...
B +{—11“*°—%i ) #6 '
21 4! 6! " 2n + 2! =

Next we observe the powers of t} and confirm by simple matrix multiplications the inter-

esting relations

~5 e &
¢ = (987 — ¢°1) ¢ = —¢° ¢
o T
i B lﬂi ey (3.41)
= ¢* ¢
~6 ~3
¢ = ¢*¢
leading to the recurrence formulas
=3n—1 -
— [=1)2n—142(n-1)
@ . {1} ¢ "'?; (3.42)
l;ﬁ' s (_ljn—lé‘l{n—lj ¢
Applying (3.41) to (3.39) we deduce immediately the series representation of R
- 1 -2 1 -=a 1 -
R=14%e+ —¢" . 2 n_‘if' (3.43)
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which is, in fact, the exponential expansion

R = sph = oF (3.44)

In the following, we will refer to this expression as the erponential map of rotations.

A direct proof of (3.43) can also be obtained in the following way. Suppose that we
decompose R. into a sequence of infinitesimal rotations A of equal amplitude about the

same vector n

A= lm[l1 + 9] (3.45)

1=+ 00 il

The rotation operator can then be expressed in the form

R= lim A" = lm|[1 + g]“ (3.46)

L—* 00 Fl— 0

By developing this expression using the binomial theorem and taking the limit we confirm
immediately the series (3.43) and hence (3.44).

- Linear parameters

Another parametrization presented in the literature are the so-called linear purameters.
They can be deduced starting from the expression (3.38) for the rotation operator; this
equation can be rewritten in the form:

sin ¢ ¢ "
1+4cosgd @

+ sing

R = cosgpl + g

Then by defining
8] =N, Sindg
&y = cos 82 = n, sing (3.47)
fa =n, sing

the rotation operator is written

1 T
B = 1 i 3.48
501 + B g8 + 8 (3.48)

The linear parameters are mutually related through the constraint:
sgHsit+si+e3 =1 (3.49)

They constitute a set of four parameters as Euler’s, but they have the disadvantage of
presenting a singularity point at ¢ — +x. Also, the compasition rule is rather involved
since it can not be related to the quaternion product (see paragraph 4.2 ).
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Data: EULER

€0y €14 €2, 85

E; = 2¢ (i=1,2,3)

3 ﬁgEﬂ T EaEﬂ, €1 Ez s ﬁ[}Eﬂ ﬂ]_ES i EUEQ
R = L Eg - €n Es 1— €1 El — E3E-3 EgEﬂ o E:]El
E‘.‘lEg o E{.Eg EgE;g 5 f'UEl 1— E1E1 = n‘.’gEg

Figure 11: Numerical evaluation of
the rotation matriz from Fuler paramelers

3.3 Mumerical evaluation of the rotation matrix

Of all the parametrization systems discussed in the latter paragraph, Rodrigues and linear
parameters are of limited applicability in practice due to the singularity that they present
for angles ¢ = 7. We will analyze next the practical computation of the rotation operator

in terms of the other three sets of parameters.

Given the Euler parameters, the flowchart of fig. 11 describes the computational pro-
cedure to evaluate the rotation matrix R, where use is made of the Euler parameter
expression (3.22). Starting from Euler parameters, 12 multiplies and 12 adds have to be

performed.

Simnilar flowcharts can be formed for the conformal rotation vector and for the rota-
tional vector, now using eqns (3.30) and (3.39) respectively. Starting from the conformal
rotation vecter, 17 multiplies and 13 adds are required. When computing the rotation
operator from the rotational vector, the cost is higher because some trigonemetric fune-
tions should be evaluated. The total number of computations includes 2 trigonometric

evaluations, 1 square root, 18 multiplies and 12 adds,
3.4 Evaluation of the rotation parameters from the R matrix

It is easy to verify that the 4 x 4 symmetric matrix S obtained from the individual terms
of R

14 ry11 + taa + ras Fag — Tan Y18 — Y1 a1 —Tiz
Ry i raz — Tas 1+ryy —rag—ras riz + ra1 r15 + 751
ria = fai1 re1 +ria 1—1i1+1r22 —raa rog + rao

rzi —Ti2 ris 4+ ray raa + Tas l—r11—raa+Tas

[3 .50}
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Data: B

o= 0
d = ri1+ 7zt rss

forzt = 1.2.38 do
iF i rg) Wmd = vy = W

else continue;

for given m, compute

S,rn,og Smh Sﬂ‘i‘Zi Sm3
§f Hopn 20 EBo = 28 Buim
else E, = —24/5,..

e —
[ |
computle eg, €1, €2, €3 compute ¢y, o2, g
E S , & .
Em = Tm, e = —'Em (m # €] S e B TE
[ [
EULER | | CRV

Figure 12: Numerical evaluation of

the rotation parameters from the rotation matriz R
is a quadratic expression in terms of Euler Parameters

e €0€1 €o€z Epes
]
Ené€ | 5 E{E Eq &
2w il 0c1 1 122 1€3 {351]
Epfn Eyfa £y Bl
Epty €183 Eoég Eg

The knowledge of one single row of 8 allows thus to compute the rotation parameters.

A possible computational procedure which guarantees at the same time the uniqueness
of the solution and a maximum accuracy is given by Spurrier’s [5] algorithm, summarized
on the flowchart of fig. 12 (we note that in this figure, the rows and columns of S are
indexed as 0,1,2,3). This procedure consists of using the row with the largest diagonal
entry in 8. It involves 4 multiplies, 9 adds and a square root extraction to evaluate the

Euler parameters.
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The rotational vector is evaluated from the computed values of the CRV parameters:

= i 3_1 .”i“. C g B
6 = o= (1) (859

The evaluation is made from the CRV’s and not from the Euler parameters in order to
obtain maximum accuracy in the computation. Since the sine and cosine functions are
insensitive to angle variations for values near m/2 and 0, respectively, the evaluation of ¢
in terms of Euler parameters may introduce numerical errors.

