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Introduction

The determination of displacements and efforts in members of spatial mechanisms requires
a particular technique of analysis that is not considered in most standard codes of structural
analysis. In fact, these ones have been conceived with the aim of analyzing structures fixed
or almost fixed in space. Thus, they adopt some simplifving hypotheses of linearization of
rotations and inertial terms. These hypotheses are no longer correct, for instance, in the
extremely simple case of a crank slider mechanism.

In the past, most mechanisms as vehicles, robots and antennas have been modeled
as rigid multibody systems. The rigid-body assumption served as a basis for almost all
the initially developed codes for mechanism analysis. This assumption gives good results
as long as the elastic deformation in members remain small, the case in many practical

mechanical systems.

The performance specifications for newly developed mechanisms usually require high
speeds and lightweight construction, while imposing additional criteria on design proce-
dures. Typical requirements are: reduction of power consumption, increase of external
loading, reduction of acoustic radiation, and generation of more accurate output charac-
teristics. Elasto-dynamic phenomena that are of little consequence in operating low-speed
mechanisms, present a non negligible effect under current working conditions. Links vi-
brate due to their inherent flexibility and to the more severe force fields that act upon
them. The traditional rigid analyses are inadequate for the analysis since, by definition,
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these models are unable to represent the phenomena one intends to analyze.

Technological applications arise in several disciplines, such as machine design, robotics,
aircraft dynamics and spacecraft dynamics. Elastic linkages, rotating machinery, robot
manipulator arms, aircraft propellers, helicapter or turbine rotor blades, flexible satellites
and earth orbiting large space siructures furnish some examples. Another example of
interest appears when the kinematic structure of the mechanism mvolves closed loops, as
for instance in some designs of folding antennas. The state of such a mechanism is very
sensitive to small changes in geometric parameters: even small deformations of particular

bodies may result in large motions of the rest of the system.

In some cases elastic deformations are even desirable. For instance, in some mecha-
nisms conceived to be deployed in space, member flexibility provides the mobility to the
system. If members were rigid, the system would become a structure. Another example is
furnished by off-road vehicle design, where the relatively soft chassis contributes to good

ride behavior.

Mechanism analysis can be seen as a branch of structural dynamics. Several partic-
ular aspects characterize this discipline, giving to it a special flavor. The techniques for
analysis of mechanisms have progressed steadily over the past twenty years. The field has
initially evolved well separated from finite element structural dynamics, but nowadays,
both techniques are more and more interrelated. In this thesis, we look at the mechanism
as any other case of structural dynamics. We put into evidence its own peculiarities and
we discuss the special techniques that should be applied to solve the problem, by always
trying io rest within the well-known techniques of analysis already developed in structural

dynamics.

Towards the conception of a general purpose program
for the analysis of mechanisms

The discussion that follows shows some of the options the analyst is faced to in order to
conceive a general purpose mechanism analysis program.

Two principal systems of coordinates were introduced in the literature to deal with

the kinematics of rigid multibody systems:

1. The method of Lagrangian coordinates, largely used in robotics [1-3], has the merit
of keeping to a minimum the number of generalized coordinates and of giving direct
access to the displacements at joints. However, it suffers from such drawbacks as
complex description of multi-loop mechanisms, relatively difficult generalization to
flexible mechanisms and high degree of nonlinearity.

2. The method of Cartesian coordinates [4-6] has specific attractive features such as gen-
erality, lower degree of nonlinearity than the previous approach and easy topological
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description. Coupling is simply expressed as a sct of constraints at joints. As a result,
the number of kinematics unknowns is significantly higher than with the Lagrangian
coordinates approach. However, expressing and treating the constraints becomes in-
efficient from a computational point of view when dealing with flexibility effects in
3-D motion.

Both techniques share the preferences of analysts. The Lagrangian coordinates are usually
applied to model small systems with particular topology, while the Cartesian coordinates
find application into modeling general systems of any size and with any topology. The
finite elernent method, in the standard form one knows from structural analysis, may be
seen as a variant to the Cartesian coordinates approach [7-12]. However, finite elements do
not necessarily imply the use of Cartesian .c-:uordina.tes, since many programs make finite

elements using Lagrangian coordinates (see, e.g. [3,13]).

Techniques for modeling flexibility effects in mechanisms have naturally evolved from
the initially developed rigid body models. The finite element method gave the theoretical
basis to develop most existing codes for analysis of flexible mechanisms. Usually, their
modeling capabilities are either restricted to bodies composed of beam elements or to
bodies of any configuration whose behavior is represented by a modal expansion. Then,
iwo dillerent techniques of formulating the equations of motion can be distinguished:

1. Most flexible analyses assume that the absolute motion of each link may be decom-
posed into a rigid-body displacement upon which is superposed a small deformation
[14]. This deformation is measured relative to a local coordinate system fixed in the
element in an undeformed reference state. A floating frame approach has also been
proposed [11], in which the coordinate system is not strictly fixed to the element but
it suffers slight orientation changes with deformation. With the assumption of small
straing, the use of a local frame allows a simple expression for the total potential
energy of the structure. By contrast, the expression of the kinetic energy of the sys-
tem takes a rather cumbersome form. The resulting equations of motion, although
restricted to small strains, are nonlinear and highly coupled in the inertia terms due
to the Coriolis and centrifugal effects, as well as inertia due to rotation of the floating

frame.