3.5 Scalar and vector parts of the rotation matrix

It is interesting to note that by examining the first column of matrix S, one arrives directly
to the concept of separation of the rotation operator in its vector part and its scalar part.
Let q and g3 be

q = Vect(R.
(®) (3.53)
go = tr(R)
such that i
O (3.54)
fla = ri o+ g vy
Their geomefrical interpretation can be obtained from [:2.31]:
g = n sing
(3.55)
Go = 1 + 2cos¢
They are directly related to the linear parameters:
8§ = d
1 (3.56)
£ = E["i’ﬂ - 1)

Euler parameters can be deduced from the vector an scalar parts of the rotation:

_ 1+gn
LR iv 2 (3.57)
G ;
x 2eq

This formulas correspond to a particular case of the procedure previously described. How-
ever, they could lead to a bad conditioning of computations, since there is no choice of a

maximal pivot.

4. THE ALGEBRAIC APPROACH: QUATERNION ALGEBRA
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4.1 Elements of quaternion algebra [6,7]

The algebra of quaternions was introduced by Hamilton [8]. It has only recently been
carried to practice in industry, i.e. to model robotics problems and different aerospace

applications. A quaternion is defined as a 4 —dimensional complex number

d =g + 1q1 + 7q2 + kgs (4.1)

with 1, 7 and k being imaginary unit numbers such that

R ey |
jk = —kj =i
ki = —ik = j
i] = —31 = k

It can be alternatively written in vector notation

g =4 t+ 49 (4.2)
where ¢y and g are respectively the scalar and vector parts of the quaternion 7.

The multiplication rule is a direct consequence of the definition (4.1). In vector

notation, the resulting quaternion ¥ can be written

F=7P§ = pogo — P'q+ pod + goP + PXq (4.3)

It is obvious that the quaternion product operation is, in general, non commutative due
to the presence of a cross product. commutativity is only achieved when the vector parts

of the two operands are parallel as, for example, when one of the operands is a scalar.

The conjugate quaternion to 7 is defined as
@ = g0 — g1 — Je2 — kas = ¢ — ¢ (4.4)
It is easily verified that the conjugate of a quaternion product is such that
Fa)" =79 (4.5)
The norm of a quaternion is calculated by

G = 78 = 4 + a-q (4.8)

In particular, 7 is a unit quaternion il

gl = 1 (4.7)
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A quafernion 7 is & vector quaternion if § = 0+ ¢, in which case

Fg+§ =0 (4.8)

4.2 Representation of finite rotations in terms of quaternions

Given a unit quaternion € = ey + e and the position vector T = 0 + x, the finite rotation

of X 1o a new position ¥y may be represented by the triple quaternion product
§=°¢z¢ (4.9)
the proof holding by noting that ¥ is also a vector quaternion and that ||y]| = ||Z]|.

The inverse rotation is directly obtained in terms of the conjugate quaternion
=7 (4.10)

where we have used the fact that & ¢ = [|g]|* = 1.

Clearly, every unit quaternion can be expressed in the form:

€ = cosa + 1 sina (4.11)

where n is a unit vector. If we perform the operations indicated in (4.10), we obtain:

€L = —sinen-Xx + cosax + sinenxx (4.12)

The vector character of the result iz restored after performing the “symmetric” aperation:
i =85

2 - g 25
aX + 2sing cosanxx — sin“a(nxx)xn (4.13)

T

= sin’a (n-x)n + cos

= (cos2a1 + (1l—cos2a)nn* + sin2an) x

By comparing the latter to equation (2.40), we note that the operation is a rotation of
angle 2« about n. In paragraph 3.2, we mentioned two sets of parameters that constitute
a unit quaternion: the Euler parameters and the linear parameters. We see that only the
Euler parameters allow to represent the rotation operation as a double quaternion product,
since any other choice of unit quaternion represents a rotation about n of angle different
from the desired value.

Let now the position vector undergo two successive rotations

My =)
I

(4.14)
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Then, the resulting rotation is given by

=%  with ¢ = &6 (4.15)

It is this property that makes attractive the use of quaternion theory. It allows to
easily and economically compute the parameters corresponding to the composed rotation,
withoul resorting to the computation of the rotation operator and subsequent matrix

multiplication.

4.3 Matrix representation of quaternions

A quaternion may be represented in matrix form by the 4-dimensional column matrix

~ T
Gd=1(90 @1 92 4¢) (4.16)
in which case the quaternion product @ = P ¢ can be written in either form
e = Ao = B.P (4.17)
with the 4 x 4 matrices
I T
Po —P i —-q
Ay, = i B = " 4.18
e [p Pul'i-P] g [q ti‘ul+(1] (18

where 1 is the unit matrix and q is the skew—symmetric matrix attached to q

Qy; = —Cik O (4.18)

4.4 Matrix form of rotations by quaternion operations

By using equation (4.14), the rotation operator can be recast in the form
¥ =ABT % (4.20)

When computing the matrix product AB” one finds

1 {!T}

0 R (4.21)

ABT={

where the 3 x 3 submatrix R is the standard rotalion operator. Developing the product
(4.20) provides the result (3.22):

R=(20"-1) 1 + 2(ee” + ené) (4.22)
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where eg,e are the components of the unit quaternion & This result shows that the

quaternion components (eg, €1, €2, €3) are coincident with the Euler parameters.

Simplified matriz form

From a computational point of view, it is interesting to extract from matrices A and BT

the 3 x 4 sub-matrices:
H = [-e el + &]

% (4.23)
G = [-e el — &]
Then, the rotation R can be expressed as a bilinear form in terms of quaternions:
B = HE" (4.24)

[t is easy to show that the matrices H and G verify the relations:

HHT = cgT =1
HH=cTG¢ =1-8& (4.25)
Hé - Gé =0

4.5 Different choices of quaternions

In paragraph 3.2, we have introduced four possible choices of quaternions:
- Euler parameters € = ey + e

Rodrigues parameters B o= ) + b

CRV’s parameters € =8 +c

Linear parameters ¥ = % + 8

We have mentioned that although linear parameters constitute a unit quaternion, they
do not verify the rule of double guaternion product to express a retation. The only unit

quaternion that verifies this rule is the Euler parameters set.

Rodrigues and CRV paramelers can be seen as derived [rom the Euler parameters by

means of a conformal transformation:

£ :—
0
_ ik (4.26)
= 14 ep
where their respective norms are given hy:
B* =1 + |b)?
B0 ol -

l&* = ¢ + llell* = (4 - e)?
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Then, although they do not form a unit quaternion, they can represent a finite rotation
through use of quaternion theory after modifying the expression (4.9) to account for their
non-unit length as follows:

1 ST
T L
1+ ||b]|?
p (4.28)
cTe

= =)

Developing the products (4.28) as in paragraph 4.4, leads to the expression of the rotation

operator in terms of the Rodrigues parameters and of CRV's:

1 z T —_ h
1 2 2 T s
R = m {{ﬂﬂ —_ ”f'” } 1 4 2{{‘.(‘. - E—'Dﬂ])

(4.29)

Composition of rotations can be easily and economically performed in terms of Euler
parameters, by making use of the quaternion product rule (4.17). The resulting Euler

parameters to two partial rotations e, e, are next computed:

£n - €iaf20 — ©1-€3 {4 3[}:.
e Ein@2 + €ape1 + ez X e )

Laws for the composition of rotations in terms of Rodrigues parameters and CRV's
can be derived from the quaternion product by modifying the equations to acecount for
their non-unit length. For instance, when working with Rodrignes parameters, we say
that the resulting guaternion from the composition of two rotations gl,-l;g is given by
QE]_EQ, where « is determined such that the scalar part of the resulting quaternion b
equals 1. From equation (4.3), we have:

(bibz)o = 1 — by-by (4.31)

Then, the Rodrigues parameters of the composite rotation are:

1
b = ;=55 (b + bz + buxby) (4.32)

When working with the conformal rotation vector, the resulting quaternion is com-
puted as o€ €3, where « is now determined so as the scalar part of € verifies:

a2
i lE'__S,HEL (4.33)

By using equation (4.3) and aller imposing this condition, e results
16— |le|?

pteg i 4.34
S{iﬁlnﬂza—‘fl'ﬂg} { ]
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Starting from equation (4.17), and after rather lengthy computation we get the result:

4
i ————{ gty Cz0CGi T e XC 4.35
(4 —c10)(4—e20) +clucgu_c1.cﬂ{10? 20c1 + eaxey)  (4.35)

5. THE ALGEBRAIC APPROACH: MATRIX ALGEBRA
5.1 The Special Orthogonal group - Parametrization of rotations [9]

Let SO(3) be the (Lie) group of proper orthogonal linear transformations:
50(3) = {R : R? 8 |RTR = 1, detR = +1} (5.1)

Ceometrically, each element R of SO(3) represents a finite rotation, so that SO(3)
equipped with the matrix product (or composition of rotations) forms the non commuta-
tive group of rotations. The positive sign of the determinant distinguishes rotations from

reflections, which are characterized by negatives values of the determinant.

Although R is a 3 x 3 matrix , the orthonormality requirement leaves only three free
paramcters in it. Cenerally speaking, we may write:

R = R{a“ﬁ:g,{tg] 1:52}

where o1, oz, @5 are three independent parameters retained to described the rotation. Var-
ious choices exist, according to the adopted technique of representation, i.e. Euler angles,
Euler parameters, the conformal rotation vector, the rotational vector and Rodrigues pa-
rameters, as discussed in paragraph 3.2 . In this section, we will first employ the rotational

vector:

¢ =ng¢ (5.3)

We recall that the exponential map gives the rotation operator in terms of the rotational

vector:

o~

B = 1+$+$32+---=m{¢] (54

where Eﬁ is the skew-symmetric matrix formed by the components of ¢:

EE:;_.,- = —&ik Ok (55)
1 = 5.5
$i = —5 Eisk ik

9.4 Composite rotations:
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Let R be the rotation operator mapping a rectangular Cartesian frame
{0;E{,E3,E3} into the orthonormal frame {O";t1,ts,t5} :

t; = RE; (5.6)

Physically, it can be interpreted as a rigid body rotation from the initial to the actual
configuration, and {O; E;,E;,Es} and {O";t,,t2,t5} can be viewed as a material frame
and a body-attached or moving frame respectively.

Let us now consider an incremental rotation which carries from the actual frame {t;}

to an updated frame {t}}. There are two ways ol describing this incremental rotation:

i) Via a left translation (spatial rotation)
In this case the total rotation from the initial frame is given by the left-application of
an incremental rotation operator Ry to the actual rotation R:
R = RpyR
J o (5.7)
t; = Ryytr = Ry RE;

The incremental rotation can be seen as a rotation applied to the actual frame {t;}.

-
L}

Via a right translation (material rotation)

Now the total rotation from the initial basis is given by the right-application of an
incremental rolation operator Ry lo the actual rotation R:

R’ = RRy,

5.8
t; = RR(;) E; )

The incremental rotation can be seen as a rotation applied to the material frame {E;}.