2. A methodology that represents a full departure from traditional approaches is based
on referring the motion of the system to the inertial frame. Then, the kinetic energy
of the system is reduced to a simple quadratic uncoupled form, resulting in a drastic
simplification of the inertia operator [15-18]. The stiffness operator becomes now
nonlinear; the essential step needed in developing this alternative is the use of finite
deformation structural theories — rods, plales, shells, three-dimensional continua —
whose appropriate strain mecasures have the required property of invariance with

respect to rigid body motions.

Again, both options find their own range of application. The first one continues to be
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employed, mainly, when modeling large structural assemblies composed by many finite
elemments, resulting in the superelement technique or component modes or any other tech-
nique of second-stage discretization. In this way, mechanism analysis programs can take
advantage of the general modeling capabilities of existing linear analysis codes. The only
limitation is that the deformation of the link in the local frame should remain small.

Many beam finite elements for mechanisms have been developed by following also
this idea. However, a common characleristic of mechanism links is their large flexibility
as one tries to reach the limit of resistance of the material. This flexibility often makes
inappropriate the assumption of linearized strains, and the beam elements based on the first
technique of representation are no longer correct. For this reason, the secondly mentioned
method of discretization is almost considered of }Jza.nda,t.mry application in most newly

developed codes.

The representation of finite rotations poses a severe difficulty in the development of
mechanism analysis codes. The problem lies in the algebraic structure of rotations. Finite
rotations in 2 dimensions can be casily handled since they form a vector space. Then, the
composition of two consecutive rotations is simply given by the (trivially commutative)
addition of the two angles. Many initially developed programs were limited to the handling

of planar mechanisms owing to the simplification in manipulating rotations.

On the other hand, finite rotations in three-dimensional space dn not form a vector
space. Then, for instance, one should make complex operations to compose successive
rotations. A number of essential questions arises as to which is the nature of the underlying
differential structure and which is the better technique of representation. Some answers
to the first question can be found by appealing to techniques of differential geometry [15]
A variety of techniques of representation have been proposed in the literature, trying to

arrive to the best solution to the second question. This includes:

1. Euler and Bryant angles have been used traditionally to represent finite rotations in
rigid body dynamics, vehicle dynamics and dynamics sciences in general. Ref.[19]
employed Euler angles in a program for multibody dynamics. Later, these authors
changed the system of representation since they found several inconveniences due to

the singularity of Euler angles for certain magnitudes of rotation.

2. Euler parameters are currently employed in most rigid multibody dynamics codes.
They form a set of four parameters, linked together by a normality constraint. Quater-
nion algebra [20-24] puts into evidence a scrics of helpful properties of this set of
parameters and their relation to finite rotations. Among their attractions, we can
mention a small degree of nonlinearity and no singularities for any rotation. Their
main disadvantage is the redundancy that obliges to add a constraint of normality,
leading to five degrees of freedom at each node to represent rotations.

3. Many methods have been proposed to represent rotations using only three parameters,
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e.g. Rodrigues parameters, the conformal rotation [25-26] vector and the rotational
vector [27]. The first set is discarded since it presents a singularity at certain mag-
nitudes ol rotation. Both other sels have been used with success to model dynamic
problems. We have employed the rotational vector in this work, for reasons that range

from simple geometrical meaning to no redundancy in description.

The formulation of joints constitutes a central aspect in the design of a reliable pro-
gram for mechanism analysis. The formulation should be flexible enough to allow an easy
introduction of the large variety of existing joints with a minimum effort for the analyst.
At the same time, it should have a small degree of nonlinearity, so as to not generate a time
consuming nucleus in the program. We will see in chapter 3 that this aspects are closely
related to the delinilion of a good formulation for handling rotations. We can distinguish

two main approaches in the literature:

1. When using Lagrangian coordinates, joints are easy to formulate since one has di-
rect access to the internal displacements at joints. The main drawback relies on the

difficulty to generate the equations of complex mechanisms in a systematic way.

2. Cartesian coordinates allow to generalize and systematize the formmilation of joinis.
The number of degrees of freedom is increased, owing to the presence ol Lagrange
multipliers. Besides, these ones introduce some problems — for instance, instability of

constraints — during the time integration that ought to be specially taken into account.

The approach of Cartesian coordinates was followed since it is the only one that allows to
generalize and systematize the formulation for all kinds of mechanism topology — a crucial
point for a general purpose program.