Let @ and @ be the rotational vectors corresponding to the spatial rotation Ry and

to the material rotation R (), respectively:

Ry = exp (8)

Ry = exp(O) 8

Using equations (5.6-T), it can be easily seen that the spatial and the material incremental
vectors are mutually related by:
# = RO (5.10)

Other parametrization techniques
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The formulas developed in this paragraph using the rotational vector, have a cor-
respondence with similar relations obtained by using the other parametrization tech-
niques. We can define spatial and material versions of the angular increments for the
other parametrizations that we have discussed in paragraph 3.2:

Ry = «plf) = filb) = fole) = falc)
R{,} == ﬂp{@} = fl[B] = fg[E} = fg[(:]

where f;( ),f2( ),fa( ) were explicited in equations (3.14), (3.22) and (3.30), and where
(b,B), (e,E), and (¢, C) denote the spatial and material angular increments in terms of

(5.11)

Rodrigues, Euler and CRV parameters, respectively.

By noting that Ry = R Ry, RT and by using equations (3.14),(3.22) and (3.30), it
can be shown that equation (5.9) which relates material and spatial increments, also holds

for these parametrizations:

b =RB
e =RE (e = Ey) (5.12)
g = R

The cxpression of the composition of rotations in terms of the quaternion product
corresponds to the left translation composition. Right translation updating is simply
obtained by commuting the operands, thal is to say, by expressing Lhe composition as
the (quaternion) product of the parameters corresponding to R times the parameters
corresponding to R(.y. For instance, if by are the Rodrigues parameters of the actual
rotation and b and B are the Rodrigues parameters of the spatial and material increments,

the parameters b’ of the updated rotation are:

{1 } bb { * }
b [ = g l_(b+ by + bxb
1 1—5-51{ 3 % bu) (5.13)

(o} =

5.3 Derivatives of the rotation operator

o

- 1
L& {1-—1;1-}3“}1 + B + b]_XB}}

Linearized incremental rotations are given by the application of the directional (Fréchet)
derivalive to the rotation operator. They consist thus on skew-symmetric matrices applied

to the actual rotation:

DR-E =

w0 (5.14)
DR-© =
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The skew-symmetric tensor 8 {E)) represents infinitesimal or linearized spatial (material)

incremental rotations about the eigenvector # (@) associated with the only zero eigenvalue:
d06=0 ; ©O =0 (5.15)

The axial vector # (®) and the skew-symmetric tensor ] {é] are mutually related by

equations (5.4). The set of skew-symmetric matrices form the linear vector space so(3):
- e caulp
s0(3) = {® | 8+© =0} (5.16)

This space is isomorphic to %2, the isomorphism being defined by equation (5.4).

Given any R € S50(3) and any © € s0(3), linearized incremental rotations constitute
the tangent space T'p SO(3) at a point R € SO(3), which may be represented in two
alternative forms

i) Left invariant vector fields defined by the left application of the increment to the
actual rotation. Accordingly we set

'TRSO(B) = {fR Y 8¢ s0(3)) (5.17)

Geometrically, an element OR € "I'p 5O(3) corresponds to an infinitesimal rotation
@ € so(3) superposed onto a finite rotation R. Following standard usage, we define the
variation of rotations expressed in terms of spatial components of angular variations,

as follows:

e

SR = 60R (5.18)

ii) Right invariant vector fields. They are characterized as in (i), but with a right trans-
lation instead of a left translation:

TRSO(3) = (RO ¥ O €s0(3)) (5.19)

Geometrically, an element RO e TR SO(3) corresponds to a finite rotation superposed
onto an infinitesimal rotation ® € so(3). The variation of rotations is now accordingly
defined in terms of material components of angular variations:

§R = R 60 (5.20)

We will say that so(3) forms the tangent space of SO(3) at the identity 1 € SO(3),
and we employ the notation so(3) = T 50(3). Obviously, no distinction is made in this
case between left and right applications of the increment.

The tangent space Tp SO(3) is isomorphic to R and so, we can talk of linearized
rotation increments (the axial vectors # and @) as vectors in R :

TpSO(3) ~ s0(3) ~ ®° (5.21)
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Other paramelrizalion techniques

Again, we are able to establish a correlation with the other parametrization techniques.
Linearized increments are given by the application of the Fréchet derivative to the rotation

operator, now in terms of the employed parameters, giving:

.|'5'R-l::~-——':i fi(sb)R = 2b R
de | ea

Bl 3 v Rf(sB) = 2R B
de | sy

DR-E=-d— faolce) R = 2e R
85 | .oy
d (5.22)

DR-E = —| Rfy(cE) = 2R E
@6 f,

DR-E_d— fslec) R = ER

a de 5:03 a

d ”

DR-C = — R :(eC) = RC
dEs:l]

Now, the skew-symmetric tensors !;, B, &, ﬁ}, ¢ and C give the linearized incremental
rotations with respect to the current rotation R € SO(3). Since Rodrigues and Euler
parameters are a function of (¢/2), there appears a factor 2 in their expressions. We
recall that the CRV's definition was corrected so that its variation coincides with the angle

variation.

We are able to define tangent spaces to SO(3) at R, formed by the set of linearized
increments in each parametrization technique. These tangent spaces can be seen as orig-
inated by using different internal products than that we have (implicitly) used to build
TR SO(3) and T SO(3).

Straight lines in cach tangent space generate curves on SO(3). These curves are
geodesic lines with respect to an appropriate measure, which is related to the internal

product associated to each parametrization technique.
5.4 Relation between increments to two different rotation operators

Rotations are objects belonging to a nonlinear manifold, the so-called special orthogonal
Lie group SO(3). Since SO(3) does not form a vector space, certain operations are not
allowed in it (i.e. interpolation). In order to make computations we work with the vector
space I'p SO(3), the space of rotation increments with respect to a given rotation R .
Interpolation in SO(3) will then be defined in terms of the interpolation in T'g SO(3).