The latter aspect to consider is the time integration algorithm. There exist, again,
a close inter relation with previously mentioned points, e.g. the formulation of rotations
and the formulation of joints. We have already mentioned that the constraints introduce
an destabilizing effect into the time integration. Several procedures have been proposed

to overcome this problem:

1. Some authors employ the method of coordinate partitioning [28]. The basis for this
method is to determine a set of independent coordinates and afterwards integrate in
this subspace. The method of singular value decomposition also pursues this objec-
tive [29].

2. Many codes use the method of constraint stabilization initially proposed in ref. [3{}].
It is based on modifying constraints by adding some terms of stabilization. It has
the drawhacks of never exactly verifying the constraints, and of depending on a set
of rather arbitrarily determined constants in the formulation. Rel.[31] proposed a
method to stabilize constraints based on a staggered stabilized procedure, allowing to
formulate a two-stage staggered explicit algorithm.
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3. A radically different approach is to stabilize constraints be means of numerical dissi-
pation in the time integration algorithm. In this method, the dissipation properties
of certain integration algorithms are employed to stabilize the constraints. The ap-
proach has the advantage of being consistent wilh the usual approaches in structural
dynamics, without any dependency on arbitrary constants and exactly satisfying the

constraints of the formulation.

There exists another factor to be considered in the formulation of a time integra-
tion algorithm for multibody dynamics. Finite rotations do not form a vector space, but
standard time inlegrators are designed to work with values in a vector space. Then, a par-
ticular treatment ought to be made to the rotation associated terms in order to compute
the solution, which is not considered in standard structural dynamics programs. The idea
is to project the equations of motion onto the tangent space at the consider rotation, so
as to obtain equations which now take values on a vector space.

Outline of this report

The general outline of the report follows. In chapter 1, we make a general presentation
of the problem of representing finite rotations in three dimensional space. The different
existing techniques of representation are developed. We establish some criteria to follow
in order to select a suitable technigue of representation, to be used in a general purpose
program for analysis of mechanisms. We give also relations to calculate angular velocities
and accelerations in all parameterization systems. We conclude by selecting the technique

of representation to be used elsewhere in this work.

Chapter 2 begins with a discussion about the equations of rigid body dynamies in
terms of the selecled system for paramelerizing rolations. We develop then a nonlinear
theory for a beam and a Reissner-Mindlin beam element. The element is capable of suffer-
ing large displacements and rotations, but deformations remain within the elastic range.
Inertia terms are introduced by marking the analogy existing between the rigid body equa-
tions and the equations of the plane section. A kind of updated Lagrangian formulation for
the rotational degrees of freedom is described, that allows to handle rotations of arbitrarily

large magnitudes in three dimensional space using the rotational vector technigue.

In chapter 3 we introduce joints. After making a general description of the procedures
used to impose constraints into a dynamic system, we set the basis for a general procedure
to follow in order to describe the equations governing joints. Joints of both holonomic and
non-holonomic type are considered. They include the lower-pair joints — hinge, eylindrical,
prismatic, etc. — as well as some higher-pair joints: slider, Hooke, wheel, etc. In all cases,

an augmented Lagrangian procedure was employed to generate the equations of motion.

In chapter 4 we discuss an implementation of the component-mode melhod for 1oulti-

body dynamics. In it, flexible bodies are represented by a collection of fixed-boundary
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modes plus some constraint modes. The approach is fully nonlinear, allowing to consider
large relative rotations between bodies. The only limitation is that the deformation inside
the body should be small enough to consider that the elastic behavior of the body remains
linear in a local frame. The approach has the advantage of allowing to represent bodies
by using the large variety of finite elements existing in the library of a general purpose
program for linear dynamic analysis.

In chapter 5, we analyze the equations of motion of an active member in a mechanism.
In particular, we treat the case of a hydraulic actuator. The actuator is modeled by
using the finite element modular concepl. We develop an element, which is integrated
into the mechanism analysis package. It fully interacts with all elements, allowing to
model complex interaction phenomena between the structure and the hydrodynamics of
the actuator itself: for instance, pressure oscillations and peaks inside the chambers of the

actuator are correctly predicted.

Chapter 6, finally, presents the way we integrate the equations of motion. We begin by
making a general discussion about the stability of constrained dynamic systems. We show
that the Newmark’s algorithm does not give correct solutions for this kind of systems, since
it contains a weak instability which is excited for all values of the time step. We consider
then the application of dissipative algorithms, like for instance, the Hilber-Hughes-Taylor
one. We finish this chapter by discussing the implementation of algorithms for integrating
the equations of motion in the presence of large finite rotations.

Examples illustrating the different findings of the theory are presented at the end of
chapters 2 to 6. The examples are organized so as to show the implications of the theory
of each chapter. At the same time, the reader can evaluate the power of the mechanism
analysis package MECANO developed as an application of the concepts presented in
this thesis, with some examples taken from real industrial problems alternating with purely

academic ones,

A recapitulative about the original features of this thesis is presented in the Conelu-

ETOT.
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