Let us address a problem related to the operation of interpolation: we want to deter-
mine the relation between linearized rotations ai the tangent space to SO(3) at R(4) and
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Figure 13: Projeciion of the rolation increment

linearized rotations belonging to the tangent space to SO(3) at a second point R(m)-
Let R(a),R(m) € SO(3) be two given rotations located such that:
R{B} = R.[ A) exp[ll?] [5,23}
where:
R{A.} ‘Ir = TR[A}SD{E}
Let Rp), be the perturbed rotation at R(p) :
Ris). = R(p) exp(s@p)) (5.24)

where R g @[B] € Tr,p,SO(3) . Its axial vector is denoted as @p) in order to remind
the vector space to which it belongs.

R.(g) ¢ can also be expressed in terms of increments belonging to the tangent space at

R[B]a = R[A] l:::{pl{"irfg} {5.25)

T; == ‘I' + E@[ﬁ]

and where @) gives linearized increments in Tr ,,SO(3). Note that the addition has
meaning since W and @4 belong to the same vector space.

Let us now determine the relation existing between @, and @ g (We note that
both vectors refer to the same object, the rotation increment from Rg) lo R(n). ). The
sifuation is illustrated in figure 13.
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By equating (5.23) and (5.24), we get the expression:

exp{aé{n}] = exp(—¥) exp(¥,) (5.26)

The latter equation, in fact, indicates that the rotation represented by £®(p) results
from the composition of two rotations: one of axial vector — % and the other with axial

vector ..

We have mentioned that the composition rule is rather difficult to express in terms of
rotational vectors, but it is a simple algebraic expression when given in terms of Rodrigues
parameters. Let [:_F] be the transformation that gives the Rodrigues parameters in terms

of the rotational vector:

() : {Rot.wect.} — {Rodrigues param.}
= _ tan(]|®]/2) (5.27)
T 7 R

where || @] = (¥ - ©)3.

Then, we apply the law for the composition of rotations in terms of Rodrigues param-
eters (equation (4.32)), and we rewrite equation (5.25) to get:
1 s

E@(B} = 1_-[--II_J_E [‘I"‘ “E o E& s ‘I’] |:5+23}I

£

Next, we will compute the derivative of equation (5.28) with respect to £ at £ = 0.
By differentiating equation (5.26), we obtain:

d ade:))
E '_DE@{B} = ) {5.29]
The differentiation of the right-hand-side of equation (5.28) leads to the expression:
O(p) 1 B B
= = 14 |[¥Fx|k DT . 5.30
2 1+ |[o|2 {1+ W]} [A) (5.30)
The Fréchet differential of @ is computed as follows:
ey tan(|| || /2) 1 ]
D @ = | mtlelllrl (] m B+ n@en| G 5.31
S e )* 2ee([2]72) el

where the unit vector n is defined as:

.. )
i

Finally, by replacing equations (5.31) and (5.26) into equation (5.30), we obtain the result:

O(p) = T(¥) O(a) (5-32)



Chapter 1 53

with the linear transformation T{%) defined by:

sin || @ || ( EillII'I"II) L (SiII[II‘I’Hf’E])2 =
TY¢) = ——1 + (l-—— |n®n - = | ———= o 5.33

)= T £ 2\ (5:33)
It is clearly seen that when ¥ — 0 = T(W¥) — 1, as expected.

The inverse relation can be easily obtained by using equation (3.11). After some

algebraic steps we arrive at the final result:
Oa) = T7H(W) Op (5.34)
with the linear transformation T~ '(%) given by:

i _ iz . S R« 5
W= e (1 tantll‘I'H!z}) BaE g ¥ R

5.5 Expression of angular variations in terms of variations of the rotation pa-

rameters

Equation (5.32-33) can be particularized to the case in which one relates incremental
angle variations and rotation parameters variations. Clearly, if the rotation operator is

parametrized by using the rotational vector, equation [5532] states that:
60 = T(¥) §¥ (5.36)

Similar relations can be cstablished for the other techniques of parametrization. In
particular, when working with Rodrigues parameters, equation (5.30) shows that:

§6 = T(B) 6B (5.37)

with

T(B} = TTBIIE [1 + B] (5.38)

Expressions for Euler parameters and CRV’s can be obtained after replacing the re-
lations between Rodrigues parameters and Euler’s and CRV’s into {5.3?:}, giving:

5§Eq
= b 0 5.39
§© = T(Eo,E) { JE} (5.3
with the 3 x 4 matrix;
T(Eo,E) = 2 [-E Eol + E] (5.40)

and giving:

i@ = T(C) éC (5.41)
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with
et
4

1
(4 — Co)*

T(C) = [Col + € - ] (5.42)

The spatial components of the rotation variations 6@ are related to the material vari-
ations §® through the rotation operator R in the form:

50 = R 6@ (5.43)

The spatial variations of the rotation parameters é¢ are:
by = R oW (5.44)
Let us also note the following property of T:
R T(¥)RT = R (5.45)

This property can be shown easily by replacing equation (5.33) into it and by noting that
Rn = n. Then, the spatial components of rotation variations are computed in terms of

the spatial components of the parameters variation as follows:
50 = T(y) é¢ (5.46)

where we have used the fact that ¥ = .

We remark that the material and the spatial rotational vectors differ only in the
way incremnents are handled; so, although their values coincide for a given rotation, their
respective increments are not coincident but related through the rotation operator. We will

see that the same holds for velocities and accelerations, which can be seen as increments.

Similar expressions are developed for the other techniques of parametrization. It is
interesting to note that equation (5.45) is valid for all of them with the only exception of
the Euler parameters, which takes the form:

R T(eoe) |1 97| = Tleo,e) (5.47)
s 0 RT = 03 =
Thus, the final expressions we obtain are:
58 = T(b) 6b
be
= T(eq,e) {5;} (5.48)
= T(c) &c

5.6 Range of validity of the different parametrizations
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By analyzing the definitions of the Rodrigues and CRV parameters, we see that they are
limited to values of ¢ in the intervals (—u,7) and (—2w,2x), respectively (see equations
(3.19) and (3.26) ). At the extremes of these intervals they present a singularity, when the

tangent trigonometric function goes to infinity.

The rotational vector does not show any singularity in its definition, and it can go up
to any magnitude of rotation. However, it evidences a “hole in differentiability™ for values
of ¢ = £27, in which the matrix T(%®) becomes singular (see equations (5.33-35) }. This
fact precludes the direct employment of the rotational vector for rotations of arbitrary
magnitude. We note here in pass, that a similar analysis for the CRV parameters limits
further their range of application to the interval ¢ € (—3.709, 3.709).

The Euler parameters are the only set that allow to treat rotations of arbitrary mag-
nitude, without resorting to any special trick. They do not possess any limitation from
the point of view of their definition, and equation (5.39), which gives the angles variation
in term of the parameters variation, can be easily inverted for any value of rotation:

6 Eq 1 [ -E”
{.:'SE} Gy [E.;.1~E e Al
The latter expression is obtained using equations (4.25).

The inconvenience of the limitations in the magnitude of rotations can be surmounted,
for the rotational vector and the CRV parameters, by working only with values in the range
|¢| < or. Clearly, this range is enough to represent any rotation in three dimensional space;
rotations exceeding this range can be transformed to fall inte this class. The interest for
doing this trick is to allow to use 2 parametrization with a minimal set of parameters, and

consequently minimize the number of degrees of freedom of the discretization.

The limitation |¢| < « is translated in terms of parameters:

]| < =

5.50
fe] < 4 )

Whenever any rotation violates condition (5.50-a), the rotational vector is corrected

o oM :
v - (1-5q) (5:51)

It can be readily verified that W™ satisfies the two f{ollowing conditions:

) R(¥) - R(D) (exp(¥ ) = exp())

according to:

i) w<||¥[<2r = [T <7

A similar reasoning leads to the following formulas for the CRV parameters:

o = (]Té%—g) C (5.52)
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where C” verifies the conditions:

R(C*) = R(C)
ICl=4 = |C*<4
6. ANGULAR VELOCITIES AND ACCELERATIONS
6.1 Spatial and material angular velocities and accelerations

The tensor of angular velocities gives the variation in time of rotations. It can be expressed

in terms of spatial or material components of rotations, as we did for the incremental

rotations: i
bW
) e (6.1)
0 =R —
dt

where & and 12 represent the skew-symmetric tensors of spatial and material angular
velocities. The corresponding axial vectors w and {1, related to them by equation (5.4),

are the spatial and material vectors of angular velocities.

The skew-symmetric tensors of spatial and material angular accelerations are defined
by time-differentiating the angular velocities:

&#a=5=RRT + RRT
. (6.2)

=RTR + RTR

o1

-
The angular accelerations @ and A are given by the corresponding axial vectors.

The objective of this section is to give the explicit expression of the angular velocities
and accelerations as a function of the selected parametrization technique. We will separate
the treatment of non-invariant parametrizations (i.e. Euler angles) from that of invariant
ones (i.e. the rotational vectors). In the first case, the velocities expressions will be
developed based on geometrical considerations, while in the second case we will make use

of the relation (5.32), which was built from an algebraic point of view.

6.2 Non-invariant parametrizations

Euler angles

One could proceed to a direct computation by differentiation of the rotation operator

and subsequent application of the equation (6.1). However, it is more simple (and elegant)

to make the following geomefric reasoning.
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In terms of Euler angles, the velocities vector results from three superposed motions

around the three following intermediate coordinate axes (Figure 14):
- a rotation around Oz with velocity :ﬁ:
- a rotation around Oz, with velocity g.

- a rotation around Oz, with velocity t,b Then, we have:

0 ] 0
w= (0, + Rz, ¢) ¢ 0 ¢ + R(z,¢)R(zy,0) 0 (6.3)
¢ 0 ¥

After making the computations, one finds the expression of the angular velocity:

0 cos¢p singsind -gfv

w= |0 sing —cos¢sind g (6.4)
1 0 cos @ i

where qﬁ 0 t,"J are the time derivatives of the rotation parameters.

Figure 14: Angular velocities in terms of Euler angles

Bryant angles

With a similar reasoning to the preceding case, we can decompose the angular velocity

in the form:
- a rotation around Oz with velocity 1{)
- a rotation around Oy, with velocity é.
- a rotation around Ozs with velocity :';5

After making the computations, one finds:

0 —siny cosycosd q’;
w= |0 cosyY sinthcosd g (6.5)
1 0 —sinf i
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where t,{a 6 qﬁ are the time derivatives of the Bryant angles.

6.3 Invariant parametrizations

We have shown in paragraph 5.5 that angular variations are related to the variation of the
rotation parameters by the matrix T, and we also gave the expression of T in the different
parametrizations. If we now consider that this variation is made in a time differential, it

is easy to recognize in (5.36) the expression for the material angular velocities:

0 = T(¥) & (6.6)

The latter equation is stated in terms of the (material) rotational vector and its time

derivative. When working with the other parametrizations, similar expressions can be

developed:
1 =TBB
~ T(Eo,E) {};”} (6.7)
= T{C) €

Spatial angular velocities are related to the material ones through the rotation oper-
ator (w = RQO). By using, as in paragraph 5.5, the fact that R TRT = T, we oblain Lhe
result:

w = T(¢) ¢ (6.8)
The same can be done for the other parametrizations, giving:

w = T(b) b

= Weaie) {1“ } (6.9)

= ‘Ble) ¢

The angular accelerations are computed by time-differentiating equations (6.6) or

(6.8), depending on whether material or spatial components of rotations are employed:

A = T(0) ¥ + T(V) @

S5 g (6.10)
a =T ¢ + T ¢
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Similarly, for the other parametrization techniques, we get

A=TB)B + T(B)B

= T(Eq,E) {I;:“} + T(Ey,E) {EE'“}

= T 4+ T C
(6.11)
a =Tb)b + T(b)b

= Plas0) {";“} i g0} {‘f:}

= Tlc} € + T(ec) ¢

We will see, after computing T{ED,E}, that the acceleration equations in terms of

'}

Euler parameters are directly simplified to

A = T(Eg,E) {

n = 'F'ﬂ, {

The expressions of T for the different parametrizations are developed in the next subsec-
tion.

(6.12)

f'a:t
ﬁ: tljl

Dervatives of T

The Fréchet derivative of T(%¥) will be first evaluated, by differentiating equation (5.33),

giving:

DT - AW — (cos”!'[l” _Em”'I’”) n-Aw 1+ (1_ sm||‘IF||) [&W®u+n®&§'}

Il %] %] %]
_ gin || || ) n- AU
+ 3 ——— —cos||T|| -2 m@n
(2 S o191l -2) " o
F((4RlD)"_sien) 2aw g 1 (andoln* g
(lwll/2) | |l 2\ (llwll/2)
(6.13)
Computation in the limit, when ||®|| — 0, gives:
DT : ;_w;r‘ = —%a{fr (6.14)

w-0
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The term T'(®)W is then computed as follows

, : in || ®|| LW
(W) = (l-i—cosﬂ'I'” 5] |-)“ i

@
el /el

. b . a
sin | ®] ) n. ( sxnuwu) L@
—+ 3 —eos ||W)| —2 e + | 1— o
( Tl ol ] TIANET

sin(|21/2)\* _sinf @]\ n-¥ .
(( ]/ ) ] ) 7 el

(6.15)
At ¥ — 0, this term becomes zero.

The computations for the Euler parameters are more simple, since the matrix T(Eq, E)

is linear:
AFy

DT(E,,E) { i

} = 2[—-AE AE;1+ AE| (6.16)

Then, we see that the correction term for the accelerations becomes:
. E g = ~1 [ E
1,8 { 21 = 2[5 Ba+B]{B} - o (617)

A similar computation leads to the following correction term when using the CRV

parameters:
: ; 1 T eI | ; g
QI = ~ Y 3eTeIC + ([4—r;:c.JIIE|-~+E [CTCJZ) ¢
P (6.18)

fo‘:]

6.4 Linearization of angular velocities and accelerations

Linearized spatial angular velocities are obtained by computing the Fréchet derivative
Di@w- @ . To this end, we first calculate the partial results:

DR-9=0R+ IR

5 = (6.19)
DRT .0=-R7T9

where a superposed dot means differentiation with respect to time. Using the latter equa-

tions, we are able to express:

—~ A

D&-0=DRRT) - 1=0+|060-w6] (6.20)
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The term between brackets (Lie bracket] can be expressed in terms of axial vectors by
using the identity:
(05 -G8 h=(xw)xh VheR® (6.21)

Then, equation (6.20) is finally expressed in terms of axial vectors as follows:
Dw-0=0—wx0 (6.22)
By following a similar procedure we obtain:

DR .9 =RTH
Dw-@=R© (6.23)
D1-®=0+0x0O

We can correspondingly define the variation of angular velocities:

bw=60—wx =R 5O

. . 6.24
60 =RT68=60+0 % 6O 9:34)

The skew-symmetric tensors of spatial and material angular accelerations are defined
by time-differentiating the angular velocities (egs.(6.2)). Linearized angular accelerations
are computed by following an entirely similar procedure to that of angular velocities,
giving:

PDa-0=0-wxf—axi

DA 0=RT(I—wxd) =RTI-02xRTH
Da-®=R(O® 10 xO)=RO } wx RO
DA-@=0+0xO+Ax0O

(6.25)

We remark that only variations with respect to angular displacements in the spatially fixed
inertial frame will be employed afterwards to compute the inertia forces.

The developed expressions express variations with respect to increments that lie in
the tangent space to SO(3) at the actual rotation. They are independent of the technique
employed to parametrize the operator R. By projecting the increments variations to the
chosen parameter space, we will be able to express the variations of the physical magnitudes
in terms of variations of the rotation parameters.

6.5 Angular velocities and accelerations in a moving frame

In different applications, we will need to compute the velocities and accelerations in an

inertial frame from measures taken in a moving frame. For instance, in the superelement

forinulation we will express thal Lhe actual rotation at one point of the structure results
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from the composition of the rotation of a frame attached to the considered point relative

to a reference frame, superposed onto the rotation of the reference frame itself:

R = RoR.u (6.26)

We remark that the reference rotation Ry is not fixed, but instead it gives the orientation
of a frame that follows the mean motion of the hody. Then, in our computations we should

consider terms proceeding from the variations of Ry.
Let us for instance compute the variation of angular displacements. By dillferentiating
both sides of equation (6.26), we get
R 60 = Ry §6¢R,m + RoRrer§Ore (6.27)
Now we premultiply by RT to obtain:
§6 = RT, 66y R,y + 60,4 (6.28)

This equation is rewritten in terms of axial vectors as follows

= o T+ real ) 6.20
50 rT, 5@ 5@

rel

equation from which we finally obtain, in terms of rotational vectors:

T(®) 6% = RT, T(Uo) 6@ + T(¥,)6¥, (6.30)

The same procedure can be followed to compute the angular velocity in terms of the
velocily of the relerence [rame and of the relative velocity

0 =R, + @y (6.31)

rel

After time differentiating the latter equation we obtain the expression of the angular
accelerations:

A=RT, Aq + A,y — Q.uxRT 12 (6.32)

rel

Similar expressions could be developed for the other parametrization techniques.

7. INCREMENTAL ROTATIONS AS UNKNOWNS

Nonlinear structural problems, either in statics or in dynamics, are formulated in a se-
quential form: the final solution is obtained hy solving a sequence of partial problems. For
instance, step-by-step algorithms are used to time integrate the nonlinear ordinary dif-
ferential equations that constitute the nonlinear dynamic problem. Then, we are able to

express the problem to be solved in an incremental way: we know a previous solution and

we want to determine the increment necessary to obtain the new admissible configuration.
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Then, rotations are to be treated in an incremental form. At each stage of the solution
process one determines the incremental rotation necessary to carry from the previous
converged configuration (or reference configuration), to the current one:

R = R, Rin (7.1)

This equation is rewritten in terms of rotational vectors as follows:

o

exp(®) = exp(Tres) exp(Tina) (7.2)

where ¥ is the rotational vector corresponding to the actual rotation R, ¥, . is the
rotational vector corresponding to the reference rotation R,.r, and W;,. is the rotational

vector corresponding to the incremental rotation R;,...

This approach can be seen as an updated Lagrangian point of view. The reference
rotation is fixed, so that the expressions of variation of angular displacements, velocities
and accelerations are simply obtained in terms of the rotational vector of the incremental

rotation by replacing ¥ by W, . into eqns. (5.36, 6.6, 6.10) :
0 = T(Win) Tine (7.3)
A = T{q’iﬂc} ‘i'i:m: i T{winc} ‘j'inc

8. CONCLUDING REMARKS

The representation of finite rotations has been studied, and the different tools available to
describe them were presented. The rotation operator was derived starting from different
approaches and the problem of parametrizing it was given a particular attention.

Various systems of parametrizations were discussed, i.e.:
- Euler angles
- Bryant angles
- Euler parameters
- Rodrigues parameters
- The conformal rotation vector (CRV)
- The rotational vector
- Linear parameters

In the following, we will make a brief comparative study of these sy=tems:
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i)

i)

Chapter 1

A first distinction can be made from the point of view of invariance: Fuler and Bryant
angles are non-invariant measures: they are oriented fo treating particular problems
and so, they are not well suited to describing general problems. Also, they present a
point of singularity. The other parametrizations rely on the Euler representation of a
finite rotation by means of an axis and an angle of rotation.

Euler parameters, CRV parameters and the rotational vector can be used to represent
rotations of any magnitude in the interval ¢ € [—m,7]. On the other side, Rodrigues

and linear parametlers present a point of singularily al |¢| = .

With regard to rotations out of the interval [—=, 7|, Euler parameters and the rota-
tional vector do not present singularities, while the CRV’s go to infinity when |¢| — 2.

When analyzing the differentiability properties of the rotational vector and Euler and
CRV parameters, we see that all of them have a continuous and invertible derivative T
in ¢ € [—x,7|. However, the only parametrization that allows going to any magnitude
of rotation (out of the interval [—m,n]) is the Euler parameters system. The rotational
vector presents a singular point (T is not invertible) at |¢| = 27 and the CRV’s
parameters at |@| = 3.709.

The angle limitation can be easily surmounted for the rotational vector and CRV
parameters, by working only in the interval |¢| € [—m, #| and transforming rotations
that exceed this range to rotations within it by simply adding or subtracting 2= to
the rotation angle. However, we should note that at |¢| = m, the CRV’s paramelers
are closer to the singular point than the rotational vector is, so one would expect a
better behavior of the latter parametrization from the point of view of convergence of

the numerical algorithm.

If we limit now the analysis to those parametrizations capable of handling any mag-

nitude of rotation, we can say in addition:

iv)

vi)

vif)

The rotational vector and the CRV’s parameters have the advantage of working with a
minimal set of parameters, while the Euler's form a set of four dependent parameters
linked by a constraint. This poses the inconvenience of requiring the addition of a
Lagrange multiplier to account for the constraint at each (rotational) node of the

discretization.

Euler parameters lead to simple equations, while CRV’s and the rotational vector give
more complex ones, specially for the angular accelerations evaluation.

CRV’s and Euler parameters do not require the evaluation of trigonometric functions,
while the rotational vector implies the computation of two trigonometric functions to

oblain the rolation operator.

A simple compogition rule can be derived from quaternion theory for the Euler pa-
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rameters representation. Tt can be also extended to the CHV's parameters. The
rotational vector can not give a simple composition rule based on this theory since it
does not form a quaternion. Another parameters system that verifies the quaternion

composition rule is the Rodrigues parameters system.

viii}] The rotational vector gives a more simple geometric characterization of the rotation,
while the others require the interpretation of the result in terms of the values taken
by more or less complicated trigonometric functions.

As a final conclusion, concerning the selection of a parametrization system to he
applied in a general mechanisms problem, we can say that if one accepts to pay the cost
of handling four rotation parameters per node with the consequent constraint equation,
the Euler parameters are the better choice since they give fairly simple equations with a
small degree of nonlinearity. On the other side, if one wants to employ a three-parameters
system both the CRV’s set and the rotational vector can be conveniently employed, but
we consider the rotational vector could be a better choice since it has a direct geometrical
meaning and also it could give better convergence properties of the nonlinear seolution
algorithms.
